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Abstract

Change point detection in covariance structures is a fundamental and crucial problem for sequen-
tial data. Under the high-dimensional setting, most of the existing research has focused on identifying
change points in historical data. However, there is a significant lack of studies on the practically
relevant online change point problem, which means promptly detecting change points as they oc-
cur. In this paper, applying the limiting theory of linear spectral statistics for random matrices,
we propose a class of spectrum based CUSUM-type statistic. We first construct a martingale from
the difference of linear spectral statistics of sequential sample Fisher matrices, which converges to a
Brownian motion. Our CUSUM-type statistic is then defined as the maximum of a variant of this
process. Finally, we develop our detection procedure based on the invariance principle. Simulation
results show that our detection method is highly sensitive to the occurrence of change point and is
able to identify it shortly after they arise, outperforming the existing approaches.
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1 Introduction
Online change point detection plays a pivotal role in statistical process control and time series analysis.
The field has a rich history, rooted in the classical works on Page’s cumulative sum (CUSUM) procedure
[Page, 1954] and Shiryaev-Roberts procedure [Shiryaev, 1963; Roberts, 1966]. For a detailed exposition
of the methodology and a survey of recent developments, we refer readers to Aue and Kirch [2024] and the
references therein. While classical theories are well-established, monitoring the covariance structure in
high-dimensional settings remains a critical yet challenging task, as it captures the dynamic dependencies
among a large number of variables. Motivated by this, we consider the problem of online change point
detection for the covariance structure of high-dimensional random vectors. Specifically, we observe a
sequence of p-dimensional random vectors {yi}∞i=1, modeled as yi = Σ

1/2
i xi. Here, Σi is a deterministic

p × p symmetric positive definite matrix with uniformly bounded spectral norms, and the entries of xi

are independent and identically distributed (i.i.d.) with zero mean and unit variance. More generally, we
can potentially consider the model yi = Tixi, where Ti satisfies Σi = TiT

∗
i . But for the sake of technical

conciseness, we work with the mentioned setting. Our objective is to sequentially monitor the stream
and detect whether the covariance structure Σi changes at some unknown time instant. Formally, we
test the following hypothesis

H0 : Σi = Σ0 ∀i ≥ 1 vs H1 : ∃k⋆ s.t.

{
Σi = Σ0, 1 ≤ i ≤ k⋆,

Σi = Σ1 ̸= Σ0, i > k⋆.

Here, k⋆ denotes the change point location. Our goal is to detect the change as promptly after the change
point k⋆ while controlling the false alarm rate under the null hypothesis H0.

The problem of detecting structural changes in covariance matrices has been extensively investigated,
primarily in the offline setting where the complete data sequence is available for analysis. In the classical
fixed-dimensional regime, a multitude of methods have been developed based on likelihood ratios and
CUSUM; see, for example, Chen and Gupta [2004], Lavielle and Teyssiére [2006], Galeano and Peña
[2007], Aue et al. [2009], Xie and Siegmund [2013], Dette and Wied [2015], For a comprehensive overview
of these classical approaches, we refer readers to Csörgö and Horváth [1997], Chen and Gupta [2000], Aue
and Horváth [2012] and the references therein. More recently, there has been a surge of literature ad-
dressing high-dimensional offline covariance change-point detection from various perspectives, including
projection based technique [Steland, 2020], binary segmentation algorithm [Wang et al., 2021; Li et al.,
2023], U -statistics based method [Liu et al., 2020; Cui et al., 2025], graph-based method [Chen and
Zhang, 2015; Chu and Chen, 2019], dimension reduction technique [Dette et al., 2022], self-normalization
principle [Bours and Steland, 2021; Wang et al., 2022], and spectral method [Ryan and Killick, 2023;
Dörnemann and Dette, 2024 preprint arXiv:2409.15588; Dörnemann and Paul, 2024].

In contrast, online monitoring for high-dimensional covariance structures is still relatively limited in
the literature. Unlike offline methods that utilize the full data set to estimate the change point, online
procedures must make decisions in real-time with limited historical data and no knowledge of the future.
This constraint requires statistics that are recursive, computationally efficient, and able to control false
alarm rates. Avanesov and Buzun [2018] and Avanesov [2019] investigated the problem of change point
detection for high-dimensional precision and covariance matrices within a multiple-testing framework.
Their procedure constructs a collection of local window-based statistics based on ℓ∞-norm, with critical
values determined via high-dimensional Gaussian approximation and bootstrap techniques. Addressing a
specific structural change, Xie et al. [2020] focused on sequentially detecting deviations from an identity
matrix toward an unknown low-rank (spiked) covariance model. To this end, they proposed two online
detection procedures: a Largest-Eigenvalue Shewhart chart and a Subspace-CUSUM procedure. Li and
Li [2023] studied the online change point detection of high-dimensional covariance matrices utilizing a
window-based U -statistic coupled with a sequential stopping rule. A key advantage of their method is
that it admits explicit control of the Average Run Length (ARL) while accommodating non-Gaussian
data with spatial and temporal dependence. Most recently, Gao et al. [2025] proposed a framework
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for the online detection of changes in the correlation structure of high-dimensional streaming data.
Their approach leverages ℓ2- and ℓ∞-norm based statistics, employing a sign-flip permutation method
to determine adaptive detection thresholds.

In this work, we take a different perspective rooted in Random Matrix Theory. Specifically, we
construct a sequential monitoring procedure based on the linear spectral statistics of the Fisher matrix,
which offers a powerful tool for distinguishing the null and alternative hypotheses in high-dimensional
settings. Suppose that at the current time k, we have observed the sequence y1, . . . , yk. To detect
potential changes, we compare the covariance structures of two adjacent segments partitioned by an
index k1, where 1 < k1 < k. We define the reference sample covariance matrix S1 and the monitoring
sample covariance matrix S2,k as follows:

S1 =
1

k1

k1∑
i=1

yiy
⊺
i , S2,k =

1

k − k1

k∑
i=k1+1

yiy
⊺
i .

We then construct the multivariate F -matrix (or Fisher matrix ) defined as Fk = S−1
1 S2,k, and consider

its linear spectral statistic (LSS)

Tr f(Fk) :=

p∑
i=1

f
(
λi(Fk)

)
,

where λ1(Fk) ≥ · · · ≥ λp(Fk) denote the ordered eigenvalues of Fk and f : R → R is a suitable
test function. The spectral properties of the F -matrix have been extensively investigated within the
framework of random matrix theory. The Limiting Spectral Distribution (LSD) was established in the
foundational works of Bai et al. [1988] and Bai et al. [1986], and subsequently extended by Silverstein
[1995] and Zhang et al. [2022]. Furthermore, the fluctuations of its LSS have been derived under various
settings; see, for instance, Zheng [2012] and Zheng et al. [2017]. Moreover, the asymptotic behavior of
the largest eigenvalue has attracted considerable attention. Relevant results include Han et al. [2016,
2018] and Wang and Yao [2017], with more recent advancements discussed in Jiang et al. [2021]; Xie
et al. [2021]; Hou et al. [2023]; Wang and Jiang [2025] and Jiang et al. [2026].

The core of our methodology relies on monitoring the incremental differences of the LSS. To this end,
we define the standardized increment

L̃k(f) :=
Tr f(Fk)− Tr f(Fk−1)− µk

σk
,

where µk and σk represent the mean and standard deviation of the one-step difference Tr f(Fk) −
Tr f(Fk−1) under the null hypothesis H0. The explicit forms of µk and σk will be provided in Propo-
sition 2.1. Under H0 of no change point, the expectation of L̃k(f) is asymptotically negligible. Once
a structural change occurs at some unknown time k⋆, the expectation of L̃k(f) deviates systematically
from zero. To effectively accumulate the signal from such potentially subtle drifts, we further construct a
normalized CUSUM statistic Tp(n, i) (see definition in (2.6)) based on the sequence {L̃k(f)}. Under H0,
the process {Tp(n, i)} converges in distribution to a Brownian motion type process. Such convergence
is based on the standardization in (1), which makes the increment behave as a normalized martingale
difference; thus, the CUSUM statistic behaves as a random walk. When a change point exists (H1), the
mean shift in the LSS increments will cause Tp(n, i) to deviate significantly from zero, thus triggering
detection. Accordingly, we define the stopping rule

k̂⋆ = inf{i : |Tp(n, i)| > cα},

where the threshold cα is chosen to control the false alarm rate at a prescribed level α. The value of cα
is determined by the quantile of the limiting null distribution of the process {Tp(n, i)}.

The rest of this paper is organized as follows. Section 2 presents our main theoretical results, including
the explicit expressions for the mean and variance of the one-step LSS difference under H0, as well as the
weak convergence of the associated Brownian motion type process. Based on these results, we propose
our online change point detection procedure. In Section 3, we conduct extensive simulation studies
to evaluate the performance of our proposed method in various scenarios. In Section 4, we apply our
proposed method to the S&P 500 dataset to demonstrate its practical utility. To facilitate reproducibility,
the source code for the simulation studies and real data analysis is available online1. All technical proofs
are provided in Sections 5 – 8 and the Appendix.

1Code available at: https://github.com/jxqiu77/OnlineCovCPD.
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Before moving forward, let us introduce some notations that will be used throughout this paper. The
symbol X := Y (or Y =: X) indicates that X is defined as Y . We use double brackets to denote index
sets, i.e., Jn1, n2K := Z ∩ [n1, n2] for n1, n2 ∈ R. For brevity, we write JnK for J1, nK when n is a positive
integer. We use 1{E} or 1E to denote the indicator function of an event E. For any matrix A, we denote
its (i, j)-th entry by Aij , its transpose by A⊺, its Hermitian transpose by A∗, its trace by Tr(A), its j-th
largest eigenvalue by λj(A), its spectral norm by ∥A∥2. For two sequences of positive numbers {an}∞n=1

and {bn}∞n=1, we write an ≪ bn (or bn ≫ an) if an/bn → 0. We write an ≳ bn when an ≥ cbn for some
absolute constant c > 0, and an ≲ bn when bn ≳ an. We write an ≍ bn if c0 ≤ an/bn ≤ C0 for some
absolute constants c0, C0 > 0. For random variables {Xn}∞n=1 and positive real numbers {an}∞n=1, we
write Xn = OP(an) if Xn/an is bounded in probability, and Xn = oP(an) if Xn/an

p−→ 0. We use Xn
p−→ X

and Xn
d−→ X to denote convergence in probability and convergence in distribution, respectively.

2 Main Results

2.1 One-step LSS difference
In this section, we present our main theoretical results concerning the one-step LSS difference of the
Fisher matrix. These results form the foundation for our online change point detection procedure. To
facilitate the analysis, we first impose the following assumptions.

Assumption A (Data generating model). For any i ≥ 1, let yi = Σ
1/2
i xi, where {Σi}∞i=1 are deter-

ministic p × p positive-definite symmetric matrix with uniformly bounded spectral norms. The vectors
{xi}∞i=1 are i.i.d. with xi = (xij)

p
j=1, satisfying Ex11 = 0, Ex2

11 = 1, and Ex4+δ
11 <∞ for some δ > 0.

Assumption B (High-dimensional scaling). The sample sizes k1, k and the dimension p satisfy

p

k1
→ c1 ∈ (0, 1) and

p

k − k1
→ c2 ∈ (0,+∞),

as p, k, k1 →∞.

Let {yi}i≥1 be a sequence of p-dimensional random vectors satisfying Assumptions A and B, with
Σi = Ip for all i ≥ 1 under H0. We define the two sample covariance matrices as

S1 :=
1

k1

k1∑
i=1

yiy
⊺
i , S2,k :=

1

k − k1

k∑
i=k1+1

yiy
⊺
i .

The corresponding F -matrix is given by

Fk := S−1
1 S2,k.

From [Bai et al., 1988, 1986], the LSD of Fk is the distribution with the density function given by

fc1,c2(x) =
(1− c1)

√
(b− x)(x− a)

2πx(c1x+ c2)
, a ≤ x ≤ b,

where

a :=
(1− h)2

(1− c1)2
, b :=

(1 + h)2

(1− c1)2
, h :=

√
c1 + c2 − c1c2.

The Stieltjes transform of the LSD is

m(z) =
1− c2
zc2

−
c2{z(1− c1) + 1− c2}+ 2zc1 − c2(1− c1)

√
(z − b)(z − a)

2zc2(c2 + zc1)
,

where z is any complex number with positive imaginary part. The non-zero eigenvalues of S−1
1 S2 and

its companion matrix Fk := 1
k−k1

X⊺
2S

−1
1 X2 are the same, where X2 = (xk1+1, . . . , xk) is the p× (k− k1)

data matrix formed by the second sample. The Stieltjes transform of Fk is given by

m(z) = −1− c2
z

+ c2m(z)
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= −
c2{z(1− c1) + 1− c2}+ 2zc1 − c2(1− c1)

√
(z − b)(z − a)

2z(c2 + zc1)
. (2.1)

For any test function f , the linear spectral statistic (LSS) of Fk is defined as

Tr f(Fk) :=

p∑
i=1

f(λi(Fk)).

Let Lk(f) := Tr f(Fk) − Tr f(Fk−1) be the one-step difference of LSS. By using the Cauchy integral
formula, we have for analytic f ,

Lk(f) = −
1

2πi

∮
Γ

f(z)
{
TrGk(z)− TrGk−1(z)

}︸ ︷︷ ︸
Mk(z)

dz, (2.2)

where Gk(z) := (Fk − z)−1 is the resolvent (or Green function) of Fk, and the contour Γ is taken in the
anticlockwise direction enclosing the support [a, b] of the LSD of Fk.

For simplicity, we denote k2 := k − 1 − k1 in the following. The following proposition provides the
explicit expressions of the mean and variance of the one-step difference Lk(f) under the null hypothesis
H0.

Proposition 2.1. Suppose that Assumptions A and B hold. Under H0, for any analytic function f , the
mean and variance functions of Lk(f) are given by

µk(f) := E(Lk(f)) =
1

2πi

∮
Γ

(
f ′(z)zm− f(z)

m′

m

)
dz +

ν4 − 3

4pπi

∮
Γ

f ′(z)(1 + zm)2 dz

+
1

2k2πi

∮
Γ

(
−{zf(z)}

′′zm

2
+ zf ′(z)

m′

m
+

f ′′(z)

m

)
dz + o

(
1

p

)
, (2.3)

σ2
k(f) := Var(Lk(f)) =

ν4 − 3

k2c2

(
1

2πi

∮
Γ

f ′(z)zmdz

)2

+
1

k2πi

∮
Γ

{f ′(z)}2

m
dz + o

(
1

p

)
. (2.4)

The proof of Proposition 2.1 is given in Section B.2. We refer to Section 3 for explicit expressions of
the mean and variance of Lk(f) for some commonly used test functions. Based on Proposition 2.1, we
first define a random walk type process. For a fixed T > 0,

Wn,t :=
1√
n

n+⌊nt⌋∑
k=n+1

L̃k(f), 0 ≤ t ≤ T,

where

L̃k(f) :=
Lk(f)− µk(f)

σk(f)
, (2.5)

and µk(f), σk(f) are defined in Proposition 2.1. This process is used in defining our monitoring statistics
in Section 2.2. The following theorem establish the weak convergence of the above process under the
null hypothesis.

Theorem 2.2 (Weak Convergence of Wn,t under H0). Suppose that Assumptions A and B hold. Under
the null hypothesis, {Wn,t, t ∈ [0, T ]} converges in distribution to a standard Brownian motion {W (t), t ∈
[0, T ]}, i.e., with covariance kernel

Cov(W (t),W (s)) = t ∧ s.

The proof of Theorem 2.2 is given in Section 5.
While the result above characterizes the dynamic behavior of the LLS-based monitoring process, the

asymptotic theory of LSS was primarily developed for static hypothesis testing. In the offline setting,
the LSS of large-dimensional sample covariance matrices has served as a cornerstone for hypothesis
testing [Bai and Silverstein, 2004]. Based on this theory, an extensive literature has emerged, offering
rigorous procedures for testing covariance structures. These methodologies encompass one-sample tests
for identity or sphericity [Bai et al., 2009; Wang and Yao, 2013; Zheng et al., 2015; Li and Yao, 2016;
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Liu et al., 2023; Qiu et al., 2023; Yin, 2024; Liu et al., 2025], as well as two-sample tests assessing
the equality of covariance matrices [Zheng et al., 2017; Yang and Pan, 2017; Zhang et al., 2019; Zou
et al., 2021; Ding et al., 2024]. However, despite these results in static regimes, extending LSS-based
inference to the sequential monitoring domain presents distinct challenges. We remark here that a
stochastic process constructed from the sequential linear spectral statistics of the sequential sample
covariance matrices has been considered in Dörnemann and Dette [2024], for which the limiting process
is a non-standard Gaussian process. Here, instead, we construct the process as a random walk with the
normalized increments, so that the limiting process is the standard Brownian motion. A major advantage
of such construction is that the local envelope of the Brownian motion is well-understood, which will be
important for the construction of our testing statistics in the sequel.

2.2 Online change point detection procedure
In this section, we introduce our online change point detection procedure, which leverages the asymptotic
results of the one-step LSS difference established in Proposition 2.1. We assume an initial historical
dataset of size n = k1+k◦2 is available. Specifically, the first k1 observations are utilized to construct the
baseline covariance matrix S1, while the subsequent k◦2 observations form the initial covariance matrix
S2,n. The initial sample size k◦2 is predetermined to ensure that Assumption B is satisfied at k = n.
Following this initialization, the procedure proceeds to sequentially monitor the incoming data stream
{yn+i}i≥1.

Motivated by the online CUSUM procedure proposed in Chu et al. [1996], we construct a monitoring
statistic at time n+ i (i ≥ 1) based on the cumulative sum of the standardized one-step LSS differences
defined in (2.5):

Tp(n, i) = w(n, i)|Ψ(n, i)|, (2.6)

where w(n, i) is the weight function satisfying Assumption C below, and Ψ(n, i) is a CUSUM-type
statistic defined as

Ψ(n, i) =
1√
n

n+i∑
k=n+1

L̃k(f), n = k1 + k◦2 , i ≥ 1, (2.7)

and L̃k(f) is defined in (2.5). At each time point n+ i (i ≥ 1), we update Tp(n, i) by including the new
sample yn+i. An alarm is triggered immediately if the monitoring statistic Tp(n, i) exceeds the critical
threshold cα; otherwise, the monitoring process continues. Hence, the stopping time k̂⋆ of the procedure
is defined by

k̂⋆ = inf
{
i ≥ 1 : Tp(n, i) > cα

}
(2.8)

with the convention that inf(∅) =∞. The implementation details of the proposed method are summa-
rized in Algorithm 1.

In our online detection procedure, we aim to control the asymptotic false alarm rate at a nominal
level α ∈ (0, 1) while ensuring that the detection power converges to one. Formally, this entails selecting
a critical value cα such that

PH0
(k̂⋆ <∞)→ α, and PH1

(k̂⋆ <∞)→ 1,

where PH0
and PH1

denote the probability under the null and alternative hypothesis, respectively. To
achieve this goal, we need to impose the following regularity conditions on the weight function w(n, i):

Assumption C (Weight function). Let the weight function satisfy

(i) w(n, i) = ρ(i/n)1{i > ℓn} with ℓn/n→ 0, where ρ : (0,∞)→ [0,∞) is nonnegative and continuous
if restricted to (0, eρ] ∩ R, eρ = sup{t > 0 : ρ(t) > 0};

(ii) limt→0 t
γρ(t) <∞ for some 0 ≤ γ < 1

2 ;

(iii) limt→∞ tρ(t) <∞.

Condition C(i) mandates a burn-in period (determined by ℓn) prior to the start of monitoring. This
delay is designed to mitigate false alarms during the early stages, where the monitoring statistic is prone
to instability due to the limited sample size. Conditions C(ii) and C(iii) characterize the weight function’s
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asymptotic behavior to balance sensitivity and robustness: the former restricts the growth rate at t→ 0
to mitigate excessive false alarms during the initial monitoring phase, while the latter prevents slow
decay at infinity to ensure effective long-term monitoring.

In this paper, we set the burn-in period as ℓn = log(n). To evaluate the detection performance under
different weighting schemes, we employ the following two weight functions:

ρ1,γ(t) = (1 + t)γ−1t−γ , 0 ≤ γ <
1

2
, (2.9)

ρ2(t) = (1 + t)−1/2
{
−2 logα+ log(1 + t)

}−1/2
. (2.10)

Both the weight family ρ1,γ and the logarithmic weight ρ2 are adopted from Chu et al. [1996]. To visually
demonstrate the behavior of the standardized LSS difference process Ψ(n, ⌊nt⌋) = 1√

n

∑n+⌊nt⌋
k=n+1 L̃k(f)

and the corresponding detection boundaries implied by these weight functions, we present a simulation
example in Figure 1. Under H0, the sample paths fluctuate around zero and remain largely within the
prescribed boundaries, while under H1 the process exhibits a clear upward drift after the change point
and crosses the boundaries shortly thereafter.

Note that the stopping condition implies PH0
(k̂⋆ < ∞) = PH0

(supi≥1 Tp(n, i) > cα). Consequently,
to determine the critical value cα, it is necessary to derive the limiting null distribution of the process
{Tp(n, i), i ≥ 1}. The following theorem establishes this asymptotic result.

Theorem 2.3 (Limiting null distribution). Suppose that Assumptions A – C hold. Under the null
hypothesis, we have

sup
i≥1

Tp(n, i)
d−→ sup

t>0
ρ(t)|W (t)|,

where W (·) is a standard Brownian motion.

The proof of Theorem 2.3 is given in Section 6.
Remark 2.4. As t → 0, W (t) = OP(

√
t log log t−1) by the law of iterated logarithm at time 0. By

Assumption C(ii), we have ρ(t)W (t) = oP(1) for 0 ≤ γ < 1/2. As t → ∞, the law of iterated logarithm
implies W (t) = OP(

√
t log log t). From Assumption C(iii), we have ρ(t)W (t) = OP(

√
t−1 log log t) =

oP(1). Hence, the supremum in Theorem 2.3 can be taken ove (0,∞). A major reason of adding a
weight function to the original process is the non-stationarity of Brownian motion. This non-stationarity
introduces bias in the location of the process maxima, even under the null hypothesis, making early
change points unlikely to be detected. Applying a weight function to amplify the small-t regime therefore
increases sensitivity for detecting early changes. Choosing suitable weight function is possible only if
we have a good understanding on the local envelope of the process, which motivated us to consider the
normalized one-step LSS difference, whose partial sum process converges to Brownian motion.

Based on the asymptotic results in Theorem 2.3, we determine the critical values cα for the weight
function ρ1,γ(t) via Monte Carlo simulations. The obtained values are summarized in Table 1.

Table 1: Critical value cα for the weighted function ρ1,γ(t).

α\γ 0.00 0.15 0.25 0.35 0.45

0.01 1.56949 1.81747 1.97581 2.29276 2.78885
0.05 1.33027 1.5131 1.68472 1.93445 2.30402
0.10 1.19574 1.35757 1.50264 1.73564 2.11163

To investigate the asymptotic power and detection delay of our online detection procedure, we impose
the following assumption on the change point k⋆:

Assumption D (Change point). The change point k⋆ satisfies that k⋆/n = O(1).

In practice, if the proposed change point detection procedure indicates that no change has occurred,
while the current sample size i becomes large relative to n (i.e., i/n≫ 1), we may enlarge n adaptively
so that the ratio i/n remains of order O(1).

Recall that the detection time k̂⋆ is determined by the stopping rule (2.8). The detection delay is
formally defined as d⋆ := k̂⋆ − k⋆, which quantifies the latency between the true change points and the
detection time. The following theorem characterizes the asymptotic behavior of this delay for our online
procedure, along with the asymptotic power.

7
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(a) Under H0: 200 sample paths where the data {yj}j≥1 are i.i.d. N(0, Ip).
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(b) Under H1: 200 sample paths with a change point at t⋆ = 2/3 (k⋆ = 500). Data are
i.i.d. N(0, Ip) before and N(0, 1.2Ip) after the change.

Figure 1: Sample paths (blue) of the standardized LSS difference process { 1√
n

∑n+⌊nt⌋
k=n+1 L̃k(f), t ≥ 0}

with test function f(x) = x, together with boundary curves. The simulation setting is p = 100, n = 300
(k1 = k◦2 = 150). The red dashed lines represent the boundary ±ρ−1

2 (t), while the green, orange, and
purple lines depict the boundaries ±cαρ−1

1,γ(t) for γ = 0.0, 0.25, 0.45 at significance level α = 0.05. Reject
H0 whenever the sample path crosses the selected boundaries.
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Theorem 2.5 (Detection delay time). Suppose that Assumptions A – D hold. Let

τ1 := lim
p→∞

1

p
Tr(Σ−1

0 Σ1), τ2 := lim
p→∞

1

p
Tr(Σ−1

0 Σ1)
2,

I1(f, τ1) :=
1

2πi

∮
Γ

f ′(z) log
{
τ1 − (1− τ1)zm(z)

}
dz,

I2(f) :=
1

2πi

∮
Γ

f ′(z)
{
log(zm) + zm

}
dz.

We further assume that one of the following conditions holds:

(I) τ1 ̸= 1 and I1(f, τ1) ̸= 0;

(II) τ1 = 1, τ2 ̸= 1, and I2(f) ̸= 0.

The detection delay d⋆ satisfies one of the following:

1. (Early-change) If k⋆ − n = o(n), then the detection delay d⋆ satisfies d⋆ ≍ log n under condition
(I), and d⋆ ≍ n1/2−δ for some small 0 < δ < 1/2 under condition (II).

2. (Late-change) If k⋆ − n ≍ n, then the detection delay d⋆ satisfies d⋆ ≍ logn under condition (I),
and d⋆ ≍

√
n under condition (II).

Furthermore, it holds under H1 that

sup
i≥1

Tp(n, i)
p−→ +∞,

such that the online test based on the monitoring statistic Tp(n, i) has asymptotic power one.

The proof of Theorem 2.5 is given in Section 7.

Remark 2.6. We examine whether the contour integrals I1(f, τ1) and I2(f) vanish or not in general. Let

L1(z) := log
{
τ1 − (1− τ1)zm(z)

}
and L2(z) := log(zm) + zm.

According to the Residue Theorem, these integrals are non-zero if the sum of the residues of the integrands
at all poles in the region exterior to Γ is non-zero. We consider two kinds of test functions based on the
analytic structure of its derivative f ′(z) in the domain exterior to Γ:

• Case A: polynomial functions. Assume f(z) is a polynomial of degree k: f(z) =
∑k

j=0 cjz
j , where

k is a finite integer. Its derivative is a polynomial of degree k − 1: f ′(z) =
∑k

j=1 jcjz
j−1 Since

f ′(z) is entire, there are no finite poles in the exterior region. The integral is determined solely by
the residue at infinity. To compute this, we consider the Laurent expansion of L1(z) at infinity:

L1(z) =

∞∑
m=0

Am

zm
= A0 +

A1

z
+

A2

z2
+ · · ·+ Ak

zk
+O(z−(k+1)).

The integrand is the product:

f ′(z)L1(z) =

 k∑
j=1

jcjz
j−1

( ∞∑
m=0

Am

zm

)
.

According to the Residue Theorem, we have

I1(f, τ1) = −Res(f ′(z)L(z),∞) =

k∑
j=1

jcjAj .

The integral is non-zero provided that the linear combination

k∑
j=1

jcjAj ̸= 0.

9



Specifically, if f(z) = z, we need A1 ̸= 0. If f(z) = z2, we need 2A2 ̸= 0. Note that A1 = (1−τ1)c2
1−c1

and A2 = c2(1−τ1){2+c2(1−c1)(1+τ1)}
2(1−c1)3

. Both cases hold under the condition τ1 ̸= 1. Hence, f(x) = x

and x2 are valid choice to detect the change point when τ1 ̸= 1.
Similarly, for the case τ1 = 1, we have the Laurent expansion of L2(z) at infinity:

L2(z) =

∞∑
m=0

Bm

zm
= B0 +

B1

z
+

B2

z2
+ · · ·+ Bk

zk
+O(z−(k+1)).

The integral I2(f) is non-zero provided that

k∑
j=1

jcjBj ̸= 0.

Note that B1 = 0 and B2 = − c22
2(1−c1)2

. Thus, f(x) is not a valid choice to detect the change point
when τ1 = 1. However, f(x) = x2 is a valid choice since 2B2 ̸= 0.

• Case B: function with singularities. Assume f(z) possesses singularities (e.g., logarithmic functions
like log(1 + z)). In this scenario, the derivative f ′(z) may exhibit isolated poles zk in the region
exterior to Γ. The integral is non-zero if the sum of residues at these poles is non-zero.
For both integrals, we consider the specific example f(z) = log(1+z). Using the Residue Theorem,
we have

I1(f, τ1) = − log{τ1 + (1− τ1)m(−1)}.

This integral is non-zero as long as m(−1) ̸= 1. It follows from that m(−1) =
∫ b

a
1

x+1 dF (λ) < 1,
where F (x) is the LSD of the companion matrix Fk. Hence, f(z) = log(1 + z) is a valid choice to
detect the change point when τ1 ̸= 1.
Similarly, for the case τ1 = 1, we have

I2(f) = −
{
log{m(−1)} −m(−1) + 1

}
.

This integral is non-zero as long as m(−1) ̸= 1, which is verified above. Hence, f(z) = log(1 + z)
is still a valid choice to detect the change point when τ1 = 1.

3 Numerical Simulations

3.1 Simulation Setup
We conduct Monte Carlo experiments to examine the finite-sample performance of the proposed sequen-
tial detection procedure under both the null (H0) and alternative (H1) hypotheses. All reported results
are based on M = 2000 independent replications for each configuration. The details of the simulation
setup are as follows.

Common Parameters. Throughout the simulations, the nominal significance level is set to α = 0.05.
The weighting functions are chosen as those defined in (2.9) and (2.10), where the parameter γ in ρ1,γ(t)
takes values in {0.0, 0.25, 0.45}. The critical value cα for ρ1,γ(t) with different α and γ is obtained through
Monte Carlo simulation of the limiting distribution in Theorem 2.3, as summarized in Table 1. We set
the data dimension to p = 100. The historical data sizes are k1 = k◦2 = 150, such that the sequential
monitoring starts at time k1 + k◦2 + 1 = 301. The data are generated in the form yk = Σ

1/2
k xk, where xk

and Σk satisfy Assumption A. For the estimation of the fourth moment ν4 of underlying distributions,
we adopt the estimator proposed in Lopes et al. [2019], given by

ν̂4 = max

(
3 +

γ̂n − 2τ̂n
ω̂n

, 1

)
,

where

τ̂n = Tr(S2
n)−

1

n

{
Tr(Sn)

}2
, Sn =

1

n

n∑
j=1

yjy
⊺
j ,
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Algorithm 1 Online covariance change point detection via one-step F -matrix LSS differences

Input: Streaming observations {yk}k≥1; historical sample sizes k1 and k◦2 ; test function f ; weight func-
tion ρ(·); significance level α.

Output: Detection time k̂⋆ (or “no detection” if the monitoring is stopped externally).
Step 1: Critical threshold

1: Use Monte Carlo simulations to determine the critical value cα such that PH0

(
supt>0 ρ(t)|W (t)| >

cα
)
= α, where W (t) is standard Brownian motion; see Theorem 2.3.

Step 2: Initialization
2: Set n← k1 + k◦2 , i← 0.
3: Compute initial sample covariance matrices and F -matrix:

S1 ←
1

k1

k1∑
i=1

yiy
⊺
i , S2,n ←

1

n− k1

n∑
i=k1+1

yiy
⊺
i , Fn ← S−1

1 S2,n.

4: Set current time index k ← n.
Step 3: Online Monitoring

5: while new observation yk+1 arrives do
6: Update indices: i← i+ 1, k ← k + 1.
7: Step 3.1: one-step LSS difference
8: Update the second sample covariance matrices S2,k (using recursive update or full sum).
9: Compute current F -matrix: Fk ← S−1

1 S2,k.
10: Compute the one-step LSS difference

Lk(f)← Tr f(Fk)− Tr f(Fk−1).

11: Step3.2: standardization
12: Compute the theoretical mean µk(f) and variance σ2

k(f) of Lk(f) using (2.3) and (2.4).
13: Standardize:

L̃k ←
Lk(f)− µk(f)

σk(f)
.

14: Step 3.3: monitoring statistic
15: Update CUSUM-type statistic ((2.6) and (2.7)):

Ψ(n, i)← 1√
n

n+i∑
t=n+1

L̃t, Tp(n, i)← ρ(i/n) |Ψ(n, i)|.

16: if Tp(n, i) > cα then
17: return Detection time k̂⋆ ← k.
18: end if
19: end while
20: return “no detection”.

11



γ̂n =
1

n− 1

n∑
j=1

(
∥yj∥22 −

1

n

n∑
j′=1

∥yj′∥22
)2

, ω̂2
n =

p∑
i=1

(
1

n

n∑
j=1

y2ij

)2

.

Empirical Size under H0. To evaluate the empirical size, we simulate data under the null hypothesis
H0, where no structural change occurs. Without loss of generality, we set the true covariance matrix as
Σk = Ip for all k. The standardized observations xk are generated from three distinct distributions with
varying fourth moments ν4, allowing us to evaluate robustness to tail behavior:

• Gaussian distribution N(0, 1), with ν4 = 3;

• Uniform distribution Unif(−
√
3,
√
3), with ν4 = 1.8;

• Student’s t distribution t(10)/
√
1.25, with ν4 = 4.

Additionally, we examine four test functions:

• Linear: f(x) = x;

• Logarithmic: f(x) = log(1 + x);

• Mixed: f(x) = x+ log(1 + x);

• Square: f(x) = x2.

Empirical Power under H1. To assess detection power and detection delay time, we simulate data
under H1 with a single change point occurring at k⋆. To examine the impact of the change point location,
we vary k⋆ ∈ {350, 450, 500}. The underlying distributions and test functions remain consistent with
the H0 setting, excluding the square function. The covariance structure is defined as Σk = Ip for the
pre-change samples (k ≤ k⋆), and switches to Σk = Σ ̸= Ip for the post-change samples (k > k⋆).
Specifically, we investigate three distinct structural changes:

• Homogeneous variance inflation: Σ = σ2I. This scenario simulates a uniform variance change
across all dimensions. We vary σ2 ∈ {1.1, 1.2, 1.3, 1.4, 1.5};

• Correlation structure change: The covariance matrix follows a Toeplitz structure with inflated
variance, where the diagonal entries are Σjj = 2 and off-diagonal entries are Σjk = ρ|j−k| for
j ̸= k. This scenario introduces correlations among variables. We vary ρ ∈ {0.1, 0.3, 0.5, 0.7, 0.9};

• Heterogeneous variance inflation: Σ = 1.5I+δ
∑5

i=1 eie
⊺
i , where ei is the i-th standard basis vector

in Rp. This scenario combines a global variance inflation (from 1 to 1.5) with a localized low-rank
perturbation, and is designed to test the capability to detect localized large shifts masked by a
global variance increase. We vary δ ∈ {2, 2.5, 3, 3.5, 4}.

Explicit forms of µk(f) and σ2
k(f) for selected f . Now, we present the explicit forms of the mean

µk(f) and variance σ2
k(f) of Lk(f) under H0 for several commonly used test functions f . These explicit

expressions facilitate efficient computation of the monitoring statistic Tp(n, i) in practical applications.
We first define several auxiliary quantities that appear in the expressions:

M1 =
c2

1− c1
, M2 =

c2
(
1 + c2 − c1c2

)
(1− c1)3

,

M3 =
c2
(
c21c

2
2 − 2c1c

2
2 − 3c1c2 + c1 + c22 + 3c2 + 1

)
(1− c1)5

,

M4 =
c2

(1− c1)7

(
− c31c

3
2 + 3c21c

3
2 + 6c21c

2
2 − 4c21c2 + c21 − 3c1c

3
2

− 12c1c
2
2 − 2c1c2 + 3c1 + c32 + 6c22 + 6c2 + 1

)
,

C3 = M4
1 − 3M2

1M2 + 2M1M3 +M2
2 −M4.

For the selected test functions, the explicit forms of the mean µk(f) of Lk(f) under H0 are as follows:

µk(x) = 0, µk(x
2) = −M2

1 +
ν4 − 3

p
M2

1 +
1

k2
M2,

12



µk(log(1 + x)) = µk(x+ log(1 + x))

= {m(−1)− 1− lnm(−1)} − ν4 − 3

2p
{1−m(−1)}2 + 1

k2

{
1

2
−m′(−1)

(
1

2
− 1

m(−1)
+

1

m2(−1)

)}
.

The variance σ2
k(f) of Lk(f) under H0 are given by:

σ2
k(x) =

ν4 − 3

k2c2
M2

1 −
2

k2
(M2

1 −M2), σ2
k(x

2) =
4M2

2 (ν4 − 3)

k2c2
− 8C3

k2
,

σ2
k(log(1 + z)) =

ν4 − 3

k2c2
{m(−1)− 1}2 + 2

k2

(
m′(−1)
m(−1)2

− 1

)
,

σ2
k(z + log(1 + z)) =

ν4 − 3

k2c2
{M1 + 1−m(−1)}2 + 2

k2

(
M2 − (M1 − 1)2 + 2− 2

m(−1)
+

m′(−1)
m(−1)2

)
.

The explicit expressions presented above follow from Proposition 2.1 and the residue theorem. The
derivation details are provided in Section B.1.

Remark 3.1. For general test functions f , one may convert the corresponding contour integrals in Propo-
sition 2.1 into equivalent real integrals, allowing for accurate numerical evaluation of the mean and vari-
ance. For any analytic test function f , the mean and variance of Lk(f) under H0 can be computed via
the following integrals:

µk(f) = −
1

π

∫ b

a

(
xBf ′ +

A′B −AB′

A2 +B2
f

)
dx− ν4 − 3

pπ

∫ b

a

(1 + xA)xBf ′ dx

− 1

k2π

∫ b

a

{
− (xf ′′ + 2f ′)xB

2
− (A′B −AB′)xf ′ +Bf ′′

A2 +B2

}
dx+ o

(
1

p

)
,

σ2
k(f) =

ν4 − 3

k2c2π2

(∫ b

a

xf ′B dx

)2

+
2

k2π

∫ b

a

Bf ′2

A2 +B2
dx+ o

(
1

p

)
,

where A ≡ A(x) := −x(h2+c1)+c2(1−c2)
2x(c2+xc1)

, and B ≡ B(x) :=
c2(1−c1)

√
(x−b)(a−x)

2x(c2+xc1)
.

The derivation of these integral forms is provided in Section B.3.

3.2 Simulation Results and Discussion
With M = 2000 replications of the dataset simulated under the null/alternative hypothesis, we calculate
the empirical size/power and expected detection delay (EDD) as follows:

Empirical Size/Power =
∑M

ℓ=1 1{k̂⋆ℓ <∞}
M

, EDD =

∑M
ℓ=1(k̂

⋆
ℓ − k⋆)+∑M

ℓ=1 1{k̂⋆ℓ ≥ k⋆}
,

where k̂⋆ℓ is the stopping time (see (2.8)) in the ℓ-th replication. The former measures the probability
of successful detection within the monitoring horizon, while the latter quantifies the average number of
observations required after the true change point to trigger an alarm.

Table 2 reports the empirical sizes under different combinations of data distributions, weight functions,
and test functions at the nominal level α = 0.05. The results indicate that the choice of weight and
test function impacts the empirical size control. Specifically, the weight functions ρ1,γ with larger values
of γ tend to produce slightly inflated sizes, particularly when paired with the square test function. In
contrast, the weight ρ2 leads to conservative behavior with empirical sizes frequently below the nominal
level. Regarding test functions, the log, linear and mix generally provide more reliable size control
than the square function, which leads to over-rejection in many settings. Overall, the combination of
the ρ1,0 weight with the log, linear, or mix test functions consistently achieves empirical sizes close to
the nominal level across all distributions. The empirical size behavior reported in Table 2 can be partly
explained by the boundary geometry illustrated in Figure 1. For the ρ1,γ family, increasing γ causes
the boundary cαρ

−1
1,γ to narrow around the monitoring process trajectories in the initial phase, making

false alarms more probable and leading to slight size inflation. Conversely, the logarithmic weight ρ2
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Test Functions

Distribution Weight linear log mix square

Gaussian

ρ1,0 0.0840 0.0630 0.0620 0.1315
ρ1,0.25 0.0855 0.0645 0.0680 0.1415
ρ1,0.45 0.0825 0.0725 0.0830 0.1660
ρ2 0.0135 0.0100 0.0090 0.0315

Uniform

ρ1,0 0.0535 0.0450 0.0570 0.1235
ρ1,0.25 0.0600 0.0500 0.0670 0.1290
ρ1,0.45 0.0710 0.0570 0.0780 0.1410
ρ2 0.0055 0.0045 0.0070 0.0370

Student’s t(10)

ρ1,0 0.0755 0.0890 0.0715 0.1585
ρ1,0.25 0.0835 0.0885 0.0805 0.1645
ρ1,0.45 0.1040 0.0810 0.0905 0.1715
ρ2 0.0100 0.0190 0.0110 0.0455

Table 2: Empirical size under different test function, weighted functions and data distributions. The
nominal level is α = 0.05.

generates a significantly wider boundary that stays well clear of the trajectories, which decreases spurious
detections and yields conservative empirical sizes.

Tables 3 – 5 report the empirical power and EDD for weight function ρ1,γ with γ = 0. To analyze the
impact of weight functions, test functions, locations of change point, and data distributions on detection
performance, we present Figures 2 – 5. These results demonstrate the comprehensive effectiveness and
robustness of our proposed detection procedure. We can draw several key conclusions:

• (General power and detection delay.) For weak to strong signal strengths, the proposed method
exhibits exceptional sensitivity. As illustrated in Tables 3 – 5 and Figures 2 – 3, it consistently
achieves empirical power near unity (1.0 or ≈ 1.0) with rapidly decreasing EDD across nearly all
scenarios. Theoretical insights from Theorem 2.5 reveal that the detection delay primarily rely on
the quantity τ1. In the scenario of correlation structure changes, τ1 remains invariant (constant at
2) with respect to ρ, resulting in a relatively stable EDD across varying correlation magnitudes.
In contrast, for homogeneous/heterogeneous variance inflation scenarios, τ1 changes with signal
strength, leading to a substantial reduction in EDD as the signal magnitude increases.

• (Superiority of the log test function.) As evidenced Figure 3, the log test function consistently
achieves the lowest EDD across all change scenarios. Notably, in the homogeneous variance inflation
scenario (see Table 3), it exhibits superior sensitivity, yielding higher empirical power than both
the linear and mixed functions in the weak signal regime where σ2 = 1.1.

• (Impact of change point location.) Figure 4 illustrates the impact of the change point location on
detection performance. We observe consistent trends across diverse weight functions and change
scenarios: earlier changes lead to shorter detection delays. Comparing the weighting schemes, the
ρ1,γ family generally yields shorter detection delays than the ρ2 weight. Within the ρ1,γ class, the
choice of γ involves a trade-off: larger γ values enhance sensitivity to early changes, whereas smaller
γ values prove more effective for changes occurring later in the sequence. Among the candidates
considered, the ρ1,0 weight is the most robust option and shows relatively little dependence on the
change point location.

• (Robustness to data distribution.) A primary strength of our method is its remarkable robustness
to the underlying data generating process. As evidenced in Figure 5, the detection performance
remains virtually invariant across Gaussian, Uniform, and Student’s t distributions. This strongly
suggests that the efficacy of our method are insensitive to the underlying data distribution. This
property constitutes a significant practical advantage, particularly in applications involving high-
dimensional data that may exhibit heavy tails or deviate from normality.

In summary, based on the comprehensive numerical simulations, we recommend the log test function
paired with the ρ1,γ weight function with γ = 0 as the default configuration for practical applications. The
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Figure 2: Performance comparison of different weight functions.
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Change Magnitude (σ2)

k⋆ 1.1 1.2 1.3 1.4 1.5

Gaussian

linear
350 114.84 (0.987) 42.10 (1.0) 25.53 (1.0) 18.37 (1.0) 14.50 (1.0)
450 133.16 (0.9925) 52.22 (1.0) 32.08 (1.0) 23.69 (1.0) 18.73 (1.0)
550 157.06 (0.9745) 63.04 (1.0) 39.44 (1.0) 28.03 (1.0) 22.36 (1.0)

log
350 53.96 (1.0) 24.33 (1.0) 16.10 (1.0) 12.10 (1.0) 9.87 (1.0)
450 63.87 (1.0) 29.15 (1.0) 18.83 (1.0) 13.97 (1.0) 11.45 (1.0)
550 75.65 (1.0) 33.84 (1.0) 22.18 (1.0) 16.60 (1.0) 13.27 (1.0)

mix
350 98.90 (0.9985) 37.22 (1.0) 23.32 (1.0) 17.13 (1.0) 13.74 (1.0)
450 118.16 (0.997) 47.32 (1.0) 29.61 (1.0) 21.27 (1.0) 16.93 (1.0)
550 140.61 (0.993) 56.00 (1.0) 35.39 (1.0) 26.19 (1.0) 20.52 (1.0)

Uniform

linear
350 94.60 (0.995) 36.52 (1.0) 22.88 (1.0) 16.84 (1.0) 13.20 (1.0)
450 116.13 (0.9975) 45.39 (1.0) 28.79 (1.0) 21.16 (1.0) 16.74 (1.0)
550 138.91 (0.9915) 55.67 (1.0) 34.93 (1.0) 25.63 (1.0) 19.95 (1.0)

log
350 40.25 (1.0) 19.04 (1.0) 12.45 (1.0) 9.53 (1.0) 7.76 (1.0)
450 48.18 (1.0) 22.34 (1.0) 14.78 (1.0) 11.02 (1.0) 9.07 (1.0)
550 56.20 (1.0) 26.21 (1.0) 16.98 (1.0) 12.88 (1.0) 10.42 (1.0)

mix
350 82.20 (0.999) 32.60 (1.0) 20.57 (1.0) 15.04 (1.0) 12.04 (1.0)
450 100.18 (1.0) 40.77 (1.0) 26.03 (1.0) 18.95 (1.0) 14.92 (1.0)
550 116.64 (0.9985) 49.29 (1.0) 30.74 (1.0) 22.70 (1.0) 18.23 (1.0)

Student’s t(10)

linear
350 127.87 (0.9785) 45.01 (1.0) 27.91 (1.0) 19.90 (1.0) 15.84 (1.0)
450 151.23 (0.9805) 57.80 (1.0) 34.65 (1.0) 25.93 (1.0) 20.45 (1.0)
550 172.12 (0.958) 68.46 (1.0) 42.98 (1.0) 30.66 (1.0) 24.19 (1.0)

log
350 62.49 (1.0) 28.16 (1.0) 18.42 (1.0) 13.83 (1.0) 11.24 (1.0)
450 74.65 (1.0) 33.34 (1.0) 21.06 (1.0) 15.78 (1.0) 13.04 (1.0)
550 88.25 (1.0) 39.10 (1.0) 24.90 (1.0) 18.51 (1.0) 15.07 (1.0)

mix
350 112.59 (0.99) 41.41 (1.0) 25.37 (1.0) 18.64 (1.0) 14.71 (1.0)
450 136.76 (0.992) 50.99 (1.0) 31.97 (1.0) 23.33 (1.0) 18.25 (1.0)
550 156.53 (0.9795) 62.42 (1.0) 38.80 (1.0) 28.44 (1.0) 22.79 (1.0)

Table 3: EDD and Power (in parentheses) for homogeneous variance inflation using weight ρ1,γ (γ = 0).

log function demonstrates superior sensitivity across all scenarios, particularly in the challenging weak
signal regime. Regarding the weighting scheme, ρ1,0 offers the most favorable trade-off, ensuring rapid
detection while maintaining stability invariant to the unknown change point location. This combination
provides a robust and powerful solution that performs reliably across diverse data distributions.

3.3 Comparison with Existing Methods
We conduct simulation studies to benchmark our proposed method against two alternative procedures:
Avanesov [2019] (referred to as A19) and Li and Li [2023] (referred to as LL23). The simulation setup fix
the dimension at p = 50 and the true change point at k⋆ = 200. The observations are generated from
a standard normal distribution, with the covariance structure shifting from Σ0 = Ip to Σ1 according to
the three scenarios described in Section 3.1.

For our proposed method, we use the weight function ρ1,0 and the test function f(x) = log(1 + x).
The historical data sizes are set to k1 = 60 and k◦2 = 100, with a nominal significance level of α = 0.05.
For the A19 method, we specific a window size of 20 and a significance level of α = 0.05. The detection
threshold is determined via the bootstrap procedure described in Section 2.2 of Avanesov [2019], using
500 bootstrap replications. Regarding the LL23 method, we set the window size parameter to 100. To
ensure a fair comparison at the same false alarm rate, we calibrate the average run length (ARL) of LL23
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Change Magnitude (ρ)

k⋆ 0.1 0.3 0.5 0.7 0.9

Gaussian

linear
350 7.33 (1.0) 7.31 (1.0) 7.33 (1.0) 7.42 (1.0) 7.36 (1.0)
450 9.05 (1.0) 9.20 (1.0) 9.24 (1.0) 9.17 (1.0) 9.27 (1.0)
550 11.15 (1.0) 11.13 (1.0) 10.93 (1.0) 11.07 (1.0) 11.26 (1.0)

log
350 5.37 (1.0) 5.36 (1.0) 5.31 (1.0) 5.42 (1.0) 5.57 (1.0)
450 6.03 (1.0) 6.06 (1.0) 6.09 (1.0) 6.04 (1.0) 6.30 (1.0)
550 6.99 (1.0) 6.99 (1.0) 6.93 (1.0) 7.13 (1.0) 7.19 (1.0)

mix
350 6.85 (1.0) 6.90 (1.0) 6.84 (1.0) 6.93 (1.0) 7.09 (1.0)
450 8.66 (1.0) 8.52 (1.0) 8.51 (1.0) 8.56 (1.0) 8.67 (1.0)
550 10.26 (1.0) 10.43 (1.0) 10.20 (1.0) 10.28 (1.0) 10.31 (1.0)

Uniform

linear
350 6.67 (1.0) 6.55 (1.0) 6.67 (1.0) 6.65 (1.0) 6.70 (1.0)
450 8.43 (1.0) 8.28 (1.0) 8.37 (1.0) 8.44 (1.0) 8.45 (1.0)
550 10.08 (1.0) 10.03 (1.0) 10.08 (1.0) 10.21 (1.0) 10.19 (1.0)

log
350 4.25 (1.0) 4.28 (1.0) 4.30 (1.0) 4.32 (1.0) 4.50 (1.0)
450 4.83 (1.0) 4.81 (1.0) 4.76 (1.0) 4.83 (1.0) 5.00 (1.0)
550 5.58 (1.0) 5.60 (1.0) 5.55 (1.0) 5.62 (1.0) 5.76 (1.0)

mix
350 6.03 (1.0) 6.17 (1.0) 6.08 (1.0) 6.11 (1.0) 6.18 (1.0)
450 7.59 (1.0) 7.66 (1.0) 7.57 (1.0) 7.64 (1.0) 7.73 (1.0)
550 9.11 (1.0) 8.92 (1.0) 9.16 (1.0) 9.22 (1.0) 9.38 (1.0)

Student’s t(10)

linear
350 7.86 (1.0) 7.95 (1.0) 7.89 (1.0) 7.92 (1.0) 7.90 (1.0)
450 9.89 (1.0) 10.01 (1.0) 9.88 (1.0) 9.94 (1.0) 10.02 (1.0)
550 11.96 (1.0) 11.76 (1.0) 11.84 (1.0) 12.14 (1.0) 12.12 (1.0)

log
350 6.05 (1.0) 6.05 (1.0) 6.00 (1.0) 6.13 (1.0) 6.35 (1.0)
450 6.72 (1.0) 6.74 (1.0) 6.83 (1.0) 6.97 (1.0) 7.08 (1.0)
550 7.87 (1.0) 7.70 (1.0) 7.87 (1.0) 7.99 (1.0) 8.25 (1.0)

mix
350 7.46 (1.0) 7.39 (1.0) 7.45 (1.0) 7.53 (1.0) 7.51 (1.0)
450 9.25 (1.0) 9.21 (1.0) 9.29 (1.0) 9.17 (1.0) 9.38 (1.0)
550 11.04 (1.0) 11.22 (1.0) 11.13 (1.0) 11.07 (1.0) 11.38 (1.0)

Table 4: EDD and Power (in parentheses) for correlation structure change using weight ρ1,γ (γ = 0).

to 18492. This ARL value corresponds to a threshold of a = 3.95 [Li and Li, 2023, see Section 4.4] in
LL23’s stopping rule and their Theorem 1.

All results, summarized in Table 6, are based on 500 independent Monte Carlo replications for each
configuration. Our method outperforms the competitors in both accuracy and speed, maintaining high
empirical power (> 0.99) across all change scenarios, even in the weakest signal scenarios. Conversely,
LL23 suffers from a significant loss of power under small variance inflation (e.g., Power is only 0.332 at
σ2 = 1.1), although its performance improves as the signal strength increases. A19 also displays reduced
power in this setting (0.794). Regarding detection efficiency, our approach achieves shorter detection
delays compared to both benchmark procedures. This advantage is particularly pronounced in weak
signal settings; for example, our method reduces the detection delay by approximately 35% to 80%
compared to competitors across the smallest change magnitudes (σ2 = 1.1, ρ = 0.1, and δ = 2), verifying
its superior sensitivity to minor structural changes.

4 A Real Data Example
In this section, we demonstrate the practical applicability of the proposed online covariance change point
detection method through an analysis of the S&P 500 stock data. Specifically, the covariance structure
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Change Magnitude (δ)

k⋆ 2 2.5 3 3.5 4

Gaussian

linear
350 14.01 (1.0) 13.34 (1.0) 12.74 (1.0) 12.17 (1.0) 11.67 (1.0)
450 17.82 (1.0) 16.74 (1.0) 16.20 (1.0) 15.25 (1.0) 14.62 (1.0)
550 21.24 (1.0) 20.25 (1.0) 19.70 (1.0) 18.86 (1.0) 17.76 (1.0)

log
350 9.53 (1.0) 9.05 (1.0) 8.59 (1.0) 8.33 (1.0) 8.06 (1.0)
450 10.79 (1.0) 10.19 (1.0) 10.06 (1.0) 9.68 (1.0) 9.26 (1.0)
550 12.58 (1.0) 12.07 (1.0) 11.65 (1.0) 11.32 (1.0) 10.66 (1.0)

mix
350 13.01 (1.0) 12.30 (1.0) 11.72 (1.0) 11.42 (1.0) 10.95 (1.0)
450 16.08 (1.0) 15.33 (1.0) 14.77 (1.0) 14.47 (1.0) 13.63 (1.0)
550 19.44 (1.0) 18.48 (1.0) 17.94 (1.0) 17.07 (1.0) 16.47 (1.0)

Uniform

linear
350 12.49 (1.0) 11.90 (1.0) 11.43 (1.0) 10.96 (1.0) 10.50 (1.0)
450 15.77 (1.0) 14.98 (1.0) 14.39 (1.0) 13.84 (1.0) 13.27 (1.0)
550 19.44 (1.0) 18.20 (1.0) 17.85 (1.0) 16.71 (1.0) 16.13 (1.0)

log
350 7.42 (1.0) 7.14 (1.0) 6.87 (1.0) 6.61 (1.0) 6.29 (1.0)
450 8.49 (1.0) 8.19 (1.0) 7.94 (1.0) 7.66 (1.0) 7.38 (1.0)
550 10.03 (1.0) 9.50 (1.0) 9.12 (1.0) 8.70 (1.0) 8.32 (1.0)

mix
350 11.41 (1.0) 10.92 (1.0) 10.53 (1.0) 10.04 (1.0) 9.49 (1.0)
450 14.41 (1.0) 13.69 (1.0) 12.97 (1.0) 12.53 (1.0) 12.03 (1.0)
550 17.28 (1.0) 16.59 (1.0) 15.64 (1.0) 14.98 (1.0) 14.56 (1.0)

Student’s t(10)

linear
350 15.13 (1.0) 14.31 (1.0) 13.57 (1.0) 13.16 (1.0) 12.57 (1.0)
450 19.01 (1.0) 18.24 (1.0) 17.22 (1.0) 16.62 (1.0) 15.96 (1.0)
550 23.00 (1.0) 22.21 (1.0) 20.94 (1.0) 20.25 (1.0) 19.31 (1.0)

log
350 10.71 (1.0) 10.27 (1.0) 9.96 (1.0) 9.41 (1.0) 9.14 (1.0)
450 12.03 (1.0) 11.65 (1.0) 11.26 (1.0) 10.96 (1.0) 10.43 (1.0)
550 14.29 (1.0) 14.12 (1.0) 13.10 (1.0) 12.55 (1.0) 12.07 (1.0)

mix
350 13.90 (1.0) 13.33 (1.0) 12.83 (1.0) 12.32 (1.0) 11.77 (1.0)
450 17.66 (1.0) 16.98 (1.0) 16.06 (1.0) 15.26 (1.0) 14.78 (1.0)
550 21.46 (1.0) 20.36 (1.0) 18.96 (1.0) 18.38 (1.0) 18.03 (1.0)

Table 5: EDD and Power (in parentheses) for heterogeneous variance inflation using weight ρ1,γ (γ = 0).

characterizes the dynamic comovement and risk integration among assets; detecting its abrupt changes
is crucial for identifying market regime shifts and adjusting risk management strategies accordingly. The
dataset consists of historical daily adjusted closing prices for the constituents of the S&P 500 index,
obtained from Yahoo Finance2. We utilized adjusted closing prices to account for corporate actions
such as dividends and stock splits. To ensure data quality, we excluded stocks with a missing data
rate exceeding 5% and imputed minor gaps in the price series using the forward-filling method. After
preprocessing, we obtain daily adjusted closing prices for 496 stocks spanning 756 trading days. Daily
log-returns are computed as yk = log(Pk/Pk−1), where Pk denotes the adjusted closing price on day k.
To mitigate the impact of extreme outliers or data errors, we applied a Winsorization technique to the
computed log-returns, clamping values exceeding 5 standard deviations from the mean. To capture the
most significant market fluctuations, we select a subset of the top 30 stocks with the highest volatility
(defined as the standard deviation of daily log-returns) from the pool of 497 stocks.

We apply the proposed online monitoring procedure (Algorithm 1) to the log-return series, utilizing
the log(1 + x) test function and the ρ1,0 weight function. The historical window sizes are set to k1 =
k◦2 = 40, and the monitoring phase commences at k = 81 (corresponding to December 26, 2019). The
nominal significance level is set to α = 0.05. The procedure detects a change point on February 10, 2020.
This detection serves as a early warning signal preceding the major COVID-19 market crash. It captures

2https://finance.yahoo.com/
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Homogeneous Variance Inflation (Change Magnitude σ2)

Method 1.1 1.2 1.3 1.4 1.5

Our 82.03 (0.992) 30.79 (0.992) 18.29 (0.992) 13.65 (0.998) 11.01 (0.998)
A19 126.65 (0.794) 59.25 (0.798) 36.45 (0.822) 27.00 (0.838) 22.16 (0.830)
LL23 402.33 (0.332) 343.44 (0.784) 222.37 (0.956) 126.45 (0.988) 78.70 (0.996)

Correlation Structure Change (Change Magnitude ρ)

Method 0.1 0.3 0.5 0.7 0.9

Our 5.75 (0.998) 5.85 (0.992) 5.78 (0.992) 5.89 (0.998) 6.23 (0.998)
A19 10.72 (0.792) 10.65 (0.792) 10.43 (0.818) 9.81 (0.834) 9.23 (0.842)
LL23 17.68 (0.990) 16.19 (0.988) 13.54 (0.990) 9.79 (0.988) 6.35 (0.996)

Heterogeneous Variance Inflation (Change Magnitude δ)

Method 2 2.5 3 3.5 4

Our 9.95 (0.998) 9.43 (0.992) 8.47 (0.992) 8.00 (0.998) 7.51 (0.998)
A19 18.38 (0.792) 15.10 (0.794) 11.97 (0.828) 9.99 (0.836) 8.42 (0.848)
LL23 57.93 (0.990) 38.11 (0.988) 25.80 (0.990) 20.84 (0.988) 16.90 (0.996)

Table 6: Comparison of EDD and Power (in parentheses) with existing methods (A19: Avanesov [2019],
LL23: Li and Li [2023]).

the initial structural change in the covariance matrix as investors began pricing in the systemic risk of
the coronavirus outbreak, notably weeks before the widespread panic selling occurred in late February.
Figure 6 compares the sample covariance matrices before and after this detected change. It is evident
that the covariance structure undergoes a drastic shift, with the post-change period characterized by
universally larger entries corresponding to the onset of widespread market stress.

(2019-Sep-01 ~ 2020-Feb-09) (2020-Feb-10 ~ 2020-Jul-20)

0.006

0.004

0.002

0.000

0.002

0.004

0.006

Figure 6: Heatmaps of the sample covariance matrices for the top 30 S&P 500 stocks. The left panel
represents the covariance structure before the detected change point (k̂⋆ = February 10, 2020), while
the right panel corresponds to the post-change period. The increased color intensity in the right panel
illustrates the surge in volatility and correlation triggered by the onset of the COVID-19 market crash.

5 Proof of Theorem 2.2
To prove the weak convergence of the process {Wn,t, t ∈ [0, T ]}, we only need to show to the finite
dimensional distribution convergence and the tightness of {Wn,t, t ∈ [0, T ]} (see e.g. Billingsley [1968]).
Therefore, Theorem 2.2 follows immediately from the following two lemmas.

Lemma 5.1 (Finite-dimensional distribution). Suppose that Assumptions A and B hold. Under the
null hypothesis, for any fixed r ∈ N and t1, t2, · · · , tr ∈ [0, T ], the random vector (Wn,t1 , . . . ,Wn,tr )
converges in distribution to a r-dimensional Gaussian distribution with mean zero and covariance matrix
Σ = (σij)1≤i,j≤r, where σij = ti ∧ tj.
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Lemma 5.2 (Tightness). The sequence {Wn,t, t ∈ [0, T ]} is asymptotically tight in the space ℓ∞([0, T ]).

The proof of Lemma 5.1 and Lemma 5.2 are given in Section 5.1 and Section 5.2 respectively.

5.1 Proof of Lemma 5.1
Recall that

Wn,t :=
1√
n

n+⌊nt⌋∑
k=n+1

L̃k(f), 0 ≤ t ≤ T.

By the Cramér-Wold device, it suffices to show that, for any fixed a1, a2 ∈ R and t1, t2 ∈ [0, T ],

a1Wn,t1 + a2Wn,t2
d−→ N(0, τ21,2),

where τ21,2 := a21t1 + a22t2 + 2a1a2(t1 ∧ t2), and the extension to more points is straightforward. WLOG,
we assume that T ≥ t1 > t2 ≥ 0. Note that

a1Wn,t1 + a2Wn,t2 =

n+⌊nt1⌋∑
k=n+1

bk(Lk − µk),

where

bk =

{
a1+a2√

nσk
, n+ 1 ≤ k ≤ n+ ⌊nt2⌋,

a1√
nσk

, n+ ⌊nt2⌋+ 1 ≤ k ≤ n+ ⌊nt1⌋.

Let Fk be the σ-algebra generated by xn+1, . . . , xn+k. Denote Ek := E(·|Fk). From the definition of Lk,
we have

Lk − µk =
1

2πi

∮
Γ

f(z)(1− E)Yk(z) dz +O(1/p),

where

Yk(z) := (Ek −Ek−1)
x⊺
kAk(z)xk

k2

forms a martingale difference sequence, and Ak(z) is defined as

Ak(z) := α(z)G2S−1
1 + α′(z)GS−1

1 , α(z) :=
1

1 + 1
k2

Tr(GS−1
1 )

.

The detailed calculation about the mean structure Lk can be found in Section B.4. Hence, we have

a1Wn,t1 + a2Wn,t2 =
1− E
2πi

∮
Γ

f(z)Sm,t1,t2(z) dz, Sm,t1,t2(z) :=

n+⌊nt1⌋∑
k=n+1

bkYk(z).

By functional CLT and Lemma B.1, it suffices to show that {Sm,t1,t2(z)} converges weakly to a Gaussian
process S(z) with covariance function

Cov(S(z1), S(z2)) =

n+⌊nt1⌋∑
k=n+1

b2k

{
ν4 − 3

k2c2
∂z1
(
z1m

′
1

)
∂z2
(
z2m

′
2

)
− 2

k2
∂z1∂z2

(
1/m1 − 1/m2

z1 − z2

)}
. (5.1)

Using this formula, we conclude that a1Wn,t1 + a2Wn,t2 converges in distribution to a centered normal
distribution with variance

Var(a1Wn,t1 + a2Wn,t2) =

n+⌊nt2⌋∑
k=n+1

(a1 + a2)
2

m
+

n+⌊nt1⌋∑
k=n+⌊nt2⌋+1

a21
m

= τ21,2.

Now, prove the weak convergence of {Sm,t1,t2(z)}. First, we derive the finite-dimensional distribution
of Sm,t1,t2(z). From the martingale CLT it suffices to verify that

n+⌊nt1⌋∑
k=n+1

E
{
b2kYk(z1)Yk(z2)|Fk−1

} p−→ (5.1),

20



n+⌊nt1⌋∑
k=n+1

E
{
b2kY

2
k (z)1{|bkYk(z)|>ε}

}
→ 0, ∀ε > 0.

The first condition can be verified by using Lemmas B.1 and B.2. We consider the second condition. For
any small δ > 0, using Lemma B.26 in Bai and Silverstein [2010], we have the following bound

n+⌊nt1⌋∑
k=n+1

E
{
b2kY

2
k (z)1{|bkYk(z)|>ε}

}
≤ 1

εδ/2

n+⌊nt1⌋∑
k=n+1

b
2+δ/2
k E |Yk|2+δ/2

≲
maxk b

2+δ/2
k

k
2+δ/2
2 εδ/2

n+⌊nt1⌋∑
k=n+1

[
E
{
ν4 Tr

(
Ak(z)Ak(z̄)

)}1+δ/4
+ ν4+δ ETr

{
Ak(z)Ak(z̄)

}1+δ/4
]

≲
1

k2+δ/2

n+⌊nt1⌋∑
k=n+1

p1+δ/4 = O(p−δ/4).

where νℓ := Exℓ
11, and in the last step we used the fact that maxk bk = O(1) and Lemma B.2.

Then, we show the tightness (in z) of the process {Sm,t1,t2(z)}. It is sufficient to verify the moment
condition (see Billingsley [1968] (12.51) for instance), i.e.,

sup
z1,z2∈Γ

E |Sm,t1,t2(z1)− Sm,t1,t2(z2)|2

|z1 − z2|2
<∞.

Using the definition of Sm,t1,t2(z), for any z1, z2 ∈ Γ, we have

E |Sm,t1,t2(z1)− Sm,t1,t2(z2)|2 =

n+⌊nt1⌋∑
k=n+1

b2k E |Yk(z1)− Yk(z2)|2.

For any k, Yk(z) is analytic in z. Thus, we have

Yk(z1)− Yk(z2) = (z1 − z2)

∫ 1

0

Y ′
k

(
z2 + t(z1 − z2)

)
dt,

then
E |Yk(z1)− Yk(z2)|2 ≤ |z1 − z2|2 sup

z∈Γ
E |Y ′

k(z)|2.

Plugging into the required moment condition, we have

sup
z1,z2∈Γ

E |Sm,t1,t2(z1)− Sm,t1,t2(z2)|2

|z1 − z2|2
≤
(∑

k

b2k

)
sup
k

sup
z∈Γ

E |Y ′
k(z)|2.

From the definition of bk, it is easy to see that
∑

k b
2
k = O(p). It remains to show that

sup
k

sup
z∈Γ

E |Y ′
k(z)|2 = O(1/p). (5.2)

From the definition of Yk(z) , we have

E |Y ′
k(z)|2 =

1

k22
E
∣∣∣x⊺

kA
′
k(z)xk − TrA′

k(z)
∣∣∣2 ≲

1

p2
ETr

{
A′

k(z)A
′
k(z̄)

}
≤ 1

p
E ∥A′(z)∥22,

and the derivative of Ak(z) is given by

A′
k(z) =

{
α′(z)G2

k−1(z) + 2α(z)G3
k−1(z) + α′′(z)G(z) + α′(z)G2

k−1(z)
}
S−1
1 .

Since y1 < 1, ∥S−1
1 ∥2 is bounded with high probability. By Lemma B.2 and the fact that ∥Gk−1(z)∥2 ≤

η−1 with η = ℑz, we have
∥A′(z)∥2 = OP(1).

The above estimates imply (5.2), which completes the proof of tightness of {Sm,t1,t2(z)}.
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5.2 Proof of Lemma 5.2
Without loss of generality, we further assume t ∈ [0, 1]. Consider a partition [0, 1] = ∪nj=1Kj , where

Kj =

[
j − 1

n
,
j

n

]
, n ∈ N+

From [van der Vaart and Wellner, 1996, Theorem 1.5.6], it suffices to show that for any λ > 0,

lim
n→∞

P

(
sup

1≤j≤n
sup

t1,t2∈Kj

|Wn,t1 −Wn,t2 | > λ

)
= 0. (5.3)

Note that {L̃k(f)}k∈Jn+1,2nK forms a martingale difference sequence. According to Lemma A.2, for
some small ε > 0, we have the following bound on the increment of Wn,t:

E |Wn,t −Wn,s|2+ε ≲ (mt−ms)1+ε/2E |L̃k|2+ε

m1+ε/2
= (t− s)1+ε/2 E |L̃k|2+ε.

From the definition of L̃k, the mean structure of Mk(z) given in (B.9), and Lemma B.1, we have

E |L̃k|2+ε ≍ p1+ε/2 E
∣∣∣∣∮

Γ

f(z)(1− Ek)Mk(z) dz

∣∣∣∣2+ε

≲ p1+ε/2

∫
Γ

|f(z)|2+ε E
∣∣(1− Ek)Mk(z)

∣∣2+ε|dz|

≲ p−1−ε/2 E
∣∣x⊺

kAk(z)xk − TrAk(z)
∣∣2+ε

.

By Assumption A, we have

E
∣∣x⊺

kAkxk − TrAk

∣∣2+ε
≲ E |x11|4+2ε Tr{(AkA

∗
k)

1+ε/2} ≲ p.

Using Markov’s inequality, it holds for all λ > 0 that

P(|Wn,t −Wn,s| > λ) ≲ (t− s)1+ε/2p−ε/2. (5.4)

Similarly, we have for 0 ≤ r ≤ s ≤ t ≤ 1,

P
(
min{|Wn,s −Wn,t|, |Wn,s −Wn,r|} > λ

)
≤ P(|Wn,s −Wn,t| > λ) + P(|Wn,s −Wn,r| > λ)

≲ (t− r)1+ε/2p−ε/2. (5.5)

Combining (5.4) and (5.5) with Lemma A.3, we get for any interval Kj and any λ > 0,

P
(

sup
t1,t2∈Kj

|Wn,t1 −Wn,t2 | > λ

)
≲

1

n1+ε/2
,

which implies (5.3) and thus completes the proof.

6 Proof of Theorem 2.3
We start with the proof for the closed-end situation with ρ(t) = 0 for all t > T . From Theorem 2.2, for
any 0 < ξ < T , we have

sup
ξn≤i≤nT

Tp(n, i) = sup
ξn<i≤nT

ρ

(
i

n

)∣∣∣∣∣ 1√
n

n+i∑
k=n+1

L̃k

∣∣∣∣∣
= sup

ξ<t≤T
ρ

(
⌊nt⌋
n

)∣∣∣∣∣ 1√
n

n+⌊nt⌋∑
k=n+1

L̃k

∣∣∣∣∣ d−→ sup
ξ<t≤T

ρ(t)|W (t)|. (6.1)

Let t = i/n ∈ (0, ξ), and w(n, i) = ρ(i/n) = ρ(t). For any fixed γ̃ > γ, we have

ρ(t) = t−γ̃ · tγ̃ρ(t) ≤ t−γ̃ sup
0<x<ξ

xγ̃ρ(x) =
nγ̃

iγ̃
sup

0<x<ξ
xγ̃ρ(x).
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Hence,

sup
1≤i<ξn

Tp(n, i) ≤ sup
0<x<ξ

xγ̃ρ(x) ·

(
sup

1≤i<n

1

n1/2−γ̃iγ̃

∣∣∣∣∣
n+i∑

k=n+1

L̃k

∣∣∣∣∣
)
.

Under Assumption C(ii), we have

sup
0<x<ξ

xγ̃ρ(x) = sup
0<x<ξ

xγ̃−γxγρ(x) ≲ ξγ̃−γ = o(1) as ξ → 0.

From the Hájek-Rényi inequality (Lemma A.1), we have, for any ε > 0,

P

(
sup

1≤i<n

1

n1/2−γ̃iγ̃

∣∣∣∣∣
n+i∑

k=n+1

L̃k

∣∣∣∣∣ ≥ ε

)
≤ 1

ε2
1

n1−2γ̃

n−1∑
i=1

i−2γ̃ ≍ 1

ε2
,

and thus

sup
1≤i<n

1

n1/2−γ̃iγ̃

∣∣∣∣∣
n+i∑

k=n+1

L̃k

∣∣∣∣∣ = OP(1).

From the above results, it holds for ξ → 0 that

sup
1≤i<ξn

Tp(n, i) = oP(1). (6.2)

Recall that a standard Brownian motion satisfies |W (t)| = OP(
√
t) as t → 0. By Assumption C(ii), we

have ρ(t) = O(t−γ) as t→ 0 for some 0 ≤ γ < 1/2. Hence, it holds that

sup
0<t<ξ

ρ(t)|W (t)| = sup
0<t<ξ

OP(t
1/2−γ) = oP(1), as ξ → 0. (6.3)

Combining (6.1), (6.2) and (6.3), we conclude that for any T > 0,

sup
1≤i≤nT

Tp(n, i)
d−→ sup

0<t≤T
ρ(t)|W (t)|. (6.4)

Now, we consider the open-end situation with ρ(t) > 0 for all t > 0. Using the similar arguments
above, for any T > 0, we have

1√
n
sup
i≥1

ρ

(
i

n

)∣∣∣∣n+min(i,nT )∑
k=n+1

L̃k

∣∣∣∣ d−→ sup
t>0

ρ(t)
∣∣W (min(t, T ))

∣∣. (6.5)

For any i > nT , we let t = i/n ≥ T and get ρ(i/n) ≤ m
i supx≥N xρ(x). This, together with the triangular

inequality, yields that ∣∣∣∣∣supi≥1
Tp(n, i)−

1√
n
sup
i≥1

ρ(i/n)

∣∣∣∣n+min(i,nT )∑
k=n+1

L̃k

∣∣∣∣
∣∣∣∣∣

≤ 1√
n

sup
i≥nT

ρ(i/n)

∣∣∣∣∣
n+i∑

k=n+1

L̃k −
n+min(i,nT )∑

k=n+1

L̃k

∣∣∣∣∣
≤ sup

t≥T
tρ(t) · sup

i≥nT

√
n

i

∣∣∣∣∣
n+i∑

k=n+nT+1

L̃k

∣∣∣∣∣
= OP(T

−1/2) · sup
t≥T

tρ(t)

= OP(T
−1/2), (Assumption C(iii)) (6.6)

where the OP(T
−1/2) term follows from that, for any ε > 0,

P
(
sup
i≥nT

√
n

i

∣∣∣∣ n+i∑
k=n+nT+1

L̃k

∣∣∣∣ ≥ ε

)
≤ 1

ε2

∞∑
i=nT

n

i2
≤ 1

ε2T
.
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This bound is obtained by applying the Hájek-Rényi inequality. From Assumption C(iii) and the property
of Brownian motion, we have∣∣∣∣ sup

t>0
ρ(t)

∣∣W (min(t, T ))
∣∣− sup

t>0
ρ(t)

∣∣W (t)
∣∣ ∣∣∣∣ ≤ sup

t>T
ρ(t)

∣∣W (T )−W (t)
∣∣ = OP(T

−1/2). (6.7)

From (6.4), (6.5), (6.6) and (6.7), we conclude that

sup
i≥1

Tp(n, i)
d−→ sup

t>0
ρ(t)|W (t)|.

7 Proof of Theorem 2.5
Let ℓ := n+ i− k⋆ be the number of post-change samples included in the current monitoring procedure
at time n+ i, and assume that ℓ = o(n). Define dk := Lk(f)− µk, and let

Φn(ℓ) := Cσ

∣∣∣ρ1,γ(i/n) k⋆+ℓ∑
k=k⋆+1

E dk

∣∣∣, Cσ := min
k⋆+1≤k≤k⋆+ℓ

1√
nσk

,

Rn(ℓ) :=
∣∣∣ρ1,γ(i/n)√

n

k⋆+ℓ∑
k=n+1

L̃k

∣∣∣.
From Proposition 2.1, we have Cσ = O(1). By the triangle inequality,

Tp(n, i) ⩾ Φn(ℓ)−Rn(ℓ).

We claim that (to be proven later), for ℓ = o(n), the following estimate holds:

k⋆+ℓ∑
k=k⋆+1

E dk =

(
I1(f, τ1)ℓ+

(τ2 − 1)I2(f)

k⋆2
ℓ2
)(

1 + o(1)
)
, (7.1)

where k⋆2 := k⋆ − k1. It then follows that

Tp(n, i) ⩾ Cσρ1,γ(i/n)

∣∣∣∣I1(f, τ1)ℓ+ (τ2 − 1)I2(f)

k⋆2
ℓ2
∣∣∣∣(1 + o(1)

)
−Rn(ℓ).

Since {L̃k, n+ 1 ≤ k ≤ k⋆ + ℓ} is a martingale difference sequence,

Rn(ℓ) = (k⋆ − n+ ℓ)−γnγ−1/2OP(max{
√
ℓ,
√
k⋆ − n}).

We first consider the late-change case, where k⋆ − n ≍ n. In this case,

ρ1,γ

(
k⋆ − n+ ℓ

n

)
= O(1), Rn(ℓ) = OP(1).

Hence, for any ε > 0, there exists constants Kε > 0 and Nε such that for all n > Nε, P
(
Rn(ℓ) ≤ Kε

)
>

1− ε. Choose ℓ such that

Cσρ1,γ

(
k⋆ − n+ ℓ

n

)∣∣∣∣I1(f, τ1)ℓ+ (τ2 − 1)I2(f)

k⋆2
ℓ2
∣∣∣∣ > cα +Kε,

then
P(Tp(n, i) > cα) ≥ P

(
Rn(ℓ) ≤ Kε

)
> 1− ε.

Taking ε→ 0 yields
P(Tp(n, i) > cα)→ 1.

If τ1 ̸= 1 and I1(f, τ1) ̸= 0, it suffices to choose ℓ ≍ log(n). If τ1 = 1 but τ2 ̸= 1, and I2(f) ̸= 0, we can
choose ℓ ≍

√
n to obtain the same conclusion.

Then, we consider the early change case with k⋆ − n = o(n). In this case, we have

ρ1,γ

(
k⋆ − n+ ℓ

n

)
≍ nγ(k⋆ − n+ ℓ)−γ , Rn(ℓ) = oP(1).
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Thus, the mean drift term is of order

Φn(ℓ) ≍ nγ(k⋆ − n+ ℓ)−γ

∣∣∣∣I1(f, τ1)ℓ+ (τ2 − 1)I2(f)

k⋆2
ℓ2
∣∣∣∣.

If τ1 ̸= 1 and I1(f, τ1) ̸= 0, it suffices to choose ℓ ≍ log(n). If τ1 = 1 but τ2 ̸= 1 and I2(f) ̸= 0, we can
choose ℓ ≍ n1/2−δ for some small 0 < δ < 1/2.

It remains to prove (7.1). WLOG, we assume that Σ0 = Ip. Under H1, there exist a change point k⋆
such that the covariance of xi changes from Σ0 = I to some Σ1 ̸= Ip. To inspect the impact of the change
of Σ1 on the linear spectral statistics Lk for k > k⋆, we examine the sequential F -matrix constructed
after the change point, up to time k⋆ + ℓ. Under this setting, the sample covariance matrix S2,k⋆+ℓ is
defined as

S2,k⋆+ℓ =
1

k − k1

(
k⋆∑

i=k1+1

xix
⊺
i +

k⋆+ℓ∑
i=k⋆+1

Σ
1/2
1 xix

⊺
i Σ

1/2
1

)
.

By the Cauchy integral formula, it suffices to estimate the order of

ETr
(
Gk⋆+ℓ(z)−Gk⋆(z)

)
.

For notational simplicity, let k⋆2 := k⋆ − k1, F⋆ := Fk⋆ , and G⋆(z) := Gk⋆(z). Let

Y := (yk⋆+1, . . . , yk⋆+ℓ), where yi = Σ
1/2
1 xi, i > k⋆.

Using the Woodbury identity, we have

Gk⋆+ℓ =

(
k⋆2

k⋆2 + ℓ
F⋆ +

1

k⋆2 + ℓ
S−1
1 Y Y

⊺ − z

)−1

= Ĝ⋆ −
1

k⋆2 + ℓ
Ĝ⋆S

−1
1 Y

(
Iℓ +

1

k⋆2 + ℓ
Y

⊺
Ĝ⋆S

−1
1 Y

)−1

Y
⊺
Ĝ⋆, (7.2)

where Ĝ⋆ :=
( k⋆

2

k⋆
2+ℓF⋆ − z

)−1. Applying the identity A−1 −B−1 = A−1(B −A)B−1 repeatedly, we get

Ĝ⋆ =
k⋆2 + ℓ

k⋆2

{
G⋆ +

ℓz

k⋆2
G2

⋆ +

(
ℓz

k⋆2

)2

G3
⋆

}
+R1, (7.3)

where R1 is the remainder matrix with ∥R1∥2 = OP(ℓ
3p−3). For the inverse matrix involved in (7.2),

since ∥Y ⊺Ĝ⋆S
−1
1 Y ∥2 ≍ ∥Y ⊺Y ∥2 = OP(ℓ), by the Neumann series expansion, we can write(

Iℓ +
Y ⊺Ĝ⋆S

−1
1 Y

k⋆2 + ℓ

)−1

=

{
Iℓ +

ETr(Ĝ⋆S
−1
1 Σ1)

k⋆2 + ℓ
Iℓ +

(1− E)Y ⊺Ĝ⋆S
−1
1 Y

k⋆2 + ℓ

}−1

=

(
1 +

ETr(Ĝ⋆S
−1
1 Σ1)

k⋆2 + ℓ

)−1

Iℓ −
1

k⋆
2+ℓ (1− E)Y ⊺Ĝ⋆S

−1
1 Y{

1 + 1
k⋆
2+ℓ ETr(Ĝ⋆S

−1
1 Σ1)

}2 +R2, (7.4)

where R2 is the remainder matrix with ∥R2∥2 = OP(ℓ
2p−2). Plugging (7.3) and (7.4) into (7.2), we have

ETr
(
Gk⋆+ℓ −G⋆

)
=

ℓ

k⋆2
ETrG⋆ +

zℓ(k⋆2 + ℓ)

(k⋆2)
2

ETrG2
⋆ +

(zℓ)2(k⋆2 + ℓ)

(k⋆2)
3

ETrG3
⋆ −

1
k⋆
2+ℓ ETr

(
Y ⊺Ĝ2

⋆S
−1
1 Y

)
1 + 1

k⋆
2+ℓ ETr(Ĝ⋆S

−1
1 Σ1)

+

1
(k⋆

2+ℓ)2 Tr
{
Y ⊺Ĝ2

⋆S
−1
1 Y (1− E)Y ⊺Ĝ⋆S

−1
1 Y

}
{
1 + 1

k⋆
2
ETr(G⋆S

−1
1 Σ1)

}2 +O(ℓ3p−2)

=
ℓ

k⋆2
ETrG⋆ +

zℓ

k⋆2
ETrG2

⋆ +
(zℓ)2

(k⋆2)
2
ETrG3

⋆ −
ℓ
k⋆
2
ETr(G̃Σ1)

1 + 1
k⋆
2
ETr(GΣ1)

− ℓ2

k⋆2
z

 1
k⋆
2
ETr(G̃Σ1)

1 + 1
k⋆
2
ETr(GΣ1)

2

+
ℓ2

k⋆2

1
k⋆
2
ETr(G3S−1

1 Σ1)

1 + 1
k⋆ ETr(GΣ1)

+

1
(k⋆

2 )
2 ETr

{
(1− E)Y ⊺G̃Y (1− E)Y ⊺G⋆Y

}
{
1 + 1

k⋆
2
ETr(GΣ1)

}2 +O(ℓ3p−2), (7.5)
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where G(z) := G⋆(z)S
−1
1 and G̃(z) := G2

⋆(z)S
−1
1 . Note that G̃(z) = ∂zG(z). It remains to estimate

1

k⋆2
ETr(GΣ1) and

1

k⋆2
ETr

{
(1− E)Y ⊺G̃Y (1− E)Y ⊺GY

}
.

The limit of the first term is given in Lemma 7.1 below. For the second term, we have

ℓ∑
i=1

E
{
(1− E)Y ⊺G̃Y (1− E)Y ⊺GY

}
ii

=

ℓ∑
i,j=1

E
{
y
⊺
i G̃yj − Tr(G̃Σ1)1{i=j}

}{
y
⊺
j Gyi − Tr(GΣ1)1{i=j}

}
= (ν4 − 3)ℓ

p∑
k=1

E
(
Σ

1/2
1 G̃Σ

1/2
1

)
kk

(
Σ

1/2
1 GΣ

1/2
1

)
kk

+ 2ℓETr
(
G̃Σ1GΣ1

)
+ ℓ(ℓ− 1)E

(
y
⊺
1 G̃y2y

⊺
1Gy2

)
= (ν4 − 3)ℓ

p∑
k=1

E
(
Σ

1/2
1 G̃Σ

1/2
1

)
kk

(
Σ

1/2
1 GΣ

1/2
1

)
kk

+ ℓ(ℓ+ 1)ETr
(
G̃Σ1GΣ1

)
.

Using the basic inequality |Akk| ≤ ∥A∥2, the first term in the above equation is of order O(ℓp). The
second term is of larger order O(ℓ2p). Therefore, the contribution of the first term is negligible compared
to the second term, and we focus on the latter, whose limit is also given in Lemma 7.1 below.

Lemma 7.1. Suppose Assumptions A and B hold, then we have

1

k⋆2
ETr(GΣ1) = τ1g(z) +O(1/p),

1

k⋆2
ETr

(
G̃Σ1GΣ1

)
= (τ2 − τ21 )g

′(z)g(z) + τ21 h(z) +O(1/p),

where

τ1 := lim
p→∞

1

p
Tr(Σ1), τ2 := lim

p→∞

1

p
Tr(Σ2

1), g(z) := lim
p→∞

1

k⋆2
ETrG, h(z) := lim

p→∞

1

k⋆2
ETr(G̃G).

The proof of Lemma 7.1 is postponed to Section 8. Using this lemma and (7.5), we have

k⋆+ℓ∑
k=k⋆+1

E dk = −
k⋆+ℓ∑

k=k⋆+1

1

2πi

∮
Γ

f(z)ETr
(
Gk⋆+ℓ −G⋆

)
dz +

k⋆+ℓ∑
k=k⋆+1

µk (7.6)

= − ℓ

2πi

∮
Γ

f(z)

(
1
k⋆
2
E ∂z{Tr(GΣ1)}

1 + 1
k⋆
2
ETr(GΣ1)

−
1
k⋆
2
E ∂z(TrG)

1 + 1
k⋆
2
ETrG

)
dz

+
ℓ(ℓ+ 1)

2k⋆2πi

∮
Γ

f(z)

(
1
k⋆
2
ETr

(
G̃Σ1GΣ1

)
{
1 + 1

k⋆
2
ETr(GΣ1)

}2 − 1
k⋆
2
ETr

(
G̃G
)

{
1 + 1

k⋆
2
ETrG

}2
)
dz

+
ℓ2

k⋆2

∮
Γ

f(z)z


 1

k⋆
2
ETr(G̃Σ1)

1 + 1
k⋆
2
ETr(GΣ1)

2

−

 1
k⋆
2
ETr G̃

1 + 1
k⋆
2
ETrG

2
dz

− ℓ2

k⋆2

∮
Γ

f(z)

(
1
k⋆
2
ETr(G3S−1

1 Σ1)

1 + 1
k⋆
2
ETr(GΣ1)

−
1
k⋆
2
ETr(G3S−1

1 )

1 + 1
k⋆
2
ETrG

)
dz +O(ℓ/p)

= − ℓ

2πi

∮
Γ

f(z)∂z log

(
1 + τ1g(z)

1 + g(z)

)
dz

+
ℓ(ℓ+ 1)

2k⋆2πi

∮
Γ

f(z)

(
(τ2 − τ21 )g

′(z)g(z) + τ21 h(z){
1 + τ1g(z)

}2 − h(z){
1 + g(z)

}2
)
dz

+
ℓ2

k⋆2

∮
Γ

f(z)z

[(
τ1g(z)

1 + τ1g(z)

)2

−
(

g(z)

1 + g(z)

)2
]
dz
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− ℓ2

k⋆2

∮
Γ

f(z)

(
τ1g

′′(z)/2

1 + τ1g(z)
− g′′(z)/2

1 + g(z)

)
dz +O(ℓ/p). (7.7)

First, we consider the case τ1 ̸= 1. From the integration by parts and g(z) = − 1+zm
zm , we have

1

2πi

∮
Γ

f(z)∂z log

(
1 + τ1g(z)

1 + g(z)

)
dz = − 1

2πi

∮
Γ

f ′(z) log

(
1 + τ1g(z)

1 + g(z)

)
dz

= − 1

2πi

∮
Γ

f ′(z) log
{
τ1 − (1− τ1)zm(z)

}
dz = −I1(f, τ1).

Under the condition τ1 ̸= 1, for selected test function f such that I1(f, τ1) ̸= 0, the first term in (7.7) is
of order O(ℓ), and it dominates the remaining terms, which is of order O(ℓ2/p).

Next, we consider the case τ1 = 1 and τ2 ̸= 1. In this case, the first, third and fourth terms in (7.7)
vanishes, and we have

E
k⋆+ℓ∑

k=k⋆+1

dk =
ℓ(ℓ+ 1)(τ2 − 1)

k⋆2

1

2πi

∮
Γ

f(z)g′(z)g(z){
1 + g(z)

}2 dz +O(ℓ/p). (7.8)

Using g(z) = − 1+zm
zm , we have

1

2πi

∮
Γ

f(z)g′(z)g(z){
1 + g(z)

}2 dz = − 1

2πi

∮
Γ

f(z)(zm)′
(

1

zm(z)
+ 1

)
dz

=
1

2πi

∮
Γ

f ′(z)
{
log(zm) + zm(z)

}
dz = I2(f).

For selected test function f such that I2(f) ̸= 0, the first term in (7.8) is of order O(ℓ2/p), which
dominates the remainder term O(ℓ/p) provided that ℓ2/p≫ 1.

In summary, we have

Tp(n, i) ≍ ρ

(
i

n

)∣∣∣∣ℓI1(f, τ1) + ℓ2

k⋆2
(τ2 − 1)I2(f)

∣∣∣∣.
Moreover, if one of the following conditions holds:

• τ1 ̸= 1 and I1(f, τ1) ̸= 0;

• τ1 = 1, τ2 ̸= 1, and I2(f) ̸= 0,

then for large enough ℓ satisfying p1/2 ≪ ℓ≪ p, we have supi≥1 Tp(n, i)→∞. This complete the proof
of Theorem 2.5.

8 Proof of Lemma 7.1
We first assume in addition that the entries of xi are i.i.d. standard Gaussian for all i ∈ JkK. This allows
us to exploit the orthogonal invariance of the model and to apply the Weingarten calculus method [Collins
and Śniady, 2006] to estimate the tracial quantities in Lemma 7.1. In the second step, the Gaussian
assumption can be removed by using a standard Green function comparison argument. In the following,
we only provide the estimation for the second limit in Lemma 7.1, namely ETr

(
G̃Σ1GΣ1

)
, since the first

one can be shown similarly.

8.1 Weingarten calculus
Let Z1 ∈ Rp×k1 , Z2 ∈ Rp×k⋆

2 have i.i.d. standard Gaussian entries. WLOG, we can assume that Σ1 =
diag(d1, . . . , dp) is diagonal in the following analysis. We define the sample covariance matrices

Sg
1 :=

1

k1
Z1Z

⊺
1 , Sg

2,k⋆ :=
1

k⋆2
Z2Z

⊺
2 .

We denote
Gg(z) :=

{
(Sg

1 )
−1Sg

2 − z
}−1

, Gg(z) := GgS−1
1 , G̃g(z) := (Gg)2S−1

1 .
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We aim to estimate

ETr
(
G̃gΣ1GgΣ1

)
.

In the following, we will drop the superscript g for simplicity. The matrix G(z) has the unitary invariant
property, namely, for any p× p Haar distributed orthogonal matrix O independent of Z1, Z2,

OG(z)O⊺ d
= G(z).

Using this property, we have

ETr
(
G̃Σ1GΣ1

)
= ETr

(
OG̃O⊺

Σ1OGO
⊺
Σ1

)
=

∑
i1,i2,i3
j1,j2,j3

dj2di1 E
(
Oi1j1 G̃j1i2Oj2i2Oj2i3Gi3j3Oi1j3

)

=
∑

i1,i2,i3
j1,j2,j3

dj2di1 E
(
G̃j1i2Gi3j3

)
E
(
Oi1j1Oi1j3Oj2i2Oj2i3

)
.

Using the method of Weingarten calculus on orthogonal group [see e.g. Bao et al., 2017, Lemma 6.2] we
have

E (Oi1j1Oi1j3Oj2i2Oj2i3) =
3

p(p+ 2)
1{i1=j2}1{j1=j3=i2=i3}

+
1

p(p+ 2)
1{i1=j2}

(
1{j1=j3 ̸=i2=i3} + 1{j1=i2 ̸=j3=i3} + 1{j1=i3 ̸=i2=j3}

)
+

p+ 1

p(p− 1)(p+ 2)
1{i1 ̸=j2}1{j1=j3 ̸=i2=i3}

− 1

p(p− 1)(p+ 2)
1{i1 ̸=j2}

(
1{j1=i2 ̸=j3=i3} + 1{j1=i3 ̸=i2=j3}

)
.

Hence,

ETr
(
G̃Σ1GΣ1

)
=

3Tr(Σ2
1)

p(p+ 2)

∑
a

E(G̃aaGaa) +
Tr(Σ2

1)

p(p+ 2)

∑
a̸=b

E(G̃aaGbb + G̃abGba + G̃abGab)

+
(p+ 1){(TrΣ1)

2 − Tr(Σ2
1)}

p(p− 1)(p+ 2)

∑
a̸=b

E(G̃abGba)

− {(TrΣ1)
2 − Tr(Σ2

1)}
p(p− 1)(p+ 2)

∑
a̸=b

E(G̃aaGbb + G̃abGab)

=
3Tr(Σ2

1)

p(p+ 2)

∑
a

E(G̃aaGaa) +
Tr(Σ2

1)

p(p+ 2)

∑
a̸=b

E(G̃aaGbb)

+
(TrΣ1)

2

p(p+ 2)

∑
a̸=b

E(G̃abGba)−
(TrΣ1)

2

p(p− 1)(p+ 2)

∑
a̸=b

E(G̃aaGbb) +O(1)

=
Tr(Σ2

1)

p2
ETr(G̃) Tr(G) + (TrΣ1)

2

p2
ETr(G̃G)− (TrΣ1)

2

p3
ETr(G̃) Tr(G) +O(1)

=
τ2 − τ21

p
ETr(G̃) Tr(G) + τ21 ETr(G̃G) +O(1).

8.2 Green function comparison
The goal of this section is to show the following equation using the Green function comparison method:

ETr
(
G̃Σ1GΣ1

)
− ETr

(
G̃gΣ1GgΣ1

)
= O(1). (8.1)

This equation allows us to extend the Weingarten calculus result to the general distribution setting.
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We assume that Z1 and Z2 are independent of each other and independent of X1 and X2. We construct
a continuous interpolation of between the original data matrices and their Gaussian counterparts. For
i = 1, 2, define

Xt
i :=
√
tZi +

√
1− tXi, t ∈ [0, 1].

Let St
i the corresponding sample covariance matrices formed by interpolated matrix Xt

i , and Gt and G̃t
be the resolvent matrices defined similarly as G and G̃ but with Si replaced by St

i .
The LHS of (8.1) can be rewritten as∫ 1

0

d

dt
ETr

(
G̃tΣ1GtΣ1

)
dt = −

∫ 1

0

ETr
{
G̃t
(
Ṡt
2 − z1Ṡ

t
1

)
G̃tΣ1GtΣ1 + G̃tΣ1Gt

(
Ṡt
2 − z2Ṡ

t
1

)
GtΣ1

}
dt,

where

Ṡt
1 :=

dSt
1

dt
=

1

k1

{
Z1Z

⊺
1 −X1X

⊺
1 + c(t)

(
X1Z

⊺
1 + Z1X

⊺
1

)}
, c(t) :=

1− 2t

2
√
t(1− t)

,

and Ṡt
2 is defined similarly. It suffices to estimate the order of each term in the integrand. All terms can

be handled in a similar way, we only focus on the term

ETr
(
Ṡt
1Ht

)
, where Ht := G̃tΣ1GtΣ1G̃t.

We expand the trace term as

ETr
(
Ṡt
1Ht

)
=

1

k1
E

k1∑
ℓ=1

{
z
⊺
ℓHtzℓ − x

⊺
ℓHtxℓ + 2c(t)x

⊺
ℓHtzℓ

}
, (8.2)

where xℓ = (xℓ,1, . . . , xℓ,p)
⊺ and zℓ = (zℓ,1, . . . , zℓ,p)

⊺ are the ℓ-th columns of X1 and Z1, respectively.
We denote ∂xM := ∂M/∂x. Using the chain rule, it is straightforward to check that

∂zℓ,aHt,ij =
√
t∂xt

ℓ,a
Ht,ij , ∂xℓ,a

Ht,ij =
√
1− t∂xt

ℓ,a
Ht,ij .

Using Lemma A.4, we have

Ex
⊺
ℓHtxℓ = E

∑
i,j

Ht,ijxℓ,ixℓ,j =
∑
i,j

E ∂xℓ,i

(
Ht,ijxℓ,j

)
+ Rem1

=
∑
i̸=j

E
(
∂xℓ,j

∂xℓ,i
Ht,ij

)
+ ETr(Ht) + Rem1 + Rem2

= (1− t)
∑
i̸=j

E
(
∂xt

ℓ,j
∂xt

ℓ,i
Ht,ij

)
+ ETr(Ht) + Rem1 + Rem2,

where the remainder terms are bounded as

|Rem1| ≲
∑
i̸=j

E |∂2
xℓ,i

Ht| = O(1), |Rem2| ≲
∑
i̸=j

E |∂2
xℓ,i

∂xℓ,j
Ht| = O(1/p).

Similarly, we obtain that

E z
⊺
ℓHtzℓ = t

∑
i̸=j

E
(
∂xt

ℓ,j
∂xt

ℓ,i
Ht,ij

)
+ ETr(Ht),

Ex
⊺
ℓHtzℓ =

√
t(1− t)

∑
i̸=j

E
(
∂xt

ℓ,j
∂xt

ℓ,i
Ht,ij

)
+O(1).

These estimates and (8.2) yield
ETr

(
Ṡt
1Ht

)
= O(1).

Similarly, we can show that the other term in the integrand is also of order O(1). This completes the
proof.

29



References
A. Aue and L. Horváth. Structural breaks in time series. Journal of Time Series Analysis, 34(1):1–16,

2012. ISSN 1467-9892. doi: 10.1111/j.1467-9892.2012.00819.x. (cited on page 2)

A. Aue and C. Kirch. The state of cumulative sum sequential changepoint testing 70 years after page.
Biometrika, 111(2):367–391, 2024. ISSN 1464-3510. doi: 10.1093/biomet/asad079. (cited on page 2)

A. Aue, S. Hörmann, L. Horváth, and M. Reimherr. Break detection in the covariance structure of mul-
tivariate time series models. The Annals of Statistics, 37(6B), 2009. ISSN 0090-5364. doi: 10.1214/09-
aos707. (cited on page 2)

V. Avanesov. Structural break analysis in high-dimensional covariance structure. arXiv preprint
arXiv:1803.00508v2, 2019. doi: 10.48550/arXiv.1803.00508v2. (cited on pages 2, 16, and 19)

V. Avanesov and N. Buzun. Change-point detection in high-dimensional covariance structure. Electronic
Journal of Statistics, 12(2), 2018. ISSN 1935-7524. doi: 10.1214/18-ejs1484. (cited on page 2)

Z. Bai and J. W. Silverstein. Clt for linear spectral statistics of large-dimensional sample covariance
matrices. The Annals of Probability, 32(1A), 2004. ISSN 0091-1798. doi: 10.1214/aop/1078415845.
(cited on page 5)

Z. Bai and J. W. Silverstein. Spectral analysis of large dimensional random matrices, volume 20. Springer,
2010. doi: 10.1007/978-1-4419-0661-8. (cited on page 21)

Z. Bai, Y. Yin, and P. Krishnaiah. On limiting spectral distribution of product of two random matrices
when the underlying distribution is isotropic. Journal of Multivariate Analysis, 19(1):189–200, 1986.
ISSN 0047-259X. doi: 10.1016/0047-259x(86)90103-x. (cited on pages 3 and 4)

Z. Bai, Y. Yin, and P. R. Krishnaiah. On the limiting empirical distribution function of the eigenvalues
of a multivariate F matrix. Theory of Probability & Its Applications, 32(3):490–500, 1988. ISSN
1095-7219. doi: 10.1137/1132067. (cited on pages 3 and 4)

Z. Bai, D. Jiang, J. Yao, and S. Zheng. Corrections to LRT on large-dimensional covariance matrix by
RMT. The Annals of Statistics, 37(6B), 2009. ISSN 0090-5364. doi: 10.1214/09-aos694. (cited on page 5)

Z. Bao, J. Hu, G. Pan, and W. Zhou. Test of independence for high-dimensional random vectors based
on freeness in block correlation matrices. Electronic Journal of Statistics, 11(1):1527–1548, 2017. doi:
10.1214/17-EJS1259. (cited on page 28)

P. Billingsley. Convergence of Probability Measures. John Wiley & Sons, 1st edition, 1968. (cited on
pages 19 and 21)

M. Bours and A. Steland. Large-sample approximations and change testing for high-dimensional covari-
ance matrices of multivariate linear time series and factor models. Scandinavian Journal of Statistics,
48(2):610–654, 2021. ISSN 1467-9469. doi: 10.1111/sjos.12508. (cited on page 2)

H. Chen and N. Zhang. Graph-based change-point detection. The Annals of Statistics, 43(1), 2015. ISSN
0090-5364. doi: 10.1214/14-aos1269. (cited on page 2)

J. Chen and A. Gupta. Statistical inference of covariance change points in gaussian model. Statistics,
38(1):17–28, 2004. doi: 10.1080/0233188032000158817. (cited on page 2)

J. Chen and A. K. Gupta. Parametric statistical change point analysis, volume 192. Springer, 2000.
ISBN 9780817648015. doi: 10.1007/978-0-8176-4801-5. (cited on page 2)

C.-S. J. Chu, M. Stinchcombe, and H. White. Monitoring structural change. Econometrica, 64(5):1045,
1996. ISSN 0012-9682. doi: 10.2307/2171955. (cited on pages 6 and 7)

L. Chu and H. Chen. Asymptotic distribution-free change-point detection for multivariate and non-
euclidean data. The Annals of Statistics, 47(1), 2019. ISSN 0090-5364. doi: 10.1214/18-aos1691. (cited
on page 2)

30

http://dx.doi.org/10.1111/j.1467-9892.2012.00819.x
http://dx.doi.org/10.1093/biomet/asad079
http://dx.doi.org/10.1214/09-aos707
http://dx.doi.org/10.1214/09-aos707
http://dx.doi.org/10.48550/arXiv.1803.00508v2
http://dx.doi.org/10.1214/18-ejs1484
http://dx.doi.org/10.1214/aop/1078415845
http://dx.doi.org/10.1007/978-1-4419-0661-8
http://dx.doi.org/10.1016/0047-259x(86)90103-x
http://dx.doi.org/10.1137/1132067
http://dx.doi.org/10.1214/09-aos694
http://dx.doi.org/10.1214/17-EJS1259
http://dx.doi.org/10.1214/17-EJS1259
http://dx.doi.org/10.1111/sjos.12508
http://dx.doi.org/10.1214/14-aos1269
http://dx.doi.org/10.1080/0233188032000158817
http://dx.doi.org/10.1007/978-0-8176-4801-5
http://dx.doi.org/10.2307/2171955
http://dx.doi.org/10.1214/18-aos1691


B. Collins and P. Śniady. Integration with respect to the Haar measure on unitary, orthogonal and
symplectic group. Communications in Mathematical Physics, 264(3):773–795, 2006. ISSN 1432-0916.
doi: 10.1007/s00220-006-1554-3. (cited on page 27)

M. Csörgö and L. Horváth. Limit theorems in change-point analysis. Wiley, 1997. (cited on page 2)

J. Cui, G. Pan, G. Wang, and C. Zou. Simultaneous detection and localization of mean and covariance
changes in high dimensions. arXiv preprint arXiv:2508.19523, 2025. doi: 10.48550/arXiv.2508.19523.
(cited on page 2)

H. Dette and D. Tomecki. Determinants of block Hankel matrices for random matrix-valued measures.
Stochastic Processes and their Applications, 129(12):5200–5235, 2019. doi: 10.1016/j.spa.2019.02.010.
(cited on page 34)

H. Dette and D. Wied. Detecting relevant changes in time series models. Journal of the Royal
Statistical Society Series B: Statistical Methodology, 78(2):371–394, 2015. ISSN 1467-9868. doi:
10.1111/rssb.12121. (cited on page 2)

H. Dette, G. Pan, and Q. Yang. Estimating a change point in a sequence of very high-dimensional
covariance matrices. Journal of the American Statistical Association, 117(537):444–454, 2022. ISSN
1537-274X. doi: 10.1080/01621459.2020.1785477. (cited on page 2)

S. W. Dharmadhikari, V. Fabian, and K. Jogdeo. Bounds on the moments of martingales. The Annals
of Mathematical Statistics, 39(5):1719–1723, 1968. ISSN 0003-4851. doi: 10.1214/aoms/1177698154.
(cited on page 34)

X. Ding, Y. Hu, and Z. Wang. Two sample test for covariance matrices in ultra-high dimension.
Journal of the American Statistical Association, 120(552):2210–2221, 2024. ISSN 1537-274X. doi:
10.1080/01621459.2024.2423971. (cited on page 6)

N. Dörnemann and H. Dette. Linear spectral statistics of sequential sample covariance matrices. Annales
de l’Institut Henri Poincaré, Probabilités et Statistiques, 60(2), 2024. ISSN 0246-0203. doi: 10.1214/22-
aihp1339. (cited on page 6)

N. Dörnemann and H. Dette. Detecting change points of covariance matrices in high dimensions. arXiv
preprint, 2024 preprint arXiv:2409.15588. doi: 10.48550/arXiv.2409.15588. (cited on page 2)

N. Dörnemann and D. Paul. Detecting spectral breaks in spiked covariance models. arXiv preprint
arXiv:2404.19176, 2024. doi: 10.48550/arXiv.2404.19176. (cited on page 2)

P. Galeano and D. Peña. Covariance changes detection in multivariate time series. Journal of Statistical
Planning and Inference, 137(1):194–211, 2007. ISSN 0378-3758. doi: 10.1016/j.jspi.2005.09.003. (cited
on page 2)

J. Gao, L. Xie, and Z. Li. Online correlation change detection for large-dimensional data with
an application to forecasting of El Niño events. arXiv preprint arXiv:2502.01010, 2025. doi:
10.48550/arXix.2502.01010. (cited on page 2)

X. Han, G. Pan, and B. Zhang. The Tracy-Widom law for the largest eigenvalue of F type matrices.
The Annals of Statistics, 44(4), 2016. ISSN 0090-5364. doi: 10.1214/15-aos1427. (cited on page 3)

X. Han, G. Pan, and Q. Yang. A unified matrix model including both CCA and F matrices in multivariate
analysis: The largest eigenvalue and its applications. Bernoulli, 24(4B), 2018. ISSN 1350-7265. doi:
10.3150/17-bej965. (cited on page 3)

Y. He and A. Knowles. Mesoscopic eigenvalue statistics of wigner matrices. The Annals of Applied
Probability, 27(3):1510–1550, 2017. doi: 10.1214/16-AAP1237. (cited on page 34)

Z. Hou, X. Zhang, Z. Bai, and J. Hu. Spiked eigenvalues of noncentral Fisher matrix with applications.
Bernoulli, 29(4), 2023. ISSN 1350-7265. doi: 10.3150/22-bej1579. (cited on page 3)

D. Jiang, Z. Hou, and J. Hu. The limits of the sample spiked eigenvalues for a high-dimensional gener-
alized Fisher matrix and its applications. Journal of Statistical Planning and Inference, 215:208–217,
2021. ISSN 0378-3758. doi: 10.1016/j.jspi.2021.03.004. (cited on page 3)

31

http://dx.doi.org/10.1007/s00220-006-1554-3
http://dx.doi.org/10.48550/arXiv.2508.19523
http://dx.doi.org/10.1016/j.spa.2019.02.010
http://dx.doi.org/10.1111/rssb.12121
http://dx.doi.org/10.1111/rssb.12121
http://dx.doi.org/10.1080/01621459.2020.1785477
http://dx.doi.org/10.1214/aoms/1177698154
http://dx.doi.org/10.1080/01621459.2024.2423971
http://dx.doi.org/10.1080/01621459.2024.2423971
http://dx.doi.org/10.1214/22-aihp1339
http://dx.doi.org/10.1214/22-aihp1339
http://dx.doi.org/10.48550/arXiv.2409.15588
http://dx.doi.org/10.48550/arXiv.2404.19176
http://dx.doi.org/10.1016/j.jspi.2005.09.003
http://dx.doi.org/10.48550/arXix.2502.01010
http://dx.doi.org/10.48550/arXix.2502.01010
http://dx.doi.org/10.1214/15-aos1427
http://dx.doi.org/10.3150/17-bej965
http://dx.doi.org/10.3150/17-bej965
http://dx.doi.org/10.1214/16-AAP1237
http://dx.doi.org/10.3150/22-bej1579
http://dx.doi.org/10.1016/j.jspi.2021.03.004


D. Jiang, Z. Hou, Z. Bai, and R. Li. Invariance principle and CLT for the spiked eigenvalues of
large-dimensional Fisher matrices and applications. Statistica Sinica, 2026. ISSN 1017-0405. doi:
10.5705/ss.202022.0377. (cited on page 3)

M. Lavielle and G. Teyssiére. Detection of multiple change-points in multivariate time series. Lithuanian
Mathematical Journal, 46(3):287–306, 2006. ISSN 1573-8825. doi: 10.1007/s10986-006-0028-9. (cited
on page 2)

L. Li and J. Li. Online change-point detection in high-dimensional covariance structure with application
to dynamic networks. Journal of Machine Learning Research, 24(51):1–44, 2023. (cited on pages 2, 16,
17, and 19)

Y.-N. Li, D. Li, and P. Fryzlewicz. Detection of multiple structural breaks in large covariance matrices.
Journal of Business & Economic Statistics, 41(3):846–861, 2023. doi: 10.1080/07350015.2022.2076686.
(cited on page 2)

Z. Li and J. Yao. Testing the sphericity of a covariance matrix when the dimension is much larger than
the sample size. Electronic Journal of Statistics, 10(2), 2016. ISSN 1935-7524. doi: 10.1214/16-ejs1199.
(cited on page 5)

B. Liu, C. Zhou, X. Zhang, and Y. Liu. A unified data-adaptive framework for high dimensional change
point detection. Journal of the Royal Statistical Society Series B: Statistical Methodology, 82(4):933 –
963, 2020. ISSN 1467-9868. doi: 10.1111/rssb.12375. (cited on page 2)

Z. Liu, J. Hu, Z. Bai, and H. Song. A CLT for the LSS of large-dimensional sample covariance matrices
with diverging spikes. The Annals of Statistics, 51(5), 2023. ISSN 0090-5364. doi: 10.1214/23-aos2333.
(cited on page 6)

Z. Liu, J. Hu, Z. Bai, and Z. Lv. Asymptotic distributions of four linear hypotheses test statistics under
generalized spiked model. arXiv preprint arXiv:2510.04185, 2025. doi: 10.48550/arXiv.2510.04185.
(cited on page 6)

M. E. Lopes, A. Blandino, and A. Aue. Bootstrapping spectral statistics in high dimensions. Biometrika,
106(4):781 – 801, 2019. ISSN 1464-3510. doi: 10.1093/biomet/asz040. (cited on page 10)

E. S. Page. Continuous inspection schemes. Biometrika, 41(1/2):100–115, 1954. ISSN 0006-3444. doi:
10.2307/2333009. (cited on page 2)

J. Qiu, Z. Li, and J. Yao. Asymptotic normality for eigenvalue statistics of a general sample covariance
matrix when p/n→∞ and applications. The Annals of Statistics, 51(3), 2023. ISSN 0090-5364. doi:
10.1214/23-aos2300. (cited on page 6)

S. W. Roberts. A comparison of some control chart procedures. Technometrics, 8(3):411–430, 1966.
ISSN 1537-2723. doi: 10.1080/00401706.1966.10490374. (cited on page 2)

S. Ryan and R. Killick. Detecting changes in covariance via random matrix theory. Technometrics, 65
(4):480–491, 2023. ISSN 1537-2723. doi: 10.1080/00401706.2023.2183261. (cited on page 2)

A. N. Shiryaev. On optimum methods in quickest detection problems. Theory of Probability and Its
Applications, 8(1):22–46, 1963. ISSN 1095-7219. doi: 10.1137/1108002. (cited on page 2)

J. Silverstein. Strong convergence of the empirical distribution of eigenvalues of large dimensional
random matrices. Journal of Multivariate Analysis, 55(2):331–339, 1995. ISSN 0047-259X. doi:
10.1006/jmva.1995.1083. (cited on page 3)

A. Steland. Testing and estimating change-points in the covariance matrix of a high-dimensional time
series. Journal of Multivariate Analysis, 177, 2020. (cited on page 2)

A. W. van der Vaart and J. A. Wellner. Weak Convergence and Empirical Processes. Springer New York,
1996. ISBN 9781475725452. doi: 10.1007/978-1-4757-2545-2. (cited on page 22)

D. Wang, Y. Yu, and A. Rinaldo. Optimal covariance change point localization in high dimensions.
Bernoulli, 27(1):554–575, 2021. ISSN 1350-7265. doi: 10.3150/20-bej1249. (cited on page 2)

32

http://dx.doi.org/10.5705/ss.202022.0377
http://dx.doi.org/10.5705/ss.202022.0377
http://dx.doi.org/10.1007/s10986-006-0028-9
http://dx.doi.org/10.1080/07350015.2022.2076686
http://dx.doi.org/10.1214/16-ejs1199
http://dx.doi.org/10.1111/rssb.12375
http://dx.doi.org/10.1214/23-aos2333
http://dx.doi.org/10.48550/arXiv.2510.04185
http://dx.doi.org/10.1093/biomet/asz040
http://dx.doi.org/10.2307/2333009
http://dx.doi.org/10.2307/2333009
http://dx.doi.org/10.1214/23-aos2300
http://dx.doi.org/10.1214/23-aos2300
http://dx.doi.org/10.1080/00401706.1966.10490374
http://dx.doi.org/10.1080/00401706.2023.2183261
http://dx.doi.org/10.1137/1108002
http://dx.doi.org/10.1006/jmva.1995.1083
http://dx.doi.org/10.1006/jmva.1995.1083
http://dx.doi.org/10.1007/978-1-4757-2545-2
http://dx.doi.org/10.3150/20-bej1249


Q. Wang and J. Yao. On the sphericity test with large-dimensional observations. Electronic Journal of
Statistics, 7(none), 2013. ISSN 1935-7524. doi: 10.1214/13-ejs842. (cited on page 5)

Q. Wang and J. Yao. Extreme eigenvalues of large-dimensional spiked Fisher matrices with application.
The Annals of Statistics, 45(1), 2017. ISSN 0090-5364. doi: 10.1214/16-aos1463. (cited on page 3)

R. Wang and D. Jiang. Inference on testing the number of spikes in a high-dimensional generalized spiked
Fisher matrix. Electronic Journal of Statistics, 19(1), 2025. ISSN 1935-7524. doi: 10.1214/25-ejs2362.
(cited on page 3)

R. Wang, C. Zhu, S. Volgushev, and X. Shao. Inference for change points in high-dimensional data via
selfnormalization. The Annals of Statistics, 50(2), 2022. ISSN 0090-5364. doi: 10.1214/21-aos2127.
(cited on page 2)

J. Xie, Y. Zeng, and L. Zhu. Limiting laws for extreme eigenvalues of large-dimensional spiked Fisher
matrices with a divergent number of spikes. Journal of Multivariate Analysis, 184:104742, 2021. ISSN
0047-259X. doi: 10.1016/j.jmva.2021.104742. (cited on page 3)

L. Xie, Y. Xie, and G. V. Moustakides. Sequential subspace change point detection. Sequential Analysis,
39(3):307–335, 2020. ISSN 1532-4176. doi: 10.1080/07474946.2020.1823191. (cited on page 2)

Y. Xie and D. Siegmund. Sequential multi-sensor change-point detection. The Annals of Statistics, 41
(2):670–692, 2013. ISSN 0090-5364. doi: 10.1214/13-aos1094. (cited on page 2)

Q. Yang and G. Pan. Weighted statistic in detecting faint and sparse alternatives for high-dimensional
covariance matrices. Journal of the American Statistical Association, 112(517):188–200, 2017. ISSN
1537-274X. doi: 10.1080/01621459.2015.1122602. (cited on page 6)

Y. Yin. Liberating dimension and spectral norm: A universal approach to spectral properties of sample
covariance matrices. arXiv preprint arXiv:2401.01012, 2024. doi: 10.48550/arXix.2401.01012. (cited
on page 6)

Q. Zhang, J. Hu, and Z. Bai. Invariant test based on the modified correction to lrt for the equality of two
high-dimensional covariance matrices. Electronic Journal of Statistics, 13(1), 2019. ISSN 1935-7524.
doi: 10.1214/19-ejs1542. (cited on page 6)

X. Zhang, Z. Bai, and J. Hu. Limiting spectral distribution of high-dimensional noncentral Fisher
matrices and its analysis. Science China Mathematics, 66(2):393–408, 2022. ISSN 1869-1862. doi:
10.1007/s11425-020-1958-1. (cited on page 3)

S. Zheng. Central limit theorems for linear spectral statistics of large dimensional F-matrices. Annales
de l’Institut Henri Poincaré, Probabilités et Statistiques, 48(2):444–476, 2012. ISSN 0246-0203. doi:
10.1214/11-aihp414. (cited on pages 3 and 39)

S. Zheng, Z. Bai, and J. Yao. Substitution principle for CLT of linear spectral statistics of high-
dimensional sample covariance matrices with applications to hypothesis testing. The Annals of Statis-
tics, 43(2), 2015. ISSN 0090-5364. doi: 10.1214/14-aos1292. (cited on page 5)

S. Zheng, Z. Bai, and J. Yao. CLT for eigenvalue statistics of large-dimensional general Fisher matrices
with applications. Bernoulli, 23(2):1130–1178, 2017. ISSN 1350-7265. doi: 10.3150/15-bej772. (cited
on pages 3 and 6)

T. Zou, R. Lin, S. Zheng, and G.-L. Tian. Two-sample tests for high-dimensional covariance matrices
using both difference and ratio. Electronic Journal of Statistics, 15(1), 2021. ISSN 1935-7524. doi:
10.1214/20-ejs1783. (cited on page 6)

A Auxiliary lemmas
Lemma A.1 (Hájek-Rényi inequality). Suppose {Xn, n ≥ 1} is a martingale difference sequence with
σ2
n := EX2

n <∞. Let Sn :=
∑n

j=1 Xj and let c1 ≥ c2 ≥ · · · ≥ cn > 0 be given constants. Then, for any
m ∈ JnK and any x > 0,

P
(

max
m≤j≤n

cj |Sj | ≥ x
)
≤ 1

x2

(
c2m

m∑
j=1

σ2
j +

n∑
j=n+1

c2jσ
2
j

)
.

33

http://dx.doi.org/10.1214/13-ejs842
http://dx.doi.org/10.1214/16-aos1463
http://dx.doi.org/10.1214/25-ejs2362
http://dx.doi.org/10.1214/21-aos2127
http://dx.doi.org/10.1016/j.jmva.2021.104742
http://dx.doi.org/10.1080/07474946.2020.1823191
http://dx.doi.org/10.1214/13-aos1094
http://dx.doi.org/10.1080/01621459.2015.1122602
http://dx.doi.org/10.48550/arXix.2401.01012
http://dx.doi.org/10.1214/19-ejs1542
http://dx.doi.org/10.1007/s11425-020-1958-1
http://dx.doi.org/10.1007/s11425-020-1958-1
http://dx.doi.org/10.1214/11-aihp414
http://dx.doi.org/10.1214/11-aihp414
http://dx.doi.org/10.1214/14-aos1292
http://dx.doi.org/10.3150/15-bej772
http://dx.doi.org/10.1214/20-ejs1783
http://dx.doi.org/10.1214/20-ejs1783


Lemma A.2 (Dharmadhikari et al. [1968]). Let {Xi, i ≥ 1} be a martingale difference sequence, and
Sn :=

∑n
i=1 Xi. Then, for any r ≥ 2,

E |Sn|r ≤ Crn
r/2−1

n∑
i=1

E |Xi|r,

where Cr = {8(r − 1)max(1, 2r−3)}r.

Lemma A.3 (Corollary A.4 in Dette and Tomecki [2019]). Let {Zt, 0 ≤ t ≤ 1} be a stochastic process
with right-continuous sample paths. Assume that there exist constants γ > 0, δ > 1 such that for
r ≤ s ≤ t the inequality

P
(
min{|Zt − Zs|, |Zr − Zs|} > λ

)
≤ Cλ−γ |t− r|δ

holds with a universal constant C. Further assume that there exist a function η such that the inequality

P
(
|Zt − Zs| > α

)
≤ η(|t− s|, α)

is satisfied. Then, for any ε > 0 and r ∈ [0, 1], we have

P
(

sup
|s|,|t|<ε,r+s,r+t∈[0,1]

|Zr+s − Zr+t| > 4λ
)
≤ εδCC ′λ−γ + 4η(ε, λ),

where C ′ is a constant depending on γ and δ only.

Lemma A.4 (Cumulant expansion formula, Lemma 3.1 in He and Knowles [2017]). Let h be a real-
valued random variable with finite moments, and f is a complex-valued smooth function on R with
bounded derivatives. Let ck(h) be the k-th cumulant of h, given by ck(h) := (−i)k d

dt logE eith|t=0. Then
for any fixed ℓ ∈ N, we have

E[hf(h)] =
ℓ∑

k=0

1

k!
ck+1(h)E[f (k)(h)] +Rℓ+1.

For any fixed cutoff M > 0, the remainder term Rℓ+1 satisfies

|Rℓ+1| = O(1) · E |h|ℓ+2 sup
|x|≤M

·
∣∣f (ℓ+1)(x)

∣∣+O(1) · E(|h|ℓ+21{|h|>M}
)
· ∥f (ℓ+1)∥∞.

B Proofs

B.1 Calculations of mean and variance
In this section, we provide detailed calculations for the explicit forms of the mean and variance given in
Section 3. Recall that the mean and variance involve contour integrals of the form

µk(f) =
1

2πi

∮
Γ

(
f ′(z)zm− f(z)

m′

m

)
dz +

ν4 − 3

4pπi

∮
Γ

f ′(z)(1 + zm)2 dz

+
1

2k2πi

∮
Γ

(
− (zf)′′zm

2
+ zf ′(z)

m′

m
+

f ′′(z)

m

)
dz + o

(
1

p

)
,

σ2
k(f) =

ν4 − 3

k2c2

(
1

2πi

∮
Γ

f ′zmdz

)2

+
1

k2πi

∮
Γ

{f ′(z)}2

m
dz + o

(
1

p

)
.

We evaluate the contour integrals by applying the residue theorem to the region exterior to the contour Γ,
which corresponds to the negative sum of the residues outside Γ. For polynomial functions g(z) = z or z2,
the only non-vanishing contribution arises from the residue at infinity. In the case where g(z) = log(1+z),
the residue at the pole z = −1 is also included. It is verified that the potential singularities at z = 0
and z = −c2/c1 are removable, and thus their residues vanish. To illustrate the calculation procedure,
we consider the integral ∮

Γ

{f ′(z)}2

m(z)
dz
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as a representative example. We first establish the Laurent expansion of the reciprocal Stieltjes transform
at z =∞ up to the third order:

1

m(z)
= −z +M1 −

M2
1 −M2

z
− M3

1 − 2M1M2 +M3

z2
− C3

z3
+ o

(
1

z3

)
,

where C3 = M4
1 − 3M2

1M2 + 2M1M3 + M2
2 − M4, and the coefficient Mi is the i-th moment of the

probability distribution with Stieltjes transform m(z). The explicit forms of Mi’s are given by

M1 =
c2

1− c1
, M2 =

c2
(
1 + c2 − c1c2

)
(1− c1)3

, M3 =
c2
(
c21c

2
2 − 2c1c

2
2 − 3c1c2 + c1 + c22 + 3c2 + 1

)
(1− c1)5

,

M4 =
c2

(1− c1)7

(
− c31c

3
2 + 3c21c

3
2 + 6c21c

2
2 − 4c21c2 + c21 − 3c1c

3
2 − 12c1c

2
2 − 2c1c2 + 3c1 + c32 + 6c22 + 6c2 + 1

)
.

For the case g(z) = z, the integrand simplifies to 1/m(z), yielding a residue at infinity of M2
1 −M2.

Hence,
1

2πi

∮
Γ

1

m(z)
dz = −Res

(
1

m(z)
,∞
)

= −M2
1 +M2.

For g(z) = z2, the integrand becomes 4z2/m(z), and the residue at infinity is 4C3, leading to

1

2πi

∮
Γ

4z2

m(z)
dz = −Res

(
4z2

m(z)
,∞
)

= −4C3.

In the case of g(z) = log(1 + z), the integrand is 1
(1+z)2m(z) . This function possesses a pole at z = −1

with residue −m′(−1)
m(−1)2 . At infinity, the asymptotic behavior is derived as:

1

(1 + z)2m(z)
=

(
1

z2
− 2

z3

){
−z +M1 + o(1)

}
= −1

z
+ o

(
1

z

)
,

which corresponds to a residue of 1. Therefore, we have

1

2πi

∮
Γ

1

(1 + z)2m(z)
dz = −Res

(
1

(1 + z)2m(z)
,−1

)
− Res

(
1

(1 + z)2m(z)
,∞
)

=
m′(−1)
m(−1)2

− 1.

The other integrals in the expressions of µk(f) and σ2
k(f) can be evaluated using similar procedures and

the results are summarized in Table 7.

Integrals f(z) = z f(z) = z2 f(z) = log(1 + z)

1
2πi

∮
f ′zmdz −M1 −2M2 m(−1)− 1

1
2πi

∮
f m′

m dz −M1 M2
1 − 2M2 lnm(−1)

1
2πi

∮
f ′(1 + zm)2 dz 0 2M2

1 −{1−m(−1)}2
1

2πi

∮
(zf)′′zm′ dz −2M1 −6M2 −1 +m′(−1)

1
2πi

∮
f ′zm′

m dz −M1 2M2
1 − 4M2

m′(−1)
m(−1) − 1

1
2πi

∮
f ′′

m dz 0 −2(M2
1 −M2) 1− m′(−1)

m(−1)2

1
2πi

∮ (f ′)2

m dz −M2
1 +M2 −4C3

m′(−1)
m(−1)2 − 1

Table 7: Summary of contour integrals appearing in the evaluation of mean and variance.

B.2 Proof of Proposition 2.1
Recall the definition of Mk(z) in (2.2). The following two lemmas provide the mean and covariance
structure of the resolvent difference Mk(z) and some useful trace limits, which are essential for proving
Proposition 2.1.
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Lemma B.1. Under Assumptions A and B, for any z1, z2 ∈ C+, we have

EMk(z) =

(
1 +

1

zm

)
(zm)′ +

1

k2

{
z(zm)′′

2
+

(
zm′

m

)′

−
(

1

m

)′′}
+

ν4 − 3

2p
{(1 + zm)2}′ + o(1/p),

Cov(Mk(z1),Mk(z2)) =
ν4 − 3

k2c2
∂z1
(
z1m1

)
∂z2
(
z2m2

)
− 2

k2
∂z1∂z2

(
1/m1 − 1/m2

z1 − z2

)
+ o(1/p).

Lemma B.2. Under Assumptions A and B, the following limits hold as p→∞:

TrGk−1

k2

p−→ c2m(z) = m(z) +
1− c2

z
,

zTrG2
k−1

k2

p−→ zc2m
′(z) = zm′(z)− 1− c2

z
, (B.1)

Tr(Gk−1S
−1
1 )

k2

p−→ −1 + zm(z)

zm(z)
,

Tr(G2
k−1S

−1
1 )

k2

p−→ m(z) + zm′(z)

{zm(z)}2
, (B.2)

1

k2
Tr
{
Gk−1(z1)S

−1
1 Gk−1(z2)S

−1
1

} p−→ − 1

z1z2m1m2

(
1 +

1/m1 − 1/m2

z1 − z2

)
. (B.3)

The proof of Lemma B.1 and Lemma B.2 is given in Section B.4 and Section B.5 respectively. We
first use the above two lemmas to prove Proposition 2.1. From the definition of Lk(f), Lemma B.1 and
the integration by part, we have

µk(f) = −
1

2πi

∮
Γ

f(z)

{
(zm)′ +

m′

m

}
dz − ν4 − 3

4pπi

∮
Γ

f(z)
{
(1 + zm)2

}′
dz

− 1

2k2πi

∮
Γ

f(z)

{
z(zm)′′

2
+

(
zm′

m

)′

−
(

1

m

)′′}
dz

=
1

2πi

∮
Γ

(
f ′(z)zm− f(z)

m′

m

)
dz +

ν4 − 3

4pπi

∮
Γ

f ′(z)(1 + zm)2 dz

+
1

2k2πi

∮
Γ

(
− (zf)′′zm

2
+ zf ′(z)

m′

m
+

f ′′(z)

m

)
dz.

We take Γ1 = Γ and choose Γ2 to be a rectangle outside Γ1, with each of its four sides at a distance ε
from Γ1. Using the integration by parts twice, first with respect to z1 and then with respect to z2, we
have∮

Γ1×Γ2

f(z1)f(z2)∂z1∂z2

(
1/m1 − 1/m2

z1 − z2

)
dz1 dz2 =

∮
Γ1

f ′(z1)

∮
Γ2

f ′(z2)

(
1/m1 − 1/m2

z1 − z2

)
dz2 dz1

= −
∮
Γ2

f ′(z2)

m2

∮
Γ1

f ′(z1)

z1 − z2
dz1 dz2 = −2πi

∮
Γ2

{f ′(z)}2

m(z)
dz,

and thus

σ2
k(f) =

(
−1
2πi

)2 ∮
Γ1

∮
Γ2

f(z1)f(z2) Cov(Mk(z1),Mk(z2)) dz1 dz2

=
ν4 − 3

k2c2

(
− 1

2πi

∮
Γ1

f(z)(zm)′ dz

)2

+
1

2k2π2

∮
Γ1×Γ2

f(z1)f(z2)∂z1∂z2

(
1/m1 − 1/m2

z1 − z2

)
dz1 dz2

=
ν4 − 3

k2c2

(
1

2πi

∮
Γ

f ′zmdz

)2

+
1

k2πi

∮
Γ

{f ′(z)}2

m
dz.

B.3 Proof of Remark 3.1
We denote m(x± i0) = A± iB, where

A ≡ A(x) = −x(h2 + c1) + c2(1− c2)

2x(c2 + xc1)
, B ≡ B(x) =

c2(1− c1)
√
(x− b)(a− x)

2x(c2 + xc1)
.

We choose the counter Γ to be a rectangle with sides parallel to the axes. The rectangle enclose the
intervel [a, b], and the horizontal sides are a distance ε < 1 away from the real axis. We let ε→ 0. Using
integration by parts, for any analytic function f(z), we obtain∮

Γ

f(z){zm(z)}′ dz = −
∮
Γ

f ′(z)zm(z) dz
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= −
∫ a

b

f ′(x)x(A+ iB) dx−
∫ b

a

f ′(x)x(A− iB) dx = 2i

∫ b

a

f ′(x)xB dx, (B.4)

and ∮
Γ

f(z)m′(z)

m(z)
dz = −

∮
Γ

f ′(z) log{m(z)} dz

= −
∫ a

b

f ′(x) log(A+ iB) dx−
∫ b

a

f ′(x) log(A− iB) dx = 2i

∫ b

a

f(x)
A′B −AB′

A2 +B2
dx. (B.5)

Similarly, we can also get ∮
Γ

f(z)

m(z)
dz = 2i

∫ b

a

Bf

A2 +B2
dx, (B.6)

∮
Γ

f(z)z(zm)′′ dz = −
∮
Γ

{zf(z)}′(zm)′ dz
(B.4)
= −2i

∫ b

a

(xf ′′ + 2f ′)xB dx,

∮
Γ

f ′(z)zm′

m
dz

(B.5)
= 2i

∫ b

a

xf ′A
′B −AB′

A2 +B2
dx,

∮
Γ

f(z)

(
1

m

)′′

dz =

∮
Γ

f ′′(z)

m
dz

(B.6)
= 2i

∫ b

a

Bf ′′

A2 +B2
dx,

∮
Γ

f(z){(1 + zm)2}′ dz = −
∮
Γ

f ′(z)(1 + zm)2 dz = 4i

∫ b

a

(1 + xA)xBf ′ dx,

∮
Γ2

{f ′(z)}2

m(z)
dz = 2i

∫ b

a

B(x){f ′(x)}2

A2(x) +B2(x)
dx.

From these integrals and Lemma B.1, we have

E(Lk(f)) = −
1

π

∫ b

a

(
xBf ′ +

A′B −AB′

A2 +B2
f

)
dx− ν4 − 3

pπ

∫ b

a

(1 + xA)xBf ′ dx

− 1

k2π

∫ b

a

{
− (xf ′′ + 2f ′)xB

2
− (A′B −AB′)xf ′ +Bf ′′

A2 +B2

}
dx+ o

(
1

p

)
,

and

Var(Lk(f)) =
ν4 − 3

k2c2π2

(∫ b

a

f ′(x)xB(x) dx

)2

+
2

k2π

∫ b

a

B(x){f ′(x)}2

A2(x) +B2(x)
dx+ o

(
1

p

)
.

B.4 Proof of Lemma B.1
Denote k2 = k − 1− k1, and we can write

Fk =
k2

k2 + 1
Fk−1 +

S−1
1 xkx

⊺
k

k2 + 1
.

This, together with the Sherman-Morrison identity, yields that

Gk = Ĝk−1 −
1

k2+1 Ĝk−1S
−1
1 xkx

⊺
kĜk−1

1 + 1
k2+1x

⊺
kĜk−1S

−1
1 xk

,

where Ĝ ≡ Ĝk−1(z) :=
(

k2

k2+1Fk−1 − z
)−1. Using the identity A−1 −B−1 = A−1(B −A)B−1, we have

Ĝk−1 =
k2 + 1

k2
Gk−1 +

z

k2
Ĝk−1Gk−1.
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For brevity, we denote G = Gk−1. Plugging the above equation into the expression of Gk, we have

Mk(z) =
1

k2
TrG+

z

k2
Tr ĜG−

1
k2+1x

⊺
kĜ

2S−1
1 xk

1 + 1
k2+1x

⊺
kĜS−1

1 xk

=
1

k2
TrG+

z(k2 + 1)

k22
TrG2 +

z2

k22
TrG3 −

k2+1
k2
2

x⊺
kG

2S−1
1 xk + 2z

k2
2
x⊺
kG

3S−1
1 xk

1 + 1
k2
x⊺
kGS−1

1 xk + z
k2
2
x⊺
kG

2S−1
1 xk

+ oP(1/p).

Let ∆
(ℓ)
k :=

x
⊺
kG

ℓS−1
1 xk−Tr(GℓS−1

1 )
k2

, ℓ = 1, 2. Using the Taylor expansion, we have

k2+1
k2
2

x⊺
kG

2S−1
1 xk + 2z

k2
2
x⊺
kG

3S−1
1 xk

1 + 1
k2
x⊺
kGS−1

1 xk + z
k2
2
x⊺
kG

2S−1
1 xk

=

1
k2

TrG2S−1
1 +∆

(2)
k + 1

k2
2
TrG2S−1

1 + 2z
k2
2
TrG3S−1

1

1 + 1
k2

TrGS−1
1 +∆

(1)
k + z

k2
2
TrG2S−1

1

+OP(p
−3/2)

= α(z)

(
1

k2
TrG2S−1

1 +
1

k22
TrG2S−1

1 +
2z

k22
TrG3S−1

1

)
− α2(z)

(
z(TrG2S−1

1 )2

k32
+∆

(1)
k ∆

(2)
k

)
+ α3(z)

TrG2S−1
1

k2
(∆

(1)
k )2 +

1

k2
(x

⊺
kAkxk − TrAk) +OP(p

−3/2),

where

Ak ≡ Ak(z) := α(z)G2S−1
1 + α′(z)GS−1

1 , α(z) :=
1

1 + 1
k2

Tr(GS−1
1 )

. (B.7)

From Lemma B.2, we have

α(z)
p−→ −zm(z), (B.8)

E
(
∆

(1)
k ∆

(2)
k

)
= − (ν4 − 3)(1 + zm)(m+ zm′)

p(zm)3

+
2c2

p(zm)2

(
1

z
− m′

zm2
+

m′

m
− 2(m′)2

m3
+

m′′

2m2

)
+ o(1/p),

E
(
∆

(1)
k

)2
=

ν4 − 3

p

(
1 + zm

zm

)2

− 2c2
p(zm)2

(
1− m′

m2

)
+ o(1/p),

and thus

Mk(z) =

(
1 +

1

zm

)
(zm)′ +

1

k2

{
z(zm)′′

2
+

(
zm′

m

)′

−
(

1

m

)′′}
+

ν4 − 3

2p
{(1 + zm)2}′ − 1

k2
(x

⊺
kAkxk − TrAk) + oP(1/p).

(B.9)

This implies the approximation of EMk(z) in Lemma B.1, and it remains to calculate the covariance
function Cov(Mk(z1),Mk(z2)). Using (B.9), we have

Cov
(
Mk(z1),Mk(z2)

)
=

1

k22
E
{(

x
⊺
kAk(z1)xk − TrAk(z1)

)(
x
⊺
kAk(z2)xk − TrAk(z2)

)}
+ o(1/p)

=
ν4 − 3

k22
E

p∑
i=1

[Ak(z1)]ii[Ak(z2)]ii +
2

k22
ETr

{
Ak(z1)Ak(z2)

}
+ o(1/p).

Using the identity
Ak(z) = ∂z

{
α(z)G(z)S−1

1

}
,

we have

ETr
{
Ak(z1)Ak(z2)

}
= ETr

[
∂z1{α(z1)G(z1)S

−1
1 }∂z2{α(z2)G(z2)S

−1
1 }

]
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= ∂z1∂z2
[
α(z1)α(z2)ETr{G(z1)S

−1
1 G(z2)S

−1
1 }

]
.

This, together with (B.8) and Lemma B.2, implies that

1

k2
ETr

{
Ak(z1)Ak(z2)

}
= −∂z1∂z2

(
1/m1 − 1/m2

z1 − z2

)
+ o(1). (B.10)

Using Lemma B.2 again, we have

Cov(Mk(z1),Mk(z2)) =
ν4 − 3

k2c2
∂z1
(
z1m1

)
∂z2
(
z2m2

)
− 2

k2
∂z1∂z2

(
1/m1 − 1/m2

z1 − z2

)
+ o(1/p).

B.5 Proof of Lemma B.2
The estimate (B.1) follows from Lemma 6.2 in Zheng [2012]. It remains to prove (B.2) and (B.3).

Proof of (B.2)

The second limit in (B.2) can be derived from the first one by taking derivative with respect to z. Thus,
it suffices to prove the first limit. Recall that

Gk−1(z) =

(
1

k2
S−1
1 XX

⊺ − z

)−1

, X = (xk1+1, . . . , xk−1)p×k2
.

We abuse the notation by denoting the (i, j)-th entry of X by xij and the j-th column of X by xj . From
the definition of G ≡ Gk−1(z), we have the following resolvent identity:

G =
1

zk2
S−1
1 XX

⊺
G− 1

z
I, (B.11)

which implies that

ETrG =
1

zk2
ETr(XX

⊺
GS−1

1 )− p

z
=

1

zk2

∑
i,j

E
{
xijfij(X)

}
− p

z
,

where
fij(X) := {X⊺G(z)}ji, G(z) := G(z)S−1

1 = (S2 − zS1)
−1.

From Lemma A.4, we have

E
{
xijfij(X)

}
= E

{
∂ijfij(X)

}
+R1,ij ,

where the remainder term R1,ij satisfies that

R1,ij ≲ E ∥∂2
ijfij(X)∥∞.

The first derivative is given by

∂ijfij(X) = {(∂ijX
⊺
)G}ji − {X

⊺G(∂ijS2)G}ji = Gii −
1

k2
(X

⊺G)ji(X
⊺G)ji −

1

k2
(X

⊺GX)jjGii.

Moreover, the second derivative is given by

∂2
ijfij(X) = ∂ijGii − {G(∂ijS2)G}ii −

∑
a

xaj

{
(∂ijG)(∂ijS2)G + G(∂2

ijS2)G + G(∂ijS2)(∂ijG)
}
ai
.

Let ei be the i-th standard basis vector in Rp. Using the following norm estimates:

∥∂ijS2∥2 =
1

k2
∥eix

⊺
j + xje

⊺
i ∥2 ≲

∥xj∥
k2

, ∥∂2
ijS2∥2 =

1

k2
∥eie

⊺
i ∥2 =

1

k2
,

∥∂ijG∥2 = ∥ −G(∂ijS2)GS−1
1 ∥2 ≤ ∥S

−1
1 ∥2 · ∥G∥22 · ∥∂ijS2∥2 ≲

∥xj∥
k2

,
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we can easily get

∥∂2
ijfij(X)∥∞ ≲

∥xj∥
k2

+
∥xj∥3

k22
.

Thus, we obtain R1,ij = O(1/
√
p). Combining the above estimates, we have

ETrG =
1

z
ETrG − 1

zk2
ETr(GS2G)−

1

zk2
E{Tr(GS2) TrG} −

p

z
+O(√p).

Using the identity GS2 = I + zG and the following covariance estimate

E{TrGTrG} − E(TrG)E(TrG) = O(1), (B.12)

and (B.1), we obtain that

1

k2
ETrG =

(
1− z ETrG+ p

k2

)−1
z ETrG+ p

k2
+O(p−1/2) = −zm+ 1

zm
+O(p−1/2).

This, together with the variance estimate

Var(TrG) = O(1), (B.13)

completes the proof of (B.2).
Now we prove (B.12) and (B.13). We denote

S
(j)
2 := S2 −

1

k2
xjx

⊺
j , G(j) := (S

(j)
2 − zS1)

−1, j ∈ Jk2K.

Let Fj be the σ-algebra generated by {x1, . . . , xj}, and denote Ej := E(·|Fj), then we have

Var(TrG) =
k2∑
j=1

E
{
(Ej −Ej−1)

(
TrG − TrG(j)

)}2
=

k2∑
j=1

E
{
(Ej −Ej−1)

1
k2
x⊺
j (G(j))2xj

1 + 1
k2
x⊺
jG(j)xj

}2

. (B.14)

Let ∆j :=
1
k2

TrG(j) − 1
k2

ETrG(j). From the Taylor expansion, we have

1
k2
x⊺
j (G(j))2xj

1 + 1
k2
x⊺
jG(j)xj

=
1
k2
x⊺
j (G(j))2xj

1 + 1
k2

ETrG(j)
−

1
k2
x⊺
j (G(j))2xj

(1 + 1
k2

ETrG(j))2
∆j +O(∆2

j ).

For the first term, we have

E
∣∣∣∣ 1k2 (Ej −Ej−1)x

⊺
j (G(j))2xj

∣∣∣∣2 ≲
1

p2
E
∣∣∣x⊺

j (G(j))2xj − Tr(G(j))2
∣∣∣2 = O(1/p).

Similarly, we can show that the expectations of the second and third terms are also O(1/p). These
estimates and (B.14) yield (B.13).

Similarly, we can verify that

Var(TrG) = Var(Tr(GS1)) = O(1). (B.15)

These estimates, together with the Cauchy-Schwarz inequality, imply (B.12).

Proof of (B.3)

In the following, we denote Gi = G(zi) and Gi = G(zi) for i = 1, 2. From the identity (B.11), we have

G2G1S
−1
1 =

1

z1k2
G2XX

⊺G1 −
1

z1
G2,

and thus

ETr(G2G1S
−1
1 ) =

1

z1k2
ETr(XX

⊺G1G2)−
1

z1
ETrG2 =

1

z1k2

∑
i,j

E
{
xij(X

⊺G1G2)ji
}
− 1

z1
ETrG2.
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For brevity, we denote
gij(X) = (X

⊺G1G2)ji.

By using the cumulant expansion, we have

E{xijgij(X)} = E{∂ijgij(X)}+R2,ij ,

where the remainder term R2,ij satisfies that

R2,ij ≲ E ∥∂2
ijgij(X)∥∞.

The first derivative of gij is given by

∂ijgij(X) = (G1G2)ii −
1

k2
(X

⊺G1)ji(X
⊺G1G2)ji −

1

k2
(X

⊺G1X)jj(G1G2)ii

− 1

k2
(X

⊺G1G2)ji(X
⊺G2)ji −

1

k2
(X

⊺G1G2X)jj(G2)ii.

The same argument as before shows that the remainder term R2,ij = O(1/√p). Combining the above
estimates, we have

ETr(G2G1S
−1
1 )

=
1

z1k2
E
{
(k2 − p− z1 TrG1) Tr(G1G2)

}
− 1

z1k2
E
{(

z2 TrG2
z2 − z1

− z1 TrG1
z2 − z1

)
TrG2

}
− 1

z1
ETrG2 +O(

√
p)

=
1

z1k2

(
k2 − p− z1 ETrG1

)
ETr(G1G2)−

1

z1k2

(
z2 ETrG2
z2 − z1

− z1 ETrG1
z2 − z1

)
ETrG2 −

1

z1
ETrG2 +O(

√
p),

where the second equality following from (B.13), (B.15), and

Var
(
Tr(G1G2)

)
= O(1), Cov

(
TrG1,TrG2

)
= O(1). (B.16)

The proof of these two estimates is similar to that of (B.13) and is thus omitted. Combining the above
estimate with the identity G1G2 = (G1 −G2)/(z1 − z2), we have

z2 ETrG2 − z1 ETrG1
z2 − z1

(
1 +

1

k2
ETrG2

)
=

(
1− p

k2
− z1

k2
ETrG1

)
ETrG1G2 +O(

√
p).

By symmetry, we also have

z2 ETrG2 − z1 ETrG1
z2 − z1

(
1 +

1

k2
ETrG1

)
=

(
1− p

k2
− z2

k2
ETrG2

)
ETrG1G2 +O(

√
p).

Combining the above two identities yields that

1

k2
ETr(G1G2) =

(
z2 ETrG2 − z1 ETrG1

)(
ETrG2 − ETrG1

)
k2(z2 − z1)

(
z2 ETrG2 − z1 ETrG1

) +O(1/√p).

This, together with (B.1), (B.2), and (B.16), completes the proof of (B.3).
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