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Abstract

This paper studies the asymptotic spectral properties of the sample covariance matrix
for high-dimensional compositional data, including the limiting spectral distribution, the
limit of extreme eigenvalues, and the central limit theorem for linear spectral statistics. All
asymptotic results are derived under the high-dimensional regime where the data dimension
increases to infinity proportionally with the sample size. The findings reveal that the limiting
spectral distribution is the well-known Marcéenko-Pastur law. The largest (or smallest non-
zero) eigenvalue converges almost surely to the left (or right) endpoint of the limiting spectral
distribution, respectively. Moreover, the linear spectral statistics demonstrate a Gaussian limit.
Based on our CLT result, we investigate a test problem on the population covariance structure
of the basis data. Simulation experiments demonstrate the accuracy of theoretical results.

Contents
Introduction 2
Main Results 4
2.1 Preliminaries and notations . . . . ... ... ... oo oo 4
2.2 Limiting spectral distribution and extreme eigenvalues . ... ... ... .. .. .. 5
23 CLTforLSS. . . . . 7
Application 9
3.1 Test statistic and its limiting null distribution . . . . .. ... ... ... ... .... 9
3.2 Power analysis and discussion . . . . ... ... L o oo oo 11
Numerical experiments 12
4.1 Limiting spectral distribution . . . . ... ... ... ... 12
42 CLTforLSS. . . . . e 13
4.3 Covariance testing forbasisdata. . . . .. ... ... .o 15

*arXiv: 2312.14420

tSouthern University of Science and Technology, email: jqq172515@gmail . com

The University of Hong Kong, email: jxqiu@hku.hk

SSouthern University of Science and Technology, email: 1iz9@sustech.edu.cn. Corresponding author.


https://arxiv.org/abs/2312.14420

5 Proof of Theorem 2.5 15

5.1 Substitution principle . . . . . . ... 20
5.2 Truncation and some important lemmas . . . ... ... ... ... .. ... 20
5.2.1 Truncation . . . . . . . . . e e e e e e e e e 20
5.2.2 Someimportant Lemmas . . . . . .. ... o oL Lo 21

5.3 CLT for LSS of the centralized sample covariance matrix Bg .............. 22
5.3.1 Step 1: Finite dimensional convergence of Mlgl)(z) in distribution . . . . . . . 22
5.3.2 Step 2: Tightness of M;,l)(z) ............................ 25
5.3.3 Step 3: Convergence of Ml(,z)(z) .......................... 25

S1 Auxiliary lemmas 29
S2 Proofs 30
S2.1 Proof of Proposition 2.4 . . . . . . . . . e e e 30
S2.2 Proof of Lemma 5.2 . . . . . . . ... e e 32
S2.3 Proof of Lemma 5.3 . . . . . . . ... e e e e e e e 33
S2.4 Proofof Lemma 5.4 . . . . . . . . ... 36
S2.5 Proof of Lemma 5.5 . . . . . . . ... e e e e e e 39
S§2.6 Proof of Lemma 5.7 . . . . . . . ... 44
S2.7 Proof of Lemma S2.1 . . . . . . . . . e e e e e e e e 48
S2.8 Proof of Lemma S2.2 . . . . . . ... e e e e e e e e 49
S2.9 Tightness of Mé,l)(z) ..................................... 52
S2.10Proof of Lemma 5.8 . . . . . . . . .. e e e e e e 53
S2.11Proof of Lemma S2.3 . . . . . . . L. e e e 54
S2.12Proof of Lemma S2.4 . . . . . . ... e e e e e e e e e 57
S2.13Proof of Lemma S1.5 . . . . . . . . .. e e 58
S2.14Proof of Corollary 2.6 . . . . . . . . . e 60
S2.14.1Calculation of expectation . . . . .. ... ... . ... .. o L. 61
S2.14.2Calculation of variance . . . . . . . . . . . i e e e e e e 63
S2.15Proof of Theorem 3.1 . . . . . . . . . . . e e 64
S2.16Proof of Theorem 3.2 . . . . . . . . . . e e e e e 65
S2.17Proof of Lemma S2.5 . . . . . . ... 67
S2.18Proof of Example 1 in Section 3.2 . . . . ... ... ... . . oo 68
S2.19Proof of power analysisin Section 3.2 . . . . . . .. ... ... 71
S3 Simulation of CLT for M(z) 76

