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Abstract

Change point detection in covariance structures is a fundamental and crucial problem for sequen-
tial data. Under the high-dimensional setting, most of the existing research has focused on identifying
change points in historical data. However, there is a significant lack of studies on the practically
relevant online change point problem, which means promptly detecting change points as they oc-
cur. In this paper, applying the limiting theory of linear spectral statistics for random matrices,
we propose a class of spectrum based CUSUM-type statistic. We first construct a martingale from
the difference of linear spectral statistics of sequential sample Fisher matrices, which converges to a
Brownian motion. Our CUSUM-type statistic is then defined as the maximum of a variant of this
process. Finally, we develop our detection procedure based on the invariance principle. Simulation
results show that our detection method is highly sensitive to the occurrence of change point and is
able to identify it shortly after they arise, outperforming the existing approaches.
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1 Introduction

Online change point detection plays a pivotal role in statistical process control and time series analysis.
The field has a rich history, rooted in the classical works on Page’s cumulative sum (CUSUM) procedure
[Page, 1954] and Shiryaev-Roberts procedure [Shiryaev, 1963; Roberts, 1966]. For a detailed exposition
of the methodology and a survey of recent developments, we refer readers to Aue and Kirch [2024] and the
references therein. While classical theories are well-established, monitoring the covariance structure in
high-dimensional settings remains a critical yet challenging task, as it captures the dynamic dependencies
among a large number of variables. Motivated by this, we consider the problem of online change point
detection for the covariance structure of high-dimensional random vectors. Specifically, we observe a
sequence of p-dimensional random vectors {y;}32,, modeled as y; = E}/ 2xi. Here, ¥; is a deterministic
p X p symmetric positive definite matrix with uniformly bounded spectral norms, and the entries of x;
are independent and identically distributed (i.i.d.) with zero mean and unit variance. More generally, we
can potentially consider the model y; = T;xz;, where T; satisfies 3X; = T;T*. But for the sake of technical
conciseness, we work with the mentioned setting. Our objective is to sequentially monitor the stream
and detect whether the covariance structure ¥; changes at some unknown time instant. Formally, we
test the following hypothesis

J— o *
Hy:%;=%9 Vi>1 vs Hip:3k*st. {21'20’ }Slgk’
ZizEl#Eo, i > k*.
Here, k* denotes the change point location. Our goal is to detect the change as promptly after the change
point £* while controlling the false alarm rate under the null hypothesis H.

The problem of detecting structural changes in covariance matrices has been extensively investigated,
primarily in the offline setting where the complete data sequence is available for analysis. In the classical
fixed-dimensional regime, a multitude of methods have been developed based on likelihood ratios and
CUSUM; see, for example, Chen and Gupta [2004], Lavielle and Teyssiére [2006], Galeano and Penia
[2007], Aue et al. [2009], Xie and Siegmund [2013], Dette and Wied [2015], For a comprehensive overview
of these classical approaches, we refer readers to Csorgsd and Horvath [1997], Chen and Gupta [2000], Aue
and Horvath [2012] and the references therein. More recently, there has been a surge of literature ad-
dressing high-dimensional offline covariance change-point detection from various perspectives, including
projection based technique [Steland, 2020], binary segmentation algorithm [Wang et al., 2021; Li et al.,
2023], U-statistics based method [Liu et al., 2020; Cui et al., 2025], graph-based method [Chen and
Zhang, 2015; Chu and Chen, 2019], dimension reduction technique [Dette et al., 2022], self-normalization
principle [Bours and Steland, 2021; Wang et al., 2022], and spectral method [Ryan and Killick, 2023;
Doérnemann and Dette, 2024 preprint arXiv:2409.15588; Dérnemann and Paul, 2024].

In contrast, online monitoring for high-dimensional covariance structures is still relatively limited in
the literature. Unlike offline methods that utilize the full data set to estimate the change point, online
procedures must make decisions in real-time with limited historical data and no knowledge of the future.
This constraint requires statistics that are recursive, computationally efficient, and able to control false
alarm rates. Avanesov and Buzun [2018| and Avanesov [2019] investigated the problem of change point
detection for high-dimensional precision and covariance matrices within a multiple-testing framework.
Their procedure constructs a collection of local window-based statistics based on f,.-norm, with critical
values determined via high-dimensional Gaussian approximation and bootstrap techniques. Addressing a
specific structural change, Xie et al. [2020] focused on sequentially detecting deviations from an identity
matrix toward an unknown low-rank (spiked) covariance model. To this end, they proposed two online
detection procedures: a Largest-Eigenvalue Shewhart chart and a Subspace-CUSUM procedure. Li and
Li [2023] studied the online change point detection of high-dimensional covariance matrices utilizing a
window-based U-statistic coupled with a sequential stopping rule. A key advantage of their method is
that it admits explicit control of the Average Run Length (ARL) while accommodating non-Gaussian
data with spatial and temporal dependence. Most recently, Gao et al. [2025] proposed a framework



for the online detection of changes in the correlation structure of high-dimensional streaming data.
Their approach leverages f5- and {..-norm based statistics, employing a sign-flip permutation method
to determine adaptive detection thresholds.

In this work, we take a different perspective rooted in Random Matrix Theory. Specifically, we
construct a sequential monitoring procedure based on the linear spectral statistics of the Fisher matrix,
which offers a powerful tool for distinguishing the null and alternative hypotheses in high-dimensional
settings. Suppose that at the current time k, we have observed the sequence y1,...,yr. To detect
potential changes, we compare the covariance structures of two adjacent segments partitioned by an
index ki, where 1 < ky < k. We define the reference sample covariance matrix S; and the monitoring
sample covariance matrix Sy i as follows:

| b ) k
S1= T Zyz—yl, Sok = —— Z Yiy; -
Lo b1

We then construct the multivariate F-matriz (or Fisher matriz) defined as Fj, = Sy ng,k, and consider
its linear spectral statistic (LSS)

Tr f(Fy) = Zf(/\i(Fk)),

where Ai(Fg) > .-+ > Ap(Fj) denote the ordered eigenvalues of Fj, and f : R — R is a suitable
test function. The spectral properties of the F-matrix have been extensively investigated within the
framework of random matrix theory. The Limiting Spectral Distribution (LSD) was established in the
foundational works of Bai et al. [1988] and Bai et al. [1986], and subsequently extended by Silverstein
[1995] and Zhang et al. [2022]. Furthermore, the fluctuations of its LSS have been derived under various
settings; see, for instance, Zheng [2012] and Zheng et al. [2017]. Moreover, the asymptotic behavior of
the largest eigenvalue has attracted considerable attention. Relevant results include Han et al. [2016,
2018] and Wang and Yao [2017], with more recent advancements discussed in Jiang et al. [2021]; Xie
et al. [2021]; Hou et al. [2023]; Wang and Jiang [2025] and Jiang et al. [2026].

The core of our methodology relies on monitoring the incremental differences of the LSS. To this end,
we define the standardized increment

Zk(f) — Trf(Fk) _Trf(Fk—l) _/-Lk7
Ok

where py and oy represent the mean and standard deviation of the one-step difference Tr f(F)) —
Tr f(Fyx—1) under the null hypothesis Hy. The explicit forms of pj and o will be provided in Propo-
sition 2.1. Under Hy of no change point, the expectation of Ek (f) is asymptotically negligible. Once
a structural change occurs at some unknown time k*, the expectation of Ek( f) deviates systematically
from zero. To effectively accumulate the signal from such potentially subtle drifts, we further construct a
normalized CUSUM statistic T (n, %) (see definition in (2.6)) based on the sequence {L(f)}. Under Hy,
the process {T,(n,i)} converges in distribution to a Brownian motion type process. Such convergence
is based on the standardization in (1), which makes the increment behave as a normalized martingale
difference; thus, the CUSUM statistic behaves as a random walk. When a change point exists (Hy), the
mean shift in the LSS increments will cause Tj(n,4) to deviate significantly from zero, thus triggering
detection. Accordingly, we define the stopping rule

k* = inf{i: |T,(n,i)| > ca},

where the threshold ¢, is chosen to control the false alarm rate at a prescribed level .. The value of ¢,
is determined by the quantile of the limiting null distribution of the process {T},(n,%)}.

The rest of this paper is organized as follows. Section 2 presents our main theoretical results, including
the explicit expressions for the mean and variance of the one-step LSS difference under Hy, as well as the
weak convergence of the associated Brownian motion type process. Based on these results, we propose
our online change point detection procedure. In Section 3, we conduct extensive simulation studies
to evaluate the performance of our proposed method in various scenarios. In Section 4, we apply our
proposed method to the S&P 500 dataset to demonstrate its practical utility. To facilitate reproducibility,
the source code for the simulation studies and real data analysis is available online®. All technical proofs
are provided in Sections 5 — 8 and the Appendix.

1Code available at: https://github.com/jxqiu77/0nlineCovCPD.
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Before moving forward, let us introduce some notations that will be used throughout this paper. The
symbol X :=Y (or Y =: X) indicates that X is defined as Y. We use double brackets to denote index
sets, i.e., [n1,n2] := Z N [n1, na] for ny,ny € R. For brevity, we write [n] for [1,n] when n is a positive
integer. We use 1{E} or 1 to denote the indicator function of an event E. For any matrix A, we denote
its (4, )-th entry by A;;, its transpose by AT, its Hermitian transpose by A*, its trace by Tr(A), its j-th
largest eigenvalue by A;(A), its spectral norm by || Al|2. For two sequences of positive numbers {a, }7>;
and {b,}°2, we write a, < by, (or b, > a,) if a,,/b, — 0. We write a,, 2 b, when a,, > cb,, for some
absolute constant ¢ > 0, and a,, < b, when b, 2 a,. We write a,, < b, if ¢y < a,/b, < Cy for some
absolute constants ¢y, Cy > 0. For random variables {X,,}2%; and positive real numbers {a,}32,, we

write X,, = Op(ay,) if X,,/a, is bounded in probability, and X,, = op(a,) if X,,/an 20 Weuse X,, & X

and X, % X to denote convergence in probability and convergence in distribution, respectively.

2 Main Results
2.1 One-step LSS difference

In this section, we present our main theoretical results concerning the one-step LSS difference of the
Fisher matrix. These results form the foundation for our online change point detection procedure. To
facilitate the analysis, we first impose the following assumptions.

Assumption A (Data generating model). For any ¢ > 1, let y; = 23/21:1;, where {3,152, are deter-
ministic p X p positive-definite symmetric matriz with uniformly bounded spectral norms. The vectors

{i}2y are iid. with x; = (xi5)5_,, satisfying BEx1y =0, Ea3; =1, and E 11 < oo for some § > 0.

Assumption B (High-dimensional scaling). The sample sizes k1,k and the dimension p satisfy

k%—>cl €(0,1) and k—pk1 — ¢g € (0, +00),
as p,k, k1 — 0.

Let {y;}:;>1 be a sequence of p-dimensional random vectors satisfying Assumptions A and B, with
Y; = I, for all ¢ > 1 under Hy. We define the two sample covariance matrices as

S'*ii P S
VS gy 2l Saem i:;lyzyi-
The corresponding F-matrix is given by
F, = Sfng’k.
From [Bai et al., 1988, 1986], the LSD of F}, is the distribution with the density function given by

(I =c)/(b—z)(x—a)
fC1,62(x) - 27‘(’1‘(6137 + 62) , a<xz <D,

where )2 2
1-— 1
a = u b= u h:=+c1 + ca — crca.

(1—c1)?’ (1—c1)?’
The Stieltjes transform of the LSD is
Cl—co ezl —c1) +1—ca}+2z¢1 — co(l —c1)y/(2 = b)(2 —a)

m(z) = 2o 2zco(c2 + zcq) ’

where 2z is any complex number with positive imaginary part. The non-zero eigenvalues of S; 16, and
its companion matrix F, = ﬁX%SleQ are the same, where Xo = (2, 41,..., k) is the p X (k — k1)
data matrix formed by the second sample. The Stieltjes transform of Fy, is given by

1-— C2

m(z) = =2 + cam(2)




_ elzl-—a)+1l-c}+2za —cl—a)/(z-b(=—a
a 2z(ca + zc1) ' (2.1)

For any test function f, the linear spectral statistic (LSS) of F}, is defined as

P

Tr f(Fy) ==Y f(\i(F))-

i=1

Let Li(f) == Tr f(Fx) — Tr f(Fx—1) be the one-step difference of LSS. By using the Cauchy integral
formula, we have for analytic f,

1

C2mi

Lu(f) = 7{ F(2) {TrGa(z) — Tr G (2)} do, (2.2)

where G (2) == (F), — z)~! is the resolvent (or Green function) of Fy, and the contour I is taken in the
anticlockwise direction enclosing the support [a, b] of the LSD of Fj.
For simplicity, we denote ko := k — 1 — k1 in the following. The following proposition provides the

explicit expressions of the mean and variance of the one-step difference Ly (f) under the null hypothesis
Hy.

Proposition 2.1. Suppose that Assumptions A and B hold. Under Hy, for any analytic function f, the
mean and variance functions of Li(f) are given by

’

(1) =B = 5 f(F@m 102 )z

2mi Jp

m VZp;iS fgfl(z)(l + 2m)? dz
(2 T geo(D), )

2komi 2 m m

o) = Vartza() = 2B (L f pemas) 4 L f VO (1) oy

kaco

The proof of Proposition 2.1 is given in Section B.2. We refer to Section 3 for explicit expressions of
the mean and variance of Li(f) for some commonly used test functions. Based on Proposition 2.1, we
first define a random walk type process. For a fixed T' > 0,

where
(2.5)

and pg (f), ok (f) are defined in Proposition 2.1. This process is used in defining our monitoring statistics
in Section 2.2. The following theorem establish the weak convergence of the above process under the
null hypothesis.

Theorem 2.2 (Weak Convergence of W, ; under Hy). Suppose that Assumptions A and B hold. Under
the null hypothesis, {Wy 1,t € [0,T]} converges in distribution to a standard Brownian motion {W (t),t €
[0,T7}, i.e., with covariance kernel

Cov(W (t),W(s)) =t As.

The proof of Theorem 2.2 is given in Section 5.

While the result above characterizes the dynamic behavior of the LLS-based monitoring process, the
asymptotic theory of LSS was primarily developed for static hypothesis testing. In the offline setting,
the LSS of large-dimensional sample covariance matrices has served as a cornerstone for hypothesis
testing [Bai and Silverstein, 2004]. Based on this theory, an extensive literature has emerged, offering
rigorous procedures for testing covariance structures. These methodologies encompass one-sample tests
for identity or sphericity [Bai et al., 2009; Wang and Yao, 2013; Zheng et al., 2015; Li and Yao, 2016;



Liu et al., 2023; Qiu et al., 2023; Yin, 2024; Liu et al., 2025|, as well as two-sample tests assessing
the equality of covariance matrices [Zheng et al., 2017; Yang and Pan, 2017; Zhang et al., 2019; Zou
et al., 2021; Ding et al., 2024]. However, despite these results in static regimes, extending LSS-based
inference to the sequential monitoring domain presents distinct challenges. We remark here that a
stochastic process constructed from the sequential linear spectral statistics of the sequential sample
covariance matrices has been considered in Dérnemann and Dette [2024], for which the limiting process
is a non-standard Gaussian process. Here, instead, we construct the process as a random walk with the
normalized increments, so that the limiting process is the standard Brownian motion. A major advantage
of such construction is that the local envelope of the Brownian motion is well-understood, which will be
important for the construction of our testing statistics in the sequel.

2.2 Online change point detection procedure

In this section, we introduce our online change point detection procedure, which leverages the asymptotic
results of the one-step LSS difference established in Proposition 2.1. We assume an initial historical
dataset of size n = k1 + k3 is available. Specifically, the first k; observations are utilized to construct the
baseline covariance matrix S7, while the subsequent k5 observations form the initial covariance matrix
S2.n. The initial sample size kS is predetermined to ensure that Assumption B is satisfied at k = n.
Following this initialization, the procedure proceeds to sequentially monitor the incoming data stream
{Yntitiz1-

Motivated by the online CUSUM procedure proposed in Chu et al. [1996], we construct a monitoring
statistic at time n 4 ¢ (i > 1) based on the cumulative sum of the standardized one-step LSS differences
defined in (2.5):

Tp(nvi) = w(nvi”\:[l(nvi”v (26)

where w(n,i) is the weight function satisfying Assumption C below, and ¥(n,:) is a CUSUM-type
statistic defined as

n41

1 -~
\I/(n,i):ﬁ > Llf), n=ki+ks, i>1, (2.7)
k=n-+1

and Ly (f) is defined in (2.5). At each time point n +i (i > 1), we update T,(n,t) by including the new
sample y,4;. An alarm is triggered immediately if the monitoring statistic T),(n, ) exceeds the critical

threshold c,; otherwise, the monitoring process continues. Hence, the stopping time k* of the procedure
is defined by

E=inf{i > 1:Ty(n,i) > o} (2.8)

with the convention that inf(@) = co. The implementation details of the proposed method are summa-
rized in Algorithm 1.

In our online detection procedure, we aim to control the asymptotic false alarm rate at a nominal
level a € (0, 1) while ensuring that the detection power converges to one. Formally, this entails selecting
a critical value ¢, such that

PHO(%* <o0) = a, and Ppg, (75* <o0)—1,

where Py, and Py, denote the probability under the null and alternative hypothesis, respectively. To
achieve this goal, we need to impose the following regularity conditions on the weight function w(n, ):

Assumption C (Weight function). Let the weight function satisfy

(i) w(n,i) = p(i/n)1{i > £,} with £, /n — 0, where p : (0,00) — [0,00) is nonnegative and continuous
if restricted to (0,e,] NR, e, = sup{t > 0: p(t) > 0};

(i) limy_ot7p(t) < oo for some 0 <y < 1;
(143) limy_ o0 tp(t) < 00.

Condition C(i) mandates a burn-in period (determined by ¢,) prior to the start of monitoring. This
delay is designed to mitigate false alarms during the early stages, where the monitoring statistic is prone
to instability due to the limited sample size. Conditions C(ii) and C(iii) characterize the weight function’s



asymptotic behavior to balance sensitivity and robustness: the former restricts the growth rate at ¢t — 0
to mitigate excessive false alarms during the initial monitoring phase, while the latter prevents slow
decay at infinity to ensure effective long-term monitoring.

In this paper, we set the burn-in period as ¢,, = log(n). To evaluate the detection performance under
different weighting schemes, we employ the following two weight functions:

1
p1A(t) =1+ t)“/—lt—v7 0<y< 5 (2.9)

pa(t) = (1+ t)_l/Q{—2loga +log(1+ t)}_1/2.

(2.10)

Both the weight family p; , and the logarithmic weight p, are adopted from Chu et al. [1996] To visually
demonstrate the behavior of the standardized LSS difference process ¥(n, [nt]) = f ZZ@:H k(f)
and the corresponding detection boundaries implied by these weight functions, we present a simulation
example in Figure 1. Under Hy, the sample paths fluctuate around zero and remain largely within the
prescribed boundaries, while under H; the process exhibits a clear upward drift after the change point
and crosses the boundaries shortly thereafter.

Note that the stopping condition implies IPHO(k‘* < 0) = Py, (sup;>q Tp(n, i) > co). Consequently,
to determine the critical value c,, it is necessary to derive the limiting null distribution of the process
{T,(n,1),7 > 1}. The following theorem establishes this asymptotic result.

Theorem 2.3 (Limiting null distribution). Suppose that Assumptions A — C hold. Under the null
hypothesis, we have

N d
sup T, (n, i) % sup p(t)| W (1),
i>1 t>0

where W (-) is a standard Brownian motion.

The proof of Theorem 2.3 is given in Section 6.

Remark 2.4. As t — 0, W(t) = Op(y/tloglogt—!) by the law of iterated logarithm at time 0. By
Assumption C(ii), we have p(t)W(t) = op(1) for 0 <y < 1/2. As t — oo, the law of iterated logarithm
implies W(t) = Op(+v/tloglogt). From Assumption C(iii), we have p(t)W(t) = Op(y/t~!loglogt) =
op(1). Hence, the supremum in Theorem 2.3 can be taken ove (0,00). A major reason of adding a
weight function to the original process is the non-stationarity of Brownian motion. This non-stationarity
introduces bias in the location of the process maxima, even under the null hypothesis, making early
change points unlikely to be detected. Applying a weight function to amplify the small-¢ regime therefore
increases sensitivity for detecting early changes. Choosing suitable weight function is possible only if
we have a good understanding on the local envelope of the process, which motivated us to consider the
normalized one-step LSS difference, whose partial sum process converges to Brownian motion.

Based on the asymptotic results in Theorem 2.3, we determine the critical values ¢, for the weight
function p1 ,(t) via Monte Carlo simulations. The obtained values are summarized in Table 1.

Table 1: Critical value ¢, for the weighted function p; (t).

o\ 0.00 0.15 0.25 0.35 0.45

0.01 1.56949 1.81747 1.97581 2.29276 2.78885
0.05 1.33027 1.5131 1.68472 1.93445 2.30402
0.10 1.19574 1.35757 1.50264 1.73564 2.11163

To investigate the asymptotic power and detection delay of our online detection procedure, we impose
the following assumption on the change point k*:

Assumption D (Change point). The change point k* satisfies that k*/n = O(1).

In practice, if the proposed change point detection procedure indicates that no change has occurred,
while the current sample size i becomes large relative to n (i.e., i/n > 1), we may enlarge n adaptively
so that the ratio ¢/n remains of order O(1).

Recall that the detection time k* is determined by the stopping rule (2.8). The detection delay is
formally defined as d* := T — k*, which quantifies the latency between the true change points and the
detection time. The following theorem characterizes the asymptotic behavior of this delay for our online
procedure, along with the asymptotic power.
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(b) Under H;: 200 sample paths with a change point at t* = 2/3 (k* = 500). Data are
iid. N(0,I,) before and N(0,1.21,) after the change.

Figure 1: Sample paths (blue) of the standardized LSS difference process {\/Lﬁ ZZ:#T{ Li(f),t > 0}
with test function f(z) = z, together with boundary curves. The simulation setting is p = 100, n = 300
(ky = k§ = 150). The red dashed lines represent the boundary +p; *(t), while the green, orange, and
purple lines depict the boundaries +c, pl_ly (t) for v = 0.0,0.25,0.45 at significance level o = 0.05. Reject
Hy whenever the sample path crosses the selected boundaries.



Theorem 2.5 (Detection delay time). Suppose that Assumptions A — D hold. Let

1 1
7= lim = Tr(35'81), 7= lim =~ Tr(Z5'%)?,

1
B(Am) = g § G los{r = (1= r)zm(=)} dz,
T Jr
1
L(f) = —j{ f'(z){log(zm) + zm} dz.
21 r
We further assume that one of the following conditions holds:
(1) m #1 and Ii(f,m1) # 0;
(II) 11 =1, 7o # 1, and I1(f) # 0.

The detection delay d* satisfies one of the following:

1. (Early-change) If k* —n = o(n), then the detection delay d* satisfies d* < logn under condition
(1), and d* < n'/?>=% for some small 0 < § < 1/2 under condition (II).

2. (Late-change) If k* —n < n, then the detection delay d* satisfies d* < logn under condition (1),
and d* < \/n under condition (II).

Furthermore, it holds under Hy that

sup Tp(n, 1) By oo,
i>1

such that the online test based on the monitoring statistic T,(n,) has asymptotic power one.

The proof of Theorem 2.5 is given in Section 7.

Remark 2.6. We examine whether the contour integrals I;(f, 1) and I5(f) vanish or not in general. Let
Li(z) ==log{m — (1 —m)zm(z)} and Ls(2) = log(zm) + zm.

According to the Residue Theorem, these integrals are non-zero if the sum of the residues of the integrands
at all poles in the region exterior to I' is non-zero. We consider two kinds of test functions based on the
analytic structure of its derivative f’(z) in the domain exterior to I'":

e Case A: polynomial functions. Assume f(z) is a polynomial of degree k: f(z) = Z?:o cjz7, where
k is a finite integer. Its derivative is a polynomial of degree k — 1: f/(z) = 25:1 jejzi~t Since
1/(z) is entire, there are no finite poles in the exterior region. The integral is determined solely by

the residue at infinity. To compute this, we consider the Laurent expansion of L;(z) at infinity:

> Am A A A B
m=0

The integrand is the product:

) = Yo (Z ;;;)

m=0

According to the Residue Theorem, we have

k

Li(f,m1) = —Res(f'(2)L(z),00) = Y _ je;jA;.

Jj=1

The integral is non-zero provided that the linear combination

k
> deiAy #0.

j=1



Specifically, if f(z) = z, we need A; # 0. If f(2) = 2*, we need 24, # 0. Note that A; = (=mes

1C1

and Ay = 20 Tl){2+°2(1) )£} Both cases hold under the condition 71 # 1. Hence, f(z) =z

(1761

and z? are valid choice to detect the change point when 7 # 1.
Similarly, for the case 71 = 1, we have the Laurent expansion of Ly(z) at infinity:

B, Bi B By, —(k+1)
LQ(z):ZizBO‘i‘?‘F?‘F +7+O( )

The integral I5(f) is non-zero provided that

k
> jeiBj #0.

Jj=1

Note that By =0 and By = ﬁ Thus, f(z) is not a valid choice to detect the change point

2

when 7, = 1. However, f(z) = 2 is a valid choice since 2By # 0.

e Case B: function with singularities. Assume f(z) possesses singularities (e.g., logarithmic functions
like log(1 + z)). In this scenario, the derivative f’(z) may exhibit isolated poles z; in the region
exterior to I'. The integral is non-zero if the sum of residues at these poles is non-zero.

For both integrals, we consider the specific example f(z) = log(1+z). Using the Residue Theorem,
we have

Li(f,m1) = —log{m1 + (1 — m1)m(-1)}.

This integral is non-zero as long as m(—1) # 1. It follows from that m(—1) = fa a1 dF(N) < 1,
where F'(z) is the LSD of the companion matrix Fj. Hence, f(z) = log(1l + 2) is a valid choice to
detect the change point when 7 # 1.

Similarly, for the case 71 = 1, we have

Ir(f) = —{log{m(—1)} — m(-1) + 1}.

This integral is non-zero as long as m(—1) # 1, which is verified above. Hence, f(z) = log(1 + z)
is still a valid choice to detect the change point when 71 = 1.

3 Numerical Simulations

3.1 Simulation Setup

We conduct Monte Carlo experiments to examine the finite-sample performance of the proposed sequen-
tial detection procedure under both the null (Hy) and alternative (H;) hypotheses. All reported results
are based on M = 2000 independent replications for each configuration. The details of the simulation
setup are as follows.

Common Parameters. Throughout the simulations, the nominal significance level is set to a = 0.05.
The weighting functions are chosen as those defined in (2.9) and (2.10), where the parameter v in p1 (t)
takes values in {0.0,0.25,0.45}. The critical value ¢, for p; ~(t) with different o and +y is obtained through
Monte Carlo simulation of the limiting distribution in Theorem 2.3, as summarized in Table 1. We set
the data dimension to p = 100. The historical data sizes are k; = k5 = 150, such that the sequential
monitoring starts at time k1 + k5 + 1 = 301. The data are generated in the form y; = 2,16/29%, where x;,
and Yy satisfy Assumption A. For the estimation of the fourth moment v4 of underlying distributions,
we adopt the estimator proposed in Lopes et al. [2019], given by

n 2 n
Uy = Inax(3+ u, 1>,

n

where

2 2 _1 - T
Tn = Tr(S2) {Tr }, Sn—nj;yjy],
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Algorithm 1 Online covariance change point detection via one-step F-matrix LSS differences

Input: Streaming observations {y }x>1; historical sample sizes k; and kS; test function f; weight func-
tion p(-); significance level a.
Output: Detection time k* (or “no detection” if the monitoring is stopped externally).
Step 1: Critical threshold
1: Use Monte Carlo simulations to determine the critical value ¢, such that P, (supq p(t)|W (t)| >
Ca) = o, where W (t) is standard Brownian motion; see Theorem 2.3.
Step 2: Initialization
2: Set n < k1 + k5,1 0.
3: Compute initial sample covariance matrices and F-matrix:

k1

1 1 - _
Sl — k‘i Zyzsza SQ,n — ﬁ Z yiy;rv Fn — Sl 1SQ,n~
L M1

4: Set current time index k < n.

Step 3: Online Monitoring
while new observation yy4;1 arrives do
Update indices: i < i+ 1, k< k+ 1.

Step 3.1: one-step LSS difference

Update the second sample covariance matrices S i, (using recursive update or full sum).
Compute current F-matrix: Fj < Sl_ISQ,k.

10: Compute the one-step LSS difference

Lk<f) — TI‘f(Fk) — TI‘f(Fk,1>.

11: Step3.2: standardization
12: Compute the theoretical mean py(f) and variance o7 (f) of Lg(f) using (2.3) and (2.4).

13: Standardize:
Ly (f) — pe(f)
on(f)

Ek<—

14: Step 3.3: monitoring statistic
15: Update CUSUM-type statistic ((2.6) and (2.7)):

n—+1
. 1 ~ . . .
U(n,i) + — Z Ly, Tp(n,i) < p(i/n) |¥(n,i)|.
n
t=n-+1
16: if T),(n,i) > ¢, then
17: return Detection time k* < k.

18: end if
19: end while
20: return “no detection”.

11



1 n 1 n 2 p 1 n 2
Gt (Il Y i) @ =>o(5 )
Jj=1 1

j'= i=1 N j=1

Empirical Size under Hy. To evaluate the empirical size, we simulate data under the null hypothesis
Hy, where no structural change occurs. Without loss of generality, we set the true covariance matrix as
Yy = I, for all k. The standardized observations xj, are generated from three distinct distributions with
varying fourth moments vy, allowing us to evaluate robustness to tail behavior:

e Gaussian distribution N(0,1), with v4 = 3;
e Uniform distribution Unif(—\/g, \/3), with vy = 1.8;
e Student’s ¢ distribution ¢(10)/4/1.25, with vy = 4.

Additionally, we examine four test functions:

Linear: f(z) = x;

Logarithmic: f(z) = log(1 + z);

Mixed: f(z) =z + log(1l + x);

Square: f(z) = z2.

Empirical Power under H;. To assess detection power and detection delay time, we simulate data
under H; with a single change point occurring at k*. To examine the impact of the change point location,
we vary k* € {350,450,500}. The underlying distributions and test functions remain consistent with
the Hy setting, excluding the square function. The covariance structure is defined as ¥, = I, for the
pre-change samples (k < k*), and switches to ¥ = ¥ # I, for the post-change samples (k > k*).
Specifically, we investigate three distinct structural changes:

e Homogeneous variance inflation: ¥ = o2I. This scenario simulates a uniform variance change
across all dimensions. We vary o2 € {1.1,1.2,1.3,1.4,1.5};

o Correlation structure change: The covariance matrix follows a Toeplitz structure with inflated
variance, where the diagonal entries are ¥;; = 2 and off-diagonal entries are X, = pli =kl for
j # k. This scenario introduces correlations among variables. We vary p € {0.1,0.3,0.5,0.7,0.9};

e Heterogeneous variance inflation: ¥ = 1.51+§ 25’:1 e;e], where e; is the i-th standard basis vector
in RP. This scenario combines a global variance inflation (from 1 to 1.5) with a localized low-rank
perturbation, and is designed to test the capability to detect localized large shifts masked by a
global variance increase. We vary ¢ € {2,2.5,3,3.5,4}.

Explicit forms of px(f) and oi(f) for selected f. Now, we present the explicit forms of the mean
wi(f) and variance o3 (f) of Li(f) under Hy for several commonly used test functions f. These explicit
expressions facilitate efficient computation of the monitoring statistic T, (n,¢) in practical applications.
We first define several auxiliary quantities that appear in the expressions:

co 02(1+02 *0102)
My = M, =
LR 2 (I—cp)3
M — CQ(C%C% — 20103 —3cico +c1 + c% + 3co + 1)
° 1-a) ’
M, = 672( —c3c3 4+ 3t + 6¢ics — Acicy + ¢ — 3eich
(]. —61)7

— 120103 — 2c160 + 3¢ + cg + 60% + 6¢c0 + 1),
C3 = My — 3M{Ma + 2My M3 + M3 — M.
For the selected test functions, the explicit forms of the mean py(f) of L (f) under Hy are as follows:

-3 1
vy M12+k7M2a
2

pr(z) =0, p(x?) = = M7 +

12



pur(log(1 + ) = pp(z + log(1 + z))

Uy —

g 00 O (5 ey * )

The variance o2 (f) of Ly(f) under Hy are given by:

={m(-1) =1 -Inm(-1)} —

2 V4—3 2 2
or(x) = M: — —
k( kQCQ 1 kQ

M2_M 20,2
(M=), of) = D B

2C2

Vyqg — 3
kQCg

or(z +log(l+2)) = {M1+1—m(—1)}2+22<M2—(M1_1)2+2_ 2 +m’(—1)).

k m(-1) = m(-1)?
The explicit expressions presented above follow from Proposition 2.1 and the residue theorem. The
derivation details are provided in Section B.1.

Remark 3.1. For general test functions f, one may convert the corresponding contour integrals in Propo-
sition 2.1 into equivalent real integrals, allowing for accurate numerical evaluation of the mean and vari-
ance. For any analytic test function f, the mean and variance of Ly (f) under Hy can be computed via
the following integrals:

1 , A'B—AB ve—3 [° )
,uk(f) = 7;/@ <I£Bf + Mf) dIC — o /a (]. +.’£A).’£Bf diB

1 / " 2B (AB-ABYf 4 BfY (1
kor J, 2 A2 1 B? TTeNL)

b 2 b 2
2, Va—3 2 Bf 1
Uk(f) = k‘2027r2 (/a zf’BdI) +]{?277T/a 7142—}-32 dr +o 2; s

— . z(h®4c1)Fea(l—c _ _ c2(1=c1)y/(z—=b)(a—x)
where A = A(z) = — =l and B = B(r) = 2V It
The derivation of these integral forms is provided in Section B.3.

3.2 Simulation Results and Discussion

With M = 2000 replications of the dataset simulated under the null/alternative hypothesis, we calculate
the empirical size/power and expected detection delay (EDD) as follows:

M Tx M Tx *
/=1 ﬂ{kl < OO} EDD = ZZ:l(kZ —k )+
M ’ Sty ki > k)

Empirical Size/Power =

where E} is the stopping time (see (2.8)) in the ¢-th replication. The former measures the probability
of successful detection within the monitoring horizon, while the latter quantifies the average number of
observations required after the true change point to trigger an alarm.

Table 2 reports the empirical sizes under different combinations of data distributions, weight functions,
and test functions at the nominal level &« = 0.05. The results indicate that the choice of weight and
test function impacts the empirical size control. Specifically, the weight functions p; , with larger values
of v tend to produce slightly inflated sizes, particularly when paired with the square test function. In
contrast, the weight po leads to conservative behavior with empirical sizes frequently below the nominal
level. Regarding test functions, the log, linear and mix generally provide more reliable size control
than the square function, which leads to over-rejection in many settings. Overall, the combination of
the p1 o weight with the log, linear, or mix test functions consistently achieves empirical sizes close to
the nominal level across all distributions. The empirical size behavior reported in Table 2 can be partly
explained by the boundary geometry illustrated in Figure 1. For the p; . family, increasing v causes
the boundary capi}/ to narrow around the monitoring process trajectories in the initial phase, making
false alarms more probable and leading to slight size inflation. Conversely, the logarithmic weight po

13



Test Functions

Distribution Weight 1linear log mix square
P10 0.0840  0.0630 0.0620 0.1315
Caussian £1,0.25 0.0855  0.0645 0.0680 0.1415
£1,0.45 0.0825 0.0725 0.0830 0.1660
P2 0.0135 0.0100 0.0090 0.0315
P10 0.0535 0.0450 0.0570 0.1235
Uniform £1,0.25 0.0600  0.0500 0.0670 0.1290
£1,0.45 0.0710  0.0570 0.0780  0.1410
P2 0.0055  0.0045 0.0070 0.0370
P10 0.0755 0.0890 0.0715 0.1585

P1,0.25 0.0835 0.0885 0.0805 0.1645
£1,0.45 0.1040 0.0810 0.0905 0.1715
P2 0.0100 0.0190 0.0110  0.0455

Student’s ¢(10)

Table 2: Empirical size under different test function, weighted functions and data distributions. The
nominal level is a = 0.05.

generates a significantly wider boundary that stays well clear of the trajectories, which decreases spurious
detections and yields conservative empirical sizes.

Tables 3 — 5 report the empirical power and EDD for weight function p; 4 with v = 0. To analyze the
impact of weight functions, test functions, locations of change point, and data distributions on detection
performance, we present Figures 2 — 5. These results demonstrate the comprehensive effectiveness and
robustness of our proposed detection procedure. We can draw several key conclusions:

e (General power and detection delay.) For weak to strong signal strengths, the proposed method
exhibits exceptional sensitivity. As illustrated in Tables 3 — 5 and Figures 2 — 3, it consistently
achieves empirical power near unity (1.0 or ~ 1.0) with rapidly decreasing EDD across nearly all
scenarios. Theoretical insights from Theorem 2.5 reveal that the detection delay primarily rely on
the quantity 71. In the scenario of correlation structure changes, 71 remains invariant (constant at
2) with respect to p, resulting in a relatively stable EDD across varying correlation magnitudes.
In contrast, for homogeneous/heterogeneous variance inflation scenarios, 71 changes with signal
strength, leading to a substantial reduction in EDD as the signal magnitude increases.

e (Superiority of the log test function.) As evidenced Figure 3, the log test function consistently
achieves the lowest EDD across all change scenarios. Notably, in the homogeneous variance inflation
scenario (see Table 3), it exhibits superior sensitivity, yielding higher empirical power than both
the linear and mixed functions in the weak signal regime where 02 = 1.1.

e (Impact of change point location.) Figure 4 illustrates the impact of the change point location on
detection performance. We observe consistent trends across diverse weight functions and change
scenarios: earlier changes lead to shorter detection delays. Comparing the weighting schemes, the
p1,y family generally yields shorter detection delays than the p, weight. Within the p; ,, class, the
choice of 7y involves a trade-off: larger v values enhance sensitivity to early changes, whereas smaller
~ values prove more effective for changes occurring later in the sequence. Among the candidates
considered, the p; ¢ weight is the most robust option and shows relatively little dependence on the
change point location.

e (Robustness to data distribution.) A primary strength of our method is its remarkable robustness
to the underlying data generating process. As evidenced in Figure 5, the detection performance
remains virtually invariant across Gaussian, Uniform, and Student’s ¢ distributions. This strongly
suggests that the efficacy of our method are insensitive to the underlying data distribution. This
property constitutes a significant practical advantage, particularly in applications involving high-
dimensional data that may exhibit heavy tails or deviate from normality.

In summary, based on the comprehensive numerical simulations, we recommend the log test function
paired with the p; , weight function with v = 0 as the default configuration for practical applications. The
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Change Magnitude (o2)

k* 1.1 1.2 1.3 1.4 1.5
Gaussian
350 114.84 (0.987) 42.10 (1.0) 25.53 (1.0) 18.37 (1.0) 14.50 (1.0)
linear 450 133.16 (0.9925) 52.22 (1.0) 32.08 (1.0) 23.69 (1.0) 18.73 (1.0)
550 157.06 (0.9745) 63.04 (1.0) 39.44 (1.0) 28.03 (1.0) 22.36 (1.0)
350 53.96 (1.0) 24.33 (1.0) 16.10 (1 0) 12.10 (1.0) 9.87 (1.0)
log 450 63.87 (1.0) 29.15 (1.0) 18.83 (1.0) 13.97 (1.0) 11.45 (1.0)
550  75.65 (1.0) 33.84 (1.0) 22.18 (1.0) 16.60 (1.0) 13.27 (1.0)
350 98.90 (0.9985) 37.22 (1.0) 23.32 (1.0) 17.13 (1.0) 13.74 (1.0)
mix 450 118.16 (0.997) 47.32 (1.0) 29.61 (1.0) 21.27 (1.0) 16.93 (1.0)
550 140.61 (0.993) 56.00 (1.0) 35.39 (1 0) 26.19 (1.0) 20.52 (1.0)
Uniform
350 94.60 (0.995) 36.52 (1.0) 22.88 (1.0) 16.84 (1.0) 13.20 (1.0)
linear 450 116.13 (0.9975) 45.39 (1.0) 28.79 (1.0) 21.16 (1.0) 16.74 (1.0)
550 138.91 (0.9915) 55.67 (1.0) 34.93 (1.0) 25.63 (1.0) 19.95 (1.0)
350 40.25 (1.0) 19.04 (1.0) 12.45 (1 O) 9.53 (1.0) 7.76 (1.0)
log 450 48.18 (1.0) 22.34 (1.0) 14.78 (1.0) 11.02 (1.0) 9.07 (1.0)
550 56.20 (1.0) 26.21 (1.0) 16.98 (1.0) 12.88 (1.0) 10.42 (1.0)
350 82.20 (0.999) 32.60 (1.0) 20.57 (1.0) 15.04 (1.0) 12.04 (1.0)
mix 450 100.18 (1.0) 40.77 (1.0) 26.03 (1.0) 18.95 (1.0) 14.92 (1.0)
550 116.64 (0.9985) 49.29 (1.0) 30.74 (1 0) 22.70 (1.0) 18.23 (1.0)
Student’s t(10)
350 127.87 (0.9785) 45.01 (1.0) 27.91 (1.0) 19.90 (1.0) 15.84 (1.0)
linear 450 151.23 (0.9805) 57.80 (1.0) 34.65 (1.0) 25.93 (1.0) 20.45 (1.0)
550 172.12 (0.958) 68.46 (1.0) 42.98 (1.0) 30.66 (1.0) 24.19 (1.0)
350 62.49 (1.0) 28.16 (1 0) 18.42 (1 O) 13.83 (1.0) 11.24 (1 O)
log 450 74.65 (1.0) 33.34 (1.0) 21.06 (1.0) 15.78 (1.0) 13.04 (1.0)
550 88.25 (1.0) 39.10 (1.0) 24.90 (1.0) 18.51 (1.0) 15.07 (1.0)
350 112.59 (0.99) 41.41 (1.0) 25.37 (1.0) 18.64 (1.0) 14.71 (1.0)
mix 450 136.76 (0.992) 50.99 (1.0) 31.97 (1.0) 23.33 (1.0) 18.25 (1.0)
550 156.53 (0.9795) 62.42 (1.0) 38.80 (1 0) 28.44 (1.0) 22.79 (1 0)

Table 3: EDD and Power (in parentheses) for homogeneous variance inflation using weight p; , (v = 0).

log function demonstrates superior sensitivity across all scenarios, particularly in the challenging weak
signal regime. Regarding the weighting scheme, p; o offers the most favorable trade-off, ensuring rapid
detection while maintaining stability invariant to the unknown change point location. This combination
provides a robust and powerful solution that performs reliably across diverse data distributions.

3.3 Comparison with Existing Methods

We conduct simulation studies to benchmark our proposed method against two alternative procedures:
Avanesov [2019] (referred to as A19) and Li and Li [2023] (referred to as LL23). The simulation setup fix
the dimension at p = 50 and the true change point at k* = 200. The observations are generated from
a standard normal distribution, with the covariance structure shifting from ¥y = I,, to ¥; according to
the three scenarios described in Section 3.1.

For our proposed method, we use the weight function p; ¢ and the test function f(x) = log(l + z).
The historical data sizes are set to k; = 60 and k5 = 100, with a nominal significance level of o = 0.05.
For the A19 method, we specific a window size of 20 and a significance level of a = 0.05. The detection
threshold is determined via the bootstrap procedure described in Section 2.2 of Avanesov [2019], using
500 bootstrap replications. Regarding the LL23 method, we set the window size parameter to 100. To
ensure a fair comparison at the same false alarm rate, we calibrate the average run length (ARL) of LL23
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Change Magnitude (p)

k* 0.1 0.3 0.5 0.7 0.9
Gaussian
350 7.33 (1.0) 7.31 (1.0) 7.33 (1.0) 7.42 (1.0) 7.36 (1.0)
linear 450 9.05 (1.0) 9.20 (1.0) 9.24 (1.0) 9.17 (1.0) 9.27 (1.0)
550 11.15 (1.0) 11.13 (1.0) 10.93 (1.0) 11.07 (1.0) 11.26 (1.0)
350 5.37 (1.0) 5.36 (1.0) 5.31 (1.0) 5.42 (1.0) 5.57 (1.0)
log 450 6.03 (1.0) 6.06 (1.0) 6.09 (1.0) 6.04 (1.0) 6.30 (1.0)
550 6.99 (1.0) 6.99 (1.0) 6.93 (1.0) 7.13 (1.0) 7.19 (1.0)
350 6.85 (1.0) 6.90 (1.0) 6.84 (1.0) 6.93 (1.0) 7.09 (1.0)
mix 450 8.66 (1.0) 8.52 (1.0) 8.51 (1.0) 8.56 (1.0) 8.67 (1.0)
550 10.26 (1.0) 10.43 (1.0) 10.20 (1.0) 10.28 (1.0) 10.31 (1.0)
Uniform
350 6.67 (1.0) 6.55 (1.0) 6.67 (1.0) 6.65 (1.0) 6.70 (1.0)
linear 450 8.43 (1.0) 8.28 (1.0) 8.37 (1.0) 8.44 (1.0) 8.45 (1.0)
550 10.08 (1.0) 10.03 (1.0) 10.08 (1.0) 10.21 (1.0) 10.19 (1.0)
350 4.25 (1.0) 4.28 (1.0) 4.30 (1.0) 4.32 (1.0) 4.50 (1.0)
log 450 4.83 (1.0) 4.81 (1.0) 4.76 (1.0) 4.83 (1.0) 5.00 (1.0)
550 5.58 (1.0) 5.60 (1.0) 5.55 (1.0) 5.62 (1.0) 5.76 (1.0)
350 6.03 (1.0) 6.17 (1.0) 6.08 (1.0) 6.11 (1.0) 6.18 (1.0)
mix 450 7.59 (1.0) 7.66 (1.0) 7.57 (1.0) 7.64 (1.0) 7.73 (1.0)
550 9.11 (1.0) 8.92 (1.0) 9.16 (1.0) 9.22 (1.0) 9.38 (1.0)
Student’s ¢(10)
350 7.86 (1.0) 7.95 (1.0) 7.89 (1.0) 7.92 (1.0) 7.90 (1.0)
linear 450 9.89 (1.0) 10.01 (1.0) 9.88 (1.0) 9.94 (1.0) 10.02 (1.0)
550 11.96 (1.0) 11.76 (1.0) 11.84 (1.0) 12.14 (1.0) 12.12 (1.0)
350 6.05 (1.0) 6.05 (1.0) 6.00 (1.0) 6.13 (1.0) 6.35 (1.0)
log 450 6.72 (1.0) 6.74 (1.0) 6.83 (1.0) 6.97 (1.0) 7.08 (1.0)
550 7.87 (1.0) 7.70 (1.0) 7.87 (1.0) 7.99 (1.0) 8.25 (1.0)
350 7.46 (1.0) 7.39 (1.0) 7.45 (1.0) 7.53 (1.0) 7.51 (1.0)
mix 450  9.25 (1.0) 9.21 (1.0) 9.29 (1.0) 9.17 (1.0) 9.38 (1.0)
550 11.04 (1.0) 11.22 (1.0) 11.13 (1.0) 11.07 (1.0) 11.38 (1.0)

Table 4: EDD and Power (in parentheses) for correlation structure change using weight p1 . (v = 0).

to 18492. This ARL value corresponds to a threshold of a = 3.95 [Li and Li, 2023, see Section 4.4] in
LL23’s stopping rule and their Theorem 1.

All results, summarized in Table 6, are based on 500 independent Monte Carlo replications for each
configuration. Our method outperforms the competitors in both accuracy and speed, maintaining high
empirical power (> 0.99) across all change scenarios, even in the weakest signal scenarios. Conversely,
LL23 suffers from a significant loss of power under small variance inflation (e.g., Power is only 0.332 at
0? = 1.1), although its performance improves as the signal strength increases. A19 also displays reduced
power in this setting (0.794). Regarding detection efficiency, our approach achieves shorter detection
delays compared to both benchmark procedures. This advantage is particularly pronounced in weak
signal settings; for example, our method reduces the detection delay by approximately 35% to 80%
compared to competitors across the smallest change magnitudes (62 = 1.1, p = 0.1, and § = 2), verifying
its superior sensitivity to minor structural changes.

4 A Real Data Example

In this section, we demonstrate the practical applicability of the proposed online covariance change point
detection method through an analysis of the S&P 500 stock data. Specifically, the covariance structure
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Change Magnitude (J)

k* 2 2.5 3 3.5 4
Gaussian
350 14.01 (1.0) 13.34 (1.0) 12.74 (1.0) 12.17 (1.0) 11.67 (1.0)
linear 450 17.82(1.0) 16.74 (1.0) 16.20 (1.0) 15.25 (1.0) 14.62 (1.0)
550 21.24 (1.0) 20.25 (1.0) 19.70 (1.0) 18.86 (1.0) 17.76 (1.0)
350 9.53 (1.0) 9.05 (1.0) 8.59 (1.0) 8.33 (1.0) 8.06 (1.0)
log 450 10.79 (1.0) 10.19 (1.0) 10.06 (1.0) 9.68 (1.0) 9.26 (1.0)
550 12.58 (1.0) 12.07 (1.0) 11.65 (1.0) 11.32 (1.0) 10.66 (1.0)
350 13.01 (1.0) 12.30 (1.0) 11.72 (1.0) 11.42 (1.0) 10.95 (1.0)
mix 450 16.08 (1.0) 15.33 (1.0) 14.77 (1.0) 14.47 (1.0) 13.63 (1.0)
550 19.44 (1.0) 18.48 (1.0) 17.94 (1.0) 17.07 (1.0) 16.47 (1.0)
Uniform
350 12.49 (1.0) 11.90 (1.0) 11.43 (1.0) 10.96 (1.0) 10.50 (1.0)
linear 450 15.77 (1.0) 14.98 (1.0) 14.39 (1.0) 13.84 (1.0) 13.27 (1.0)
550 19.44 (1.0) 18.20 (1.0) 17.85 (1.0) 16.71 (1.0) 16.13 (1.0)
350 7.42 (1.0) 7.14 (1.0) 6.87 (1.0) 6.61 (1.0) 6.29 (1.0)
log 450 8.49 (1.0) 8.19 (1.0) 7.94 (1.0) 7.66 (1.0) 7.38 (1.0)
550 10.03 (1.0) 9.50 (1.0) 9.12 (1.0) 8.70 (1.0) 8.32 (1.0)
350 11.41 (1.0) 10.92 (1.0) 10.53 (1.0) 10.04 (1.0) 9.49 (1.0)
mix 450 14.41 (1.0) 13.69 (1.0) 12.97 (1.0) 12.53 (1.0) 12.03 (1.0)
550 17.28 (1.0) 16.59 (1.0) 15.64 (1.0) 14.98 (1.0) 14.56 (1.0)
Student’s ¢(10)
350 15.13 (1.0) 14.31 (1.0) 13.57 (1.0) 13.16 (1.0) 12.57 (1.0)
linear 450 19.01 (1.0) 18.24 (1.0) 17.22 (1.0) 16.62 (1.0) 15.96 (1.0)
550 23.00 (1.0) 22.21 (1.0) 20.94 (1.0) 20.25 (1.0) 19.31 (1.0)
350 10.71 (1.0) 10.27 (1.0) 9.96 (1.0) 941 (1.0) 9.14 (1.0)
log 450 12.03 (1.0) 11.65 (1.0) 11.26 (1.0) 10.96 (1.0) 10.43 (1.0)
550 14.29 (1.0) 14.12 (1.0) 13.10 (1.0) 12.55 (1.0) 12.07 (1.0)
350 13.90 (1.0) 13.33 (1.0) 12.83 (1.0) 12.32 (1.0) 11.77 (1.0)
mix 450 17.66 (1.0) 16.98 (1.0) 16.06 (1.0) 15.26 (1.0) 14.78 (1.0)
550 21.46 (1.0) 20.36 (1.0) 18.96 (1.0) 18.38 (1.0) 18.03 (1.0)

Table 5: EDD and Power (in parentheses) for heterogeneous variance inflation using weight p1 (v = 0).

characterizes the dynamic comovement and risk integration among assets; detecting its abrupt changes
is crucial for identifying market regime shifts and adjusting risk management strategies accordingly. The
dataset consists of historical daily adjusted closing prices for the constituents of the S&P 500 index,
obtained from Yahoo Finance?. We utilized adjusted closing prices to account for corporate actions
such as dividends and stock splits. To ensure data quality, we excluded stocks with a missing data
rate exceeding 5% and imputed minor gaps in the price series using the forward-filling method. After
preprocessing, we obtain daily adjusted closing prices for 496 stocks spanning 756 trading days. Daily
log-returns are computed as yr = log(Py/Px—1), where Py denotes the adjusted closing price on day k.
To mitigate the impact of extreme outliers or data errors, we applied a Winsorization technique to the
computed log-returns, clamping values exceeding 5 standard deviations from the mean. To capture the
most significant market fluctuations, we select a subset of the top 30 stocks with the highest volatility
(defined as the standard deviation of daily log-returns) from the pool of 497 stocks.

We apply the proposed online monitoring procedure (Algorithm 1) to the log-return series, utilizing
the log(1 4+ x) test function and the p; ¢ weight function. The historical window sizes are set to k1 =
kS = 40, and the monitoring phase commences at k = 81 (corresponding to December 26, 2019). The
nominal significance level is set to @ = 0.05. The procedure detects a change point on February 10, 2020.
This detection serves as a early warning signal preceding the major COVID-19 market crash. It captures

2https://finance.yahoo.com/
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Homogeneous Variance Inflation (Change Magnitude o)

Method 1.1 1.2 1.3 1.4 L5
Our 82.03 (0.992)  30.79 (0.992)  18.29 (0.992)  13.65 (0.998)  11.01 (0.998)
A19 126.65 (0.794)  59.25 (0.798)  36.45 (0.822)  27.00 (0.838)  22.16 (0.830)

LL23 402.33 (0.332) 343.44 (0.784) 222.37 (0.956) 126.45 (0.988) 78.70 (0.996)
Correlation Structure Change (Change Magnitude p)

Method 0.1 0.3 0.5 0.7 0.9
Our 5.75 (0.998) 5.85 (0.992) 5.78 (0.992) 5.89 (0.998) 6.23 (0.998)
Al9 10.72 (0.792)  10.65 (0.792)  10.43 (0.818) 9.81 (0.834) 9.23 (0.842)
LL23 17.68 (0.990)  16.19 (0.988)  13.54 (0.990) 9.79 (0.988) 6.35 (0.996)
Heterogeneous Variance Inflation (Change Magnitude 0)
Method 2 2.5 3 3.5 4
Our 9.95 (0.998) 9.43 (0.992) 8.47 (0.992) 8.00 (0.998) 7.51 (0.998)
Al9 18.38 (0.792)  15.10 (0.794)  11.97 (0.828) 9.99 (0.836) 8.42 (0.848)
LL23 57.93 (0.990)  38.11 (0.988)  25.80 (0.990)  20.84 (0.988) 16.90 (0.996)

Table 6: Comparison of EDD and Power (in parentheses) with existing methods (A19: Avanesov [2019],
LL23: Li and Li [2023]).

the initial structural change in the covariance matrix as investors began pricing in the systemic risk of
the coronavirus outbreak, notably weeks before the widespread panic selling occurred in late February.
Figure 6 compares the sample covariance matrices before and after this detected change. It is evident
that the covariance structure undergoes a drastic shift, with the post-change period characterized by
universally larger entries corresponding to the onset of widespread market stress.

(2019-Sep-01 ~ 2020-Feb-09) (2020-Feb-10 ~ 2020-Jul-20)
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Figure 6: Heatmaps of the sample covariance matrices for the top 30 S&P 500 stocks. The left panel
represents the covariance structure before the detected change point (k* = February 10, 2020), while
the right panel corresponds to the post-change period. The increased color intensity in the right panel
illustrates the surge in volatility and correlation triggered by the onset of the COVID-19 market crash.

5 Proof of Theorem 2.2

To prove the weak convergence of the process {W,, ,,t € [0,T]}, we only need to show to the finite
dimensional distribution convergence and the tightness of {W,, ;,t € [0,T]} (see e.g. Billingsley [1968]).
Therefore, Theorem 2.2 follows immediately from the following two lemmas.

Lemma 5.1 (Finite-dimensional distribution). Suppose that Assumptions A and B hold. Under the
null hypothesis, for any fized r € N and t1,te,--- ,t, € [0,T], the random vector (W 1y,..., Wn.1.)
converges in distribution to a r-dimensional Gaussian distribution with mean zero and covariance matriz
Y= (O—ij)lgi,jgry where 045 = ti A tj.
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Lemma 5.2 (Tightness). The sequence {W, ., t € [0,T]} is asymptotically tight in the space £°([0,T7).

The proof of Lemma 5.1 and Lemma 5.2 are given in Section 5.1 and Section 5.2 respectively.

5.1 Proof of Lemma 5.1
Recall that

n+|nt|

1 ~
Wit == > Li(f), 0<t<T.

k=n+1

By the Cramér-Wold device, it suffices to show that, for any fixed a1, as € R and t1,t5 € [0, 7],
Wi, + asWo i, 5 N(0,725),

where 775 = aity + a3ts + 2a1a2(t1 A tz), and the extension to more points is straightforward. WLOG,
we assume that T > ¢1 >t > 0. Note that
n+|nty |
A Waa, +a2Wos, = Y bi(Li — ),
k=n-+1

where

Vnoy
\/%;k, n+ |nta] +1 <k <n+|nt].
Let Fj, be the o-algebra generated by 41, ..., Zp4k. Denote By := E(:|Fj). From the definition of Ly,

we have

b {a1+“2 n+1<k<n+ |nts],
k:

Li= = 3= § FD(1 - E)Vi(2)dz + O(1/p),
where
x] A (2)zy,
ko

forms a martingale difference sequence, and Ag(z) is defined as

Yk(z) = (]Ek _Ek—l)

1

Ap(2) = a(2)G?STH + /(2)GSTY,  alz) = T ,%2 @S

The detailed calculation about the mean structure L can be found in Section B.4. Hence, we have

n+|ntq |

2;? 7§ FOSmi (s, Smunn(®) = Y bYil2).

k=n-+1

1
a1Wn7t1 + Clg‘/Vn,t2 =

By functional CLT and Lemma B.1, it suffices to show that {Sy, +, +,(2)} converges weakly to a Gaussian
process S(z) with covariance function

Cov(S(z1),S(z2) = > B

n+|nty ] { vy —3
k=n-+1

0y (2111,) D (22 — %Gzl% (1/7"1—1/7”2> } (5.1)

kQCQ Z1 — 29

Using this formula, we conclude that a1 W, +, + a2W, +, converges in distribution to a centered normal
distribution with variance

n+|ntz (al + a2)2 n+|ntq | a2
Var(aa Wi, + azWn.1,) = Z o Z El =i
k=n+1 k=n+|ntz|+1

Now, prove the weak convergence of {S, 1, +,(2)}. First, we derive the finite-dimensional distribution
of Sp.t, t,(#). From the martingale CLT it suffices to verify that

n+|ntq ]

> E{Yi(a)Vi(22) | Feoa} = (5.1),
k=n-+1
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n+|ntq |

> E{YZ()(pvi(o)ser f = 0, Ve > 0.
k=n-+1

The first condition can be verified by using Lemmas B.1 and B.2. We consider the second condition. For
any small § > 0, using Lemma B.26 in Bai and Silverstein [2010], we have the following bound

n+|ntq ] 1 n+[nty | s
2+6/2
Z E{bin(z)Il“kak(z)pg}} < m Z kar / E|Yk|2+6/2
k=n+1 k=n+1
maxy, bi+5/2 Lt oy 146/4 y145/4
S e, {E{m Tr(Axk(2)Ak(2)) } + s s ETr{Ay(2)Ar(2) } ]
k3 € k=n-+1
1 n+|nty |
146/4 _ —5/4
S 724072 Z p =O(p )-
k=n+1

where vy := Ez{;, and in the last step we used the fact that maxy by = O(1) and Lemma B.2.
Then, we show the tightness (in z) of the process {Sm, 1,1, (2)}. It is sufficient to verify the moment
condition (see Billingsley [1968] (12.51) for instance), i.e.,

E | Sty t2(21) = Sty 10 (22) ]2
sup o
z1,22€l’ Z1 22|

< 00.

Using the definition of Sy, i, 1, (%), for any 21,22 € ', we have

n+|ntq |

E|Sm.tr.t2(21) = Smotrta(22)> = Y RE[Yi(z1) — Ya(z2)[*.
k=n-+1

For any k, Yi(2) is analytic in z. Thus, we have

Yk(Zl) — Yk(ZQ) = (21 — ZQ)A Yk/ (ZQ + t(Zl — 22)) dt,

then

E|Yi(21) — Yi(z2)[? < |21 — 22 supE [Y{(2)].
zel

Plugging into the required moment condition, we have

E|S,, — Sm ’
- |[Sm.t1,t2(21) nt(2)] (Z bi) supsup E [V (2)]*.
k

21,29€T |21 - 22|2 k zel
From the definition of by, it is easy to see that >, b7 = O(p). It remains to show that

supsup E |V} (2)]* = O(1/p). (5.2)
k zel

From the definition of Yj(z) , we have
1

1 2
EV{() = 15 B el Al )~ T AL S

! ETH{A() AL} < SEIAEI

and the derivative of Ag(2) is given by
A (2) = {0/ (2)GE1 (2) + 20(2)GE1 (2) + 0" (2)G(2) + 0/ (2)GE 4 (2) } ST
Since y; < 1, ||S; *||2 is bounded with high probability. By Lemma B.2 and the fact that ||Gg_1(2)[|2 <

n~! with n = 3z, we have

I4"(2)]|2 = Op(1).
The above estimates imply (5.2), which completes the proof of tightness of {Sy, ¢, +,(2)}.
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5.2 Proof of Lemma 5.2

Without loss of generality, we further assume ¢ € [0, 1]. Consider a partition [0, 1] = U}_; K;, where

L
Kj:[ﬂn,;], neN*

From [van der Vaart and Wellner, 1996, Theorem 1.5.6], it suffices to show that for any A > 0,

lim P ( sup  sup |[Wyyy — Wihi,| > )\) =0. (5.3)
n—oo 1<j<nt1,t2€K;

Note that {Ek (f)}rent1,2n) forms a martingale difference sequence. According to Lemma A.2, for
some small € > 0, we have the following bound on the increment of W, ;:

|2+a

1+5/2]E‘Lk _ (t—8)1+5/2E|Zk|2+6.

E |Wn,t - Wn,s‘2+8 5 (mt - ms) W

From the definition of Ly, the mean structure of M (z) given in (B.9), and Lemma B.1, we have

_ 2+
E |Lk|2+€ ~ p1+5/2 E

éf(z)(l —Ep)My(z)dz

S0 [Pl - B M) e
< p_1_5/2E|xZAk(z)xk — TrAk(z)|2+E.
By Assumption A, we have
E|af Apay — Tr A" S E |02 Tr{(4x A7) /%) S p.
Using Markov’s inequality, it holds for all A > 0 that
P(|We — Was| > A) S (£ — )T/ 2p</2, (5.4)
Similarly, we have for 0 <r < s <t <1,

P(min{\Wnﬁs — Wil Wi = Wao|} > )\) P(|Wh.s — Wii| > A) + P((Was — Wi | > A)

<
N r)1+5/2p75/2. (5.5)

Combining (5.4) and (5.5) with Lemma A.3, we get for any interval K; and any A > 0,

1
P( sup  [Whe, — Wi, | > )\> S e

t1,t2€K;

which implies (5.3) and thus completes the proof.

6 Proof of Theorem 2.3

We start with the proof for the closed-end situation with p(¢) = 0 for all ¢ > T". From Theorem 2.2, for
any 0 < £ < T, we have

. n+i
0} 1 ~
sup Tp(n,i) = sup — | |—= Ly
gn<i<nT »l) 5n<i§nTp(n> ﬁk§1
n+|nt|
Lntj ) 1 ~ d
= su — ||—= Li| — su t)|W(t)]|. 6.1
s o R IRZRE UL (6.1)
Let t =i/n € (0,£), and w(n,i) = p(i/n) = p(t). For any fixed 7 > 7, we have
o _ _ n _
p(t) = 77 - p(t) <t sup aTp(z) = = sup @7 p(x).
0<z<¢ 17 o<z<t
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Hence,

n+1i .
2. L

= 1
sup Tp(n,i) < sup x7p(z) - ( Sup —m—==
k=n-+1

. 1/2—~5;%
1<i<én O<z<t 1<i<n NY/2747

).

sup z7p(x) = sup 27 Va2Vp(z) SETTY =o0(1) as & — 0.
o<x<€ o<x<€

Under Assumption C(ii), we have

From the Hajek-Rényi inequality (Lemma A.1), we have, for any £ > 0,

P ! nHE >e)< i 1 S
(S“En/ 2 b —5> <GwmE 2= E
and thus )
1 n—+1 "
22 | 2 B = O
From the above results, it holds for & — 0 that
sup Tp(n,i) = op(1). (6.2)

1<i<én

Recall that a standard Brownian motion satisfies |W ()| = Op(v/t) as t — 0. By Assumption C(ii), we
have p(t) = O(t™7) as t — 0 for some 0 < v < 1/2. Hence, it holds that

sup p(t)|W(t)| = sup Op(t'/277) = o0p(1), as & — 0. (6.3)
o<t<€ o<t<§

Combining (6.1), (6.2) and (6.3), we conclude that for any T' > 0,

sup Ty(n,i) = sup p(t)|W(t)]. (6.4)
1<i<nT 0<t<T

Now, we consider the open-end situation with p(¢) > 0 for all ¢ > 0. Using the similar arguments
above, for any T" > 0, we have

me(s)
—supp| —
n i>1 n

For any i > nT, welet t =i/n > T and get p(i/n) < % sup,>y vp(z). This, together with the triangular
inequality, yields that

n+min(i,nT)
>, L

k=n-+1

LN iggp(tﬂW(min(t, T))|. (6.5)

1 n+min(¢,nT) _
supT,(n,i) — —sup p(i/n Ly
Tyl ) = sl Y

n+i n+min(¢,nT)
< —=suwp p(i/m)| > Le— > Ly
T iznT k=n-+1 k=n-+1
n41
< suptp(t) - sup @ Z Ly,
t2T iznT 1 k=n+4nT+1
= Op(T7Y/?) - suptp(t)
t>T
= Op(T71/?), (Assumption C(iii)) (6.6)

where the Op(T~1/?) term follows from that, for any & > 0,

\/’E n—+i " 1 0o n 1
P( sup — E Lyl >¢ §*2 g §§72 .
i>nT es 1 e?T
= k=n+nT+1 1=nT
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This bound is obtained by applying the H4jek-Rényi inequality. From Assumption C(iii) and the property
of Brownian motion, we have

sup p(t |Wm1ntT |—supp ’W |<Supp |W |— Op(T~/?). (6.7)
t>T

t>0

From (6.4), (6.5), (6.6) and (6.7), we conclude that

N d
sup Ty (n, i) = sup p(t)[W(t)].
i>1 t>0

7 Proof of Theorem 2.5

Let ¢ :==n + i — k* be the number of post-change samples included in the current monitoring procedure
at time n + 4, and assume that ¢ = o(n). Define dy, == Li(f) — p, and let

k*+¢
1
P, :=C ] E dy|, Cy:= i _
® ai/m) k_%:ﬂ F k*+1r§nklr§llc*+€ Vnog
_’le (i/n) Z Lk‘
k=n-+1

From Proposition 2.1, we have C, = O(1). By the triangle inequality,
Tp(n,i) = @,(¢) — R, (0).
We claim that (to be proven later), for £ = o(n), the following estimate holds:

k*+0

> Edy= (Il(f, )+ (72_1)12(f)é2> (1+0(1)), (7.1)

k=k*+1 k3
where k3 := k* — k1. It then follows that

(72 —1)12(f)£2

Ty(n,i) = Cop14(i/n) k
2

Il(f, Tl)g"f'

(14 0(1)) — Ru(0).
Since {Zk, n+ 1<k <k*+ (¢} is a martingale difference sequence,
Ry () = (k* —n+ 070"~ 20p(max{Vl, VE* — n}).
We first consider the late-change case, where k* — n < n. In this case,

pa (S =0 R = 0500

Hence, for any € > 0, there exists constants K. > 0 and N, such that for all n > N, }P’(Rn(é) < KE) >
1 — e. Choose ¢ such that

kK*—n—+/
oo (E2150)

P(Ty(n,i) > co) > P(R,(0) < K.) >1—¢.

(2 = 1) I2(f)

2> e, + K.,
i Co +

Li(f,m)l+

then

Taking ¢ — 0 yields
P(Tp(n, i) > ca) = 1.

If 4 # 1 and I (f,71) # 0, it suffices to choose £ < log(n). If 74 = 1 but 72 # 1, and I1(f) # 0, we can
choose ¢ < y/n to obtain the same conclusion.
Then, we consider the early change case with k* —n = o(n). In this case, we have

k> — 12
o (F) =0T (F —n+ 07, Ry(0) = op(L).
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Thus, the mean drift term is of order

(2 — DI2(f)

62
k3

‘I)n(E) = nﬁy(k* —n+ 6)77 Il(f, 7'1)€ +

If 7y # 1 and I, (f, 1) # 0, it suffices to choose ¢ < log(n). If ;1 = 1 but 72 # 1 and I>(f) # 0, we can
choose £ =< n'/2=9 for some small 0 < § < 1/2.

It remains to prove (7.1). WLOG, we assume that ¥y = I,. Under H;, there exist a change point k*
such that the covariance of x; changes from ¥y = I to some ¥; # I,,. To inspect the impact of the change
of 31 on the linear spectral statistics Ly for k > k*, we examine the sequential F-matrix constructed
after the change point, up to time k* + £. Under this setting, the sample covariance matrix So i+ ¢ is

defined as
k*+¢
Sg7k*+g ( Z l‘zl‘ + Z 21/2 1$T21/2>
i=k1+1 i=k*+1

By the Cauchy integral formula, it suffices to estimate the order of
E T‘I‘(Gk*J’,g(Z) - Gk* (Z)) .
For notational simplicity, let k3 := k* — k1, Fy := Fj«, and G, (z) = Gj+(z). Let
Y = (Ykr41,-- -, Ykr4e), where y; = E}/Qmi, 1> k*.

Using the Woodbury identity, we have

k% 1 -1
ey = 2_F, “lyyT —
Greve (k* TRk 5+ A §

-1
=G, — ——G,S'Y (Ig + YT@*Sf1Y> YTG,, (7.2)

1
k*+€ kS + ¢

where G, = (kiieF z)fl. Applying the identity A= — B~! = A~1(B — A)B~! repeatedly, we get

~ k> +¢ Y4
g, -t {G*+ZG2+< )G3}+R1, (7.3)
k3 k3 k3

where R; is the remainder matrix with |R;]|s = Op(#3p~2). For the inverse matrix involved in (7.2),
since [|[YTG,S7 'Y |2 < [|[YTY |2 = Op(f), by the Neumann series expansion, we can write

YTG, Sy ! ETr(G,. Sy 1-RB)YTG, s 'y )t
I,€+ G*Sl _ IZ (G* Sl 1)IZ+( )* GSI
ki + 0 kb + 0 ks + 0

( . IETr(é*SllZl))l . mr(1-EYTG.s Y
= B — e —— 0 —

* ~ R27 (74)
kS + 0 {1+ 2 ET(G.ST 0}

where Rj is the remainder matrix with || Rz|2 = Op(¢?p~2). Plugging (7.3) and (7.4) into (7.2), we have

E Tr(Gk*+g — G*>

* 2(1.% T ETr YTGQS
éETrG + L(ki—gg) ETrG? + GOk +0) (62;_ Y ETrG? - ki+e H ( ")
k3 (k3) (k3) 1+ WETL"(G*S{ 1)
+ (kure)2 TY{YTGQ LY (1 -E)YTGS Y +O(Bp~?)
_ 2
{1+ 5 ETx(G..S7 ')}
5 L ETHGY,) 2 LETHGY,)
—LtEme +ZEner+ B g B SO (U i
k3 k3 (k3)2 1+ ETr(GS1) k3 \ 1+ = ETr(G%)
2 g ETe(G*ST'%)) g ETe{(1 - E)YTGY(1-E)YTGY
P2 2 u ) +O(p2), (7.5)
k3 1+ & ETr(G%) {1+ k*]ETr(gE )}
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where G(z) = G, (2)S7! and G(2) := G2(2)Sy!. Note that G(z) = 9,G(2). It remains to estimate

L Em(gs)  and iIETr{(l ~_E)YTGY(1 —E)YTQY}.
ks ks

The limit of the first term is given in Lemma 7.1 below. For the second term, we have

éE{ E)YTGY (1 - )YTQY}'_

i
i=1

EE: E{ TGy; — Tr(GS1) iz J}}{y}Gyi - Tr(gxl)]l{z:j}}

7,7=1
p
= (va = 3)0Y_E(27%G2)?),, (217651, + 2ETr(GZ1G%1) + £(¢ — 1) E(y] Gy2y] Gyo)
k=1
P
= (va—3)0>_E(%%gn)%),, (21%G9)%),, + 0t + 1) ETr(G2,G%).

ES
I

1

Using the basic inequality |Axr| < ||All2, the first term in the above equation is of order O(¢p). The
second term is of larger order O(¢?p). Therefore, the contribution of the first term is negligible compared
to the second term, and we focus on the latter, whose limit is also given in Lemma 7.1 below.

Lemma 7.1. Suppose Assumptions A and B hold, then we have

— IETr(QZ ) =718(z) + O(1/p),

k*
?ETY(Q&QZ 1) = (12 — 11)g'(2)8(2) + T7h(2) + O(1/p),
2
where
lim S T(S)), 7= lim STe(S2), g(z) = lim —ETrG, h(z)= lim — ETrGG).
71 = 1l1m — 1r 1m m — r m — r
! p—oo P 15 p—oo P S p—oo k3 p—oo k3

The proof of Lemma 7.1 is postponed to Section 8. Using this lemma and (7.5), we have

kE*+¢ kx40 kx40

Z Ed, = Z i ]{ f ETI‘ Gk*_;,_g *) dz + Z |5 (7'6)
k=k*+1 k=k*+1 k=k*+1

¢ ( (,gEaz{Tr(gzl)} ,%]E@Z(Trg))d

27 1+ ZETr(G%1) 1+%ETG
LA+ 7{ ) 5 ETr(G516%1) 75 ETr(G9) .
- z — z
2k3mi Jp {1+ £ET(G%1)} {1+ LETxg)’

2 LETER) LETG
A 2 B I R d

- gff(z)z 1+ & ETH(G5) 1+ L ETG :
/2 LET&(G?’S*&) %ETr(Gg’Sfl)

_7%F (z)<1+k*ETr(g21) 1+ LETg dz +O/p)

1+ 7g(2)
g SO0 ()
(e+1) ; (2 —79)g'(2)g(2) +7ih(z)  h(2) ;
+ 2k3mi éf( )< {1+Tlg(z)}2 {1+g(z)}2>d

iz foer| () - (755) ] o
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ng'(2)/2  g'(2)/2
%f (1+ﬁg( ) 1+g(2)>dz+o(£/p)' (7.7

we have

First, we consider the case 71 # 1. From the integration by parts and g(z) = tzm

1+ 7ig(2 )> f{ (1+Tlg( ))
)0, 1 = d
mej (T PO\ T )
~ 5 ?{ fl(z log{ﬁ (1 —71)zm( }dz =-0L(f,7).
Under the condition 71 # 1, for selected test function f such that I (f, ) # 0, the first term in (7.7) is
of order O(), and it dominates the remaining terms, which is of order O(¢2/p).

Next, we consider the case 1 = 1 and 79 # 1. In this case, the first, third and fourth terms in (7.7)
vanishes, and we have

kx40

(41 =1) 1 [ f(2)g'(2)a(z)
E dy= N2 ) dz + O(f 7.8)
k;—&-l o k3 2mi {1+g Z)} (/) (
Using g(z) = — 11’;@, we have

i e o =~ e (i +1)
Qmj'{f ){log(zm) + zm(z) } dz = Iz(f).

For selected test function f such that I>(f) # 0, the first term in (7.8) is of order O(¢?/p), which
dominates the remainder term O(¢/p) provided that ¢2/p > 1.
In summary, we have

) i 02
130,0) = o ) (7. + (2 - V()|
Moreover, if one of the following conditions holds:
e 71 # 1 and I1(f,m) # 0;
e 11 =117 #1,and L(f) #0,

then for large enough £ satisfying p'/? < ¢ < p, we have sup;~; T,(n,i) — co. This complete the proof
of Theorem 2.5.

8 Proof of Lemma 7.1

We first assume in addition that the entries of x; are i.i.d. standard Gaussian for all ¢ € [k]. This allows
us to exploit the orthogonal invariance of the model and to apply the Weingarten calculus method [Collins
and Sniady, 2006] to estimate the tracial quantities in Lemma 7.1. In the second step, the Gaussian
assumption can be removed by using a standard Green function comparison argument. In the following,
we only provide the estimation for the second limit in Lemma 7.1, namely E Tr(QZlgEl)7 since the first
one can be shown similarly.

8.1 Weingarten calculus

Let Z; € RP*F1 7, € RP**2 have i.i.d. standard Gaussian entries. WLOG, we can assume that ¥; =

diag(ds, ..., dp) is diagonal in the following analysis. We define the sample covariance matrices
g 1 T g 1 T
Sl = 7Z1Z17 52 k* = 7ZQZ2 .
k1 ’ k3

We denote B
G9(z) = {(S9)71Sg — 2}, GU(2) = GISTY, GY(z) = (GY)2S; L.
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We aim to estimate
ETr(GY%,G9%).

In the following, we will drop the superscript g for simplicity. The matrix G(z) has the unitary invariant
property, namely, for any p x p Haar distributed orthogonal matrix O independent of Z1, Zs,

Using this property, we have
ETr (ézlgzl) —ETr (oéoTzlogoTzl)

= E : dj2di1E(Oiljlgjlizszizojziggi3j3oi1j3)
i1,02,13
J1,J2,73

E : d d E gjlizgisjz)E(Oi1j10i1j30j2i20j2i3)'
11,%2,i3
J1,32:73

Using the method of Weingarten calculus on orthogonal group [see e.g. Bao et al., 2017, Lemma 6.2] we
have

E (Oi1j1 Oilja sziz szis) =

o+ 2) L=t L i=is=ia=ia}
1
* mﬂ{ilzjz} (]l{j1=j35£2‘2:i3} + ]l{j1=i2¢ja=i3} + ]l{j1=i37éi2=j3})
p+1
mﬂ{h#b}ﬂ{jl:js#iz:is}

1

- p(p _ 1)(13 ¥ 2) IL{il;’éh} (]l{h:iﬂéjs:%} + IL{]'1:2'33‘61'2:%}) :

Hence,
ETr (G265 )

= 3Tr7 Z]E gaugaa

P+ 2) ZE (GaaGob + GabGra + GavGas)

(+2

(p+D{(Trxy)* - Tr(X])}
+ Yo — D012 Z]E GavGa)

a#b

Tr¥,)?2 —Tr
_ {( o 1—)1)(p—|—2) }ZE gaagbb+gabgab)
B 3Tr(2 E E(
— p+2 Z gaagaa ( +2 Z gaabe)
"oy > E(Gusin) - <(—T1>2<p+2 2 BlGuin) +0)
_ Trg?)mr@)ﬁ(g)ﬁ“zl) ETr(G0) - @ET@MQHO(U

_ ;Tf ETr(G) Tr(G) + 2 ETr(GG) + O(1).

8.2 Green function comparison

The goal of this section is to show the following equation using the Green function comparison method:
ETr(G2:1G%) — ETr(G95,G7%,) = O(1). (8.1)

This equation allows us to extend the Weingarten calculus result to the general distribution setting.
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We assume that Z; and Z5 are independent of each other and independent of X; and X5. We construct
a continuous interpolation of between the original data matrices and their Gaussian counterparts. For
i =1,2, define

X! =VtZ;+V1—-tX;, telo,1].

Let S! the corresponding sample covariance matrices formed by interpolated matrix X!, and G and G
be the resolvent matrices defined similarly as G and G but with S; replaced by S?.
The LHS of (8.1) can be rewritten as

1 ~ 1 ~ . . ~ ~ . .
/ %ETr(gtElthl) dt = 7/ ETe{G" (85— 215)'$10" 1 + G216 (S5 — 281)G'% | at,
0 0

where
1—-2¢

2/t —t)

and Sé is defined similarly. It suffices to estimate the order of each term in the integrand. All terms can
be handled in a similar way, we only focus on the term

St dsy 1 T T T T
§t= Tl = E{lel — Xy XT 4 e(t) (X1 2] + lel)}, o(t) ==

ETr(S'th), where H,; = G'¥,G'%,G.

We expand the trace term as

k1
ETr(STH,) = . E Z{z}thg — ) Hyzp + 2c(t)m}the}, (8.2)
L=
where zy = (z41,...,20p)" and z¢ = (201,...,20,)" are the ¢-th columns of X; and Z;, respectively.

We denote 9, M := OM/Ox. Using the chain rule, it is straightforward to check that
Oz Huig = V0, Hegj,  Ou, Hugjy = V1 =10, Hygj.
Using Lemma A.4, we have
Ez) Hixy = EZ Hy ijweie; = ZE@IU (Ht,ijze,;) + Remy
i,j 0,J
= E(,,00,,Huij) + ETr(H,;) + Rem; + Remy
i#]
=(1-1) ZE(@IZ Ou _Hy ;) + ETr(H;) + Rem; + Remy,
1#]

where the remainder terms are bounded as

Remi| <Y E07, Hi|=0(1), [Remy| <> EI[02, 0y, Hil = O(1/p).
i i#j
Similarly, we obtain that
EzfHyz =t E(0, 0w Higj) + ETr(H,),
i#j
Ex) Hyzg = \/t(1 —t) ZE(amzjamzth,ij) +0(1).

i#j

These estimates and (8.2) yield )
E Tr(S{H;) = O(1).

Similarly, we can show that the other term in the integrand is also of order O(1). This completes the
proof.
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A Auxiliary lemmas

Lemma A.1 (Hajek-Rényi inequality). Suppose {X,,n > 1} is a martingale difference sequence with
02 =EX2 < 0. Let S, = Z?Zl X; and let ¢y > cp > -+ > ¢, > 0 be given constants. Then, for any
m € [n] and any x > 0,

1 2 - 2 S 2 2
(s e8] 2 ) < (¢ o+ 3 ).
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j=n+1
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Lemma A.2 (Dharmadhikari et al. [1968]). Let {X;,i > 1} be a martingale difference sequence, and
Sn =i, X;. Then, for anyr > 2,

E[S.|" < Cn 1Y EIX]
i=1
where C,. = {8(r — 1) max(1,2"~3)}".

Lemma A.3 (Corollary A.4 in Dette and Tomecki [2019]). Let {Z;,0 <t < 1} be a stochastic process
with right-continuous sample paths. Assume that there exist constants v > 0, 6 > 1 such that for
r < s <t the inequality

P(min{|Z; — Zs|,|Z, — Z|} > X) < CAX |t —r[°
holds with a universal constant C. Further assume that there exist a function 1 such that the inequality
P(|Z — Zs| > a) < (]t — s, )
is satisfied. Then, for any € >0 and r € [0,1], we have

IP( sup Zyss — Zya| > 4>\> < SCCNTT 1 dy(e, ),
|s],|t|<e,r+s,r+t€[0,1]

where C' is a constant depending on v and & only.

Lemma A.4 (Cumulant expansion formula, Lemma 3.1 in He and Knowles [2017]). Let h be a real-
valued random wvariable with finite moments, and f is a complex-valued smooth function on R with
bounded derivatives. Let cy,(h) be the k-th cumulant of h, given by cp(h) == (—i)* < log Ee'"|,—o. Then
for any fixed £ € N, we have

4
BIAS() = 3 mreia () B ()] + R
k=0 "

For any fized cutoff M > 0, the remainder term Ryq1 satisfies

‘R@+1| = O(l) K |h|€+2 ‘ Sllilj)w '|f(£+1)(l‘)’ + 0(1) . E(|h‘z+2]l{\h|>M}) . ||f(é+1)Hoo-
|

B Proofs

B.1 Calculations of mean and variance

In this section, we provide detailed calculations for the explicit forms of the mean and variance given in
Section 3. Recall that the mean and variance involve contour integrals of the form

()= o (f’(Z)zm - f(z)’;f) a4 422 f e amPas

- 2k17rij€(_(2f)2 = +zf'(z)% + fn(f)> dz+0(;>7

w31 N L TP |

We evaluate the contour integrals by applying the residue theorem to the region exterior to the contour I,
which corresponds to the negative sum of the residues outside I'. For polynomial functions g(z) = z or 22,
the only non-vanishing contribution arises from the residue at infinity. In the case where g(z) = log(1+2z),
the residue at the pole z = —1 is also included. It is verified that the potential singularities at z = 0

and z = —c¢y /¢y are removable, and thus their residues vanish. To illustrate the calculation procedure,

we consider the integral
1 2
PRUCI
r m(z)
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as a representative example. We first establish the Laurent expansion of the reciprocal Stieltjes transform
at z = oo up to the third order:

= —z+ M — - ~- 4o

m(z) z 22 23

M2 - M, M?}—2MMs+Ms Csy <1>
z3 )’

where C3 = M{ — 3M?2My + 2M; M3 + M2 — My, and the coefficient M; is the i-th moment of the
probability distribution with Stieltjes transform m(z). The explicit forms of M,’s are given by

M. — c B 02(1 +co — 01c2) _C2 (Cfcg —2¢1¢3 — 3cica + 1+ €3+ 3ea + 1)
1= 1 _ ) 2 = 1_ 3 ’ 3 = 1_ 5 )
c1 ( c1) ( c1)
My = (1072)7< — 33 4+ 3c3¢3 + 6c3cE — Ackcy + 3 — 3eicy — 12¢1¢3 — 2¢1¢o + 3¢y + €5 + 6¢3 + 6co + 1).
—c

For the case g(z) = z, the integrand simplifies to 1/m(z), yielding a residue at infinity of M? — Ms.

Hence,
1 1 1
i — dz = —R: _ =_—M?+ M.
i b es(m(z)’°°> Pk

For g(z) = 22, the integrand becomes 422 /m(z), and the residue at infinity is 4C3, leading to

SRS

2
dz = —Res(427oo> = —4C5.
m(z)

In the case of g(z) = log(1 + z), the integrand is m This function possesses a pole at z = —1

with residue —%. At infinity, the asymptotic behavior is derived as:

= (- D=L o(d).

which corresponds to a residue of 1. Therefore, we have

3 b T ‘RGS<<1+z>12m<z>"1> ‘RGS(M%’”) = (1

The other integrals in the expressions of p(f) and 0',%( /) can be evaluated using similar procedures and
the results are summarized in Table 7.

Integrals ‘ f(z) ==z ‘ f(z) =22 ‘ f(z) =log(1+ 2)
= ¢ flzmdz —M; —2M, m(—1)—1
L f 2 de —M, M2 — 2M, Inm(—1)
¢ f(1+2m)?dz 0 2M? —{1-m(-1)}?
7= $(2f)zm’ dz —2M, —6M> —1+m'(-1)
o § 2 de —M 2M?2 — 4M, ml g
L ds 0 —2(ME-Mp) |1 2
TN —M2+ M, —4C;y mid -1

Table 7: Summary of contour integrals appearing in the evaluation of mean and variance.

B.2 Proof of Proposition 2.1

Recall the definition of My(z) in (2.2). The following two lemmas provide the mean and covariance
structure of the resolvent difference My (z) and some useful trace limits, which are essential for proving
Proposition 2.1.
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Lemma B.1. Under Assumptions A and B, for any 21,2z, € CT, we have

E Mj,(z) = <1 + Z}ﬂ) (zm)’ + ]:2{ Z(zgmyl + (Zm/)/ = (1)”} + V“Q; {0+ 2m)?Y + o(1/p),

m m
3

COV(]\fk(Zl)7 Mk(ZQ)) = %

02, (21m) 0, (o) — 20,0, (1/’”‘”’”) T o(1/p).

21 — 22

Lemma B.2. Under Assumptions A and B, the following limits hold as p — oo:

Tr Gy 1-— v G} 1-—
TGy 2 com(z) = m(z) + 62, £ k-1 zeom!(2) = zm/(2) — 62, (B.1)
I€2 z k‘g z
Tr(Gk_lel) LN 1+ zm(z)7 Tr(GiflSl_l) », m(z) + zm/(z) (B.2)
ko 2m(z) ko {zm(2)}?
1 1 1 —1
—Tr{Gk 1(21)S7 Grm1(22) ST} & <1 L Ym /m2>. (B.3)
le2m1MQ 21 — 22

The proof of Lemma B.1 and Lemma B.2 is given in Section B.4 and Section B.5 respectively. We
first use the above two lemmas to prove Proposition 2.1. From the definition of L (f), Lemma B.1 and
the integration by part, we have

27r1j{f { }d - 4pm 7§f L+ ) d:
i 005 () - ()}

— o (7 s Y0 ;.3 e+ w2 a:

+ Qk;i?“—WJrzf (z)m f”())dz

We take I'y = I' and choose I's to be a rectangle outside I'y, with each of its four sides at a distance &
from I'y. Using the integration by parts twice, first with respect to z; and then with respect to 22, we
have

]f f(zof(zQ)azlazQ(””“‘”%)dzldzz= F(=) f'(z2>(1/““‘1/’"2>dzmzl
Ty xTy I'>

21— 22 21 — 22

B O B S LY RN O (CO) G

T mQ Iy 21 — 22 T m(z)

and thus

2
AN =(55) §. F G Covat(en). Miea)) o

“ ) seemya z>2+1 }glxrzf<zl>f<zQ>azla@(”"“‘”%)dzleQ

kaca 2ri 2kom2 21 — 29

_ ! 2
_n—3 <% f’zmdz) + L Mdz.
kaco \ 2mi Jp komi Jr m
B.3 Proof of Remark 3.1
We denote m(x £1i0) = A +iB, where

2(h? +¢1) + ca(1 — c2)

ca(l—c1)y/(z—b)(a —x)
2x(co + wey) '

A=Ax)=— 2z (cg + xcy)

, B=DB(x)=

We choose the counter I' to be a rectangle with sides parallel to the axes. The rectangle enclose the
intervel [a, ], and the horizontal sides are a distance ¢ < 1 away from the real axis. We let ¢ — 0. Using
integration by parts, for any analytic function f(z), we obtain

¢ FEHemeY @z = - § F)m(e) d:
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/ F(2)2(A +iB) dm—/ a iB)dszi/abf’(x):chx,

and
L = '(2) log{m(z)}dz
fr m(z) ¢ ]{Ff()lg{f( )}d
A'B— AB’'

a b ’
-/ f'(z)log(A +iB) dx —/a f'(x)log(A —iB) da = 21/@ 1@ =g

Similarly, we can also get

ﬁg@ /ﬂN+B2
ﬁf(z)z(zm)" dz = — jé{zf(z)}/(zm)’dz (B-4)
frE gy [ AT

fro() am f1gtee s [ e

b
ﬁf(z){(l +2m)?Ydz=— ¢ f(2)(1 +2m)?dz = 41/ (1+zA)xBf dz,

r

b
—21/ (xf" +2f)xBdz,

PP | [P B@Af @y
r m(z dz‘m/a () + B2a)

From these integrals and Lemma B.1, we have

A/B AB/ ) V4 -3

b b
E(Lk(f)) = —%/ (xBf’ + Wf / (1+zA)zBf dx

1 / b{— (zf" +2f")aB  (A'B— AB')zf' + Bf” } dz + o0 (1)
p

 kom J, 2 A? + B2

and

Var(Ly(f)) =

a

B.4 Proof of Lemma B.1

Denote ks = kK — 1 — k1, and we can write

kz Sflxkl‘;
Fpy + 2L E2k
[ R S

P =

This, together with the Sherman-Morrison identity, yields that

Gk 1Sy g TGr
Grp=Gr1 — k2+1 5 )
1+ Tkl +1 kalsl Tk

where G = G_1(z) = (225 Py — z)_l. Using the identity A= — B~! = A=1(B — A)B~

~ kJrl
Gro1=2 G- 1+ Gk 1Gr—1.
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(B.5)

(B.6)

, we have



For brevity, we denote G = G_1. Plugging the above equation into the expression of Gy, we have

1 GQS x
My(z) = —Tr G+ = Tr GG — e k
k2 k 1+ mft GSl Tk
katl T2 22 T3
1 2(ky + 1) ) s B2 o] G2S ey, + kaG Sy oy
=—TrG+ 7TG +fTrG +0 1/p).
ko k3 k3 14+ £alGSy o + £ = x]G2ST ' »(1/p)
14
Let A,(f) — k@S x"kz (G5, ) , £ =1,2. Using the Taylor expansion, we have
—kiﬁleZGQS*lxk + %xTG3571xk
1+ 24 T mkGS Tk + kzkaQS Tk
TrG2Sr " + A7 + TGS + B TGRS

= + Op(p™*/?)
1+ £ TrGST! + A;” + 7 T GQSl‘l

2c0—1\2

k3
+ a3<z>T‘“kall<A,§”>2 + E(mmxk —Tr Ay) + Op(p™%7?),
where
Ap = Ap(z) = a(2)G*S; 4+ (2)GSTY, alz) = = é Tlr(GSfl)' (B.7)
From Lemma B.2, we have
a(z) & —zm(2), (B.8)

E(A](Cl)A](f)) _ (V4 - 3)(1 + Zm)(ﬂ+ Zml)

p(zm)?
2 (1w’ wm 2w)  w
5 P 1
* p(zm)? (Z zm?  m m?3 + om? +0o(1/p),
—3/14zm 2 2¢9 m'
E A(l) 2 _ V4 m B Lo |
( g ) p Zm p(zm)Q m2 +0( /p)v
and thus / )
1 / 1
Mi(2)= |1+ L (zm)" + 1 [2(m) I 2
zm ko 2 m m B9)
V4

-3 1
{(1+2m)?} — —(ef Agae — Tr Ag) + 0p(1/p).
2p ]{12

This implies the approximation of E My(z) in Lemma B.1, and it remains to calculate the covariance
function Cov(My(z1), My (22)). Using (B.9), we have

Cov(Mp(21), My(22)) = ki%E{(zZAk(zl)xk — Tr Ag(21)) (zf Ak (22) 2k — Tr Ag(22)) } + 0(1/p)

= y4k; 3 EZ[Ak(Zl)]ii[Ak(ZZ)]u k2 IETI{Ak 21)Ag(22) } T 1/p)
2 i=1

Using the identity
= 0:{a(2)G(2)S1 '},

we have

ETr{Ay(21)Ar(22) } = ETr[0s, {a(21)G(21)S7 ' }9.,{a(22)G(22) S7 '}
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= 0,,0., [a(zl)a(zg) ETY{G(zl)SflG(zg)Sfl}]

This, together with (B.8) and Lemma B.2, implies that

12 ETr{Ag(21)Ap(22)} = —0.,0., (1/7”11/7”2) +o(1). (B.10)

k Z1 — 22

Using Lemma B.2 again, we have

&MMMMM&M=M_%AWM@&WM—2%@4MM_W%)WWM

kaco ko 21 — 22

B.5 Proof of Lemma B.2
The estimate (B.1) follows from Lemma 6.2 in Zheng [2012]. It remains to prove (B.2) and (B.3).

Proof of (B.2)

The second limit in (B.2) can be derived from the first one by taking derivative with respect to z. Thus,
it suffices to prove the first limit. Recall that

1 B —1
Gr-1(2) = (k251 'XXT - Z) s X = (T t1s e Th1) pxchy -

We abuse the notation by denoting the (7, j)-th entry of X by z;; and the j-th column of X by z;. From
the definition of G = Gk_1(z), we have the following resolvent identity:

= _— glxxT B.11
G ZkQS G — Z ( )

which implies that

i T =
ETrG = k ETr(XXTGS;! ZkQZE{x”f” 27

ZR2

where
fii(X) ={XTG(2)};i, G(2) =G(2)S7 " = (82— 251)7"

From Lemma A.4, we have
E{xi; fij(X)} = E{0i; fi;(X)} + Ruj,
where the remainder term R; ;; satisfies that

Ry SE[0%£i5(X)loo-

The first derivative is given by
1
aljflj(X) = {(aszT)g}Jz - {XT (81]52)g}]z - gu - (XTg)]’L(XTg)]Z - E(XTQX)ngn

Moreover, the second derivative is given by

a

0% fi5(X) = 053G —{G(0i;92)G }ii — Zxaj{(aijg)(aij52)g +G(0;92)G + g(aij52)<aijg)} -
Let e; be the i-th standard basis vector in RP. Using the following norm estimates:

1 &2l 1
1055212 = EH@M} +ajelle S 7 110]Salle = jlleiefl\z =

1
ko ko’

10,62 = || — G0 5)CST 2 < 157 12 - [GIE - 184S2ll2 < ””
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we can easily get

13
o oo < Il Il
|| l]f.]( H N kQ + k%

Thus, we obtain Ry ;; = O(1/,/p). Combining the above estimates, we have

ETrG = fIETrQ - TETr(gSQQ) - —E{Tr(gsg) TGy — = + O(/p)-

22

Using the identity GSs = I + zG and the following covariance estimate
E{TrGTrG} —E(TrG)E(Tr G) = O(1), (B.12)

and (B.1), we obtain that

ET “ZET 1
Lo (1o 2EDGHPY BTG HP oy 2mEL L 012
ko ko ) zm
This, together with the variance estimate
Var(Tr G) = O(1), (B.13)

completes the proof of (B.2).
Now we prove (B.12) and (B.13). We denote
J )

) 1 : ; .
S =8, — ]723?ij g = (S = 28)7Y, j € [kal.

Let F; be the o-algebra generated by {z1,...,z;}, and denote E; := E(-|F;), then we have

ko xT(g(j))2xj 2
Var(TrG) = > E{(E; —~E,;_1)(TrG - TrG¥))} ZE{ E;—E;_ 1)%} . (B.14)
x
Jj=1 J
Let A; = é Tr Gl — é ETrGY. From the Taylor expansion, we have
i Gl B o B < 1A NP

14+ £2]GWz; 1+ L ETr gl (1+ ]ETQ)

For the first term, we have

2

E|. (B~ )]GV spi [27(9)2a; — Te(G)? "= o/,
2

Similarly, we can show that the expectations of the second and third terms are also O(1/p). These
estimates and (B.14) yield (B.13).
Similarly, we can verify that

Var(Tr G) = Var(Tr(GS1)) = O(1). (B.15)

These estimates, together with the Cauchy-Schwarz inequality, imply (B.12).

Proof of (B.3)
In the following, we denote G; = G(z;) and G; = G(z;) for ¢ = 1,2. From the identity (B.11), we have

1 1
GQGlel == 7g2XXTg1 - *QQ;
Zlkig Z1
and thus

1 1 1 1
IETr(GgGlel) = %ETI'(XXTglgg) — ZETI‘QQ = % Z]E{:TJZ](XTgng)ﬂ} — ZETI‘QQ
4,J
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For brevity, we denote
9i5(X) = (X7G1Ga) .
By using the cumulant expansion, we have
E{z;9i;(X)} = E{0i;9i5(X)} + Raj,
where the remainder term Ry ;; satisfies that
Ro.ij SENOZ9i5 (X)) oo
The first derivative of g;; is given by

1 1

0ij9i;(X) = (G1G2)ii — oy (XTgl)ji(XTg1g2)ji - oy (XTng)jj(g1g2)ii
1 1
- E(XTglg2)ji(XTg2)ji - E(XTglg2X)jj(g2)ii-

The same argument as before shows that the remainder term Rj;; = O(1/,/p). Combining the above
estimates, we have

ETr(GoG1S7 )

_ 1 1 Z9 TI‘QQ z1 TI‘gl 1
= zle E{(kg—p—leI'Gl)TI‘(glgg)}—21k2 E{(ZQ—Zl — 22_21)Trg2}—21ET‘1'g2+0(\/}3)
o 1 1 ZQETI‘QQ ZlETI'gl 1
=k (k2 —p— 21 ETr G1) ETr(G1Go) 21k2< po—— p— )ETl"gz Z]ETrgz—f-O(\/]a)»

where the second equality following from (B.13), (B.15), and
Var(Tr(G1G2)) = O(1), Cov(TrG,, TrGs) = O(1). (B.16)

The proof of these two estimates is similar to that of (B.13) and is thus omitted. Combining the above
estimate with the identity G1G2 = (G1 — G2)/(z1 — 22), we have

2ETrGy — 21 ETr G, (1+1ETrQ2> _ <1_ r ZlIETrGl)ETrngg—&—O(\/ﬁ).
Z9 — 21 kQ k2 k2

By symmetry, we also have

2 ETrGs — 2 ETr Gy <1+ IETrg1> _ <1 _pr ZQIETrGE) ETr GG + O(Vp)-
29 — 21 ko ko ko

Combining the above two identities yields that

(ZQETI‘QQ — ZlETI‘gl)(ETI‘gg —ETI‘gl)
k‘Q(ZQ — Zl)(ZQ ETI‘GQ — Z1 E Tr Gl)

1 ETr(G:1G2) =

s + O(1/\/p).

This, together with (B.1), (B.2), and (B.16), completes the proof of (B.3).
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