1 Introduction

In recent years, there has been increasing interest in the analysis of high-dimensional composi-
tional data (HCD), which arise in various fields including genomics, ecology, finance, and social
sciences. Compositional data refers to observations whose sum is a constant, such as proportions or
percentages. HCD often involve a large number of variables or features measured for each sample,
posing unique challenges for analysis. In the field of genomics, HCD analysis plays a crucial role
in studying the composition and abundance of microbial communities, such as the human gut
microbiome. Understanding the microbial composition and its relationship with health and disease
has significant implications for personalized medicine and therapeutic interventions.



Statistical inference in HCD involves microbial mean tests, covariance matrix structural tests,
and linear regression hypothesis testing. These inferences are intricately linked to the statistical
properties of the sample covariance matrix. Mean tests typically utilize sum-of-squares-type and
maximum-type statistics for dense and sparse alternative hypothesis, respectively. Cao et al. [2018]
extended the maximum test framework by Cai et al. [2014] for compositional data. However,
there’s a gap in having a suitable sum-of-squares-type statistic for dense alternatives in HCD
mean tests. Many sum-of-squares-type statistics, like Hotelling’s T?-statistic, rely on the sample
covariance matrix. For bacterial species correlation, Faust et al. [2012] introduced the permutation-
renormalization bootstrap (ReBoot), directly calculating correlations from compositional compo-
nents. Shuffling is suggested due to compositional data’s closure constraint, introducing negative
correlations. Yet, compositional data’s unique properties require an additional normalization step
within the same sample post-shuffling, potentially impacting the theoretical validity of permutation
and resampling methods. Additionally, resampling increases computational complexity for p-value
calculation and confidence interval construction. To address these challenges, Wu et al. [2011]
developed a covariance matrix element hypothesis testing method, allowing control over false
discovery proportion (FDP) and false discovery rate (FDR). All these studies are closely related to
the sample covariance matrix of HCD.

Current research predominantly focuses on sparse compositional data. In dense scenarios,
researchers often turn to the spectral properties of sample covariance matrices. Despite this,
there is a notable gap in the field of random matrices where specific attention to structures
resembling compositional data, where row sum of the data matrix is constant, is lacking. Statistical
inference for HCD encounters challenges arising not only from constraints but also from high
dimensionality. Recognizing the crucial role of spectral theory in sample covariance matrices is also
vital for addressing statistical challenges associated with high-dimensional data. Importantly, while
previous research on statistical inference for HCD has overlooked studies under the spectral theory
of sample covariance matrices, our work takes on these challenges from a Random Matrix Theory
perspective. Existing literature extensively covers spectral properties of large-dimensional sample
covariance matrices, but most results rely on independent component data structure, i.e. Z =TX,
where I' is determined, and X has independent and identically distributed (i.i.d.) components.
Seminal works by Marcenko and Pastur [1967] and Jonsson [1982] established the limiting spectral
distribution (LSD) of the sample covariance matrix n1XX', where X is an i.i.d. data matrix with
zero mean, leading to the well-known Marcenko-Pastur law. Subsequent research by Yin and
Krishnaiah [1983] and Silverstein and Bai [1995] extended these findings to the sample covariance
matrix n-'XEX for data with a linear dependence structure. Zhang [2007] extended to the general
separable product form n ' A/2XBX A2, where A is nonnegative definite, and B is Hermitian.
Another important area of interest is the investigation of extreme eigenvalues. Johnstone [2001]
explored the fluctuation of the extreme eigenvalues of the sample covariance matrix n~ XX/,
proving that the standardized largest eigenvalue follows the Tracy-Widom law. Related extensions
include sample covariance matrices with linear dependence structures [El Karoui, 2007], Kendall
rank correlation coefficient matrices [Bao, 2019], among others. Considerable attention has also
been given to the study of linear functionals of eigenvalues. Bai and Silverstein [2004] established
the Central Limit Theorem (CLT) for the Linear Spectral Statistics (LSS) of the sample covariance
matrix n71AY2XX A2, later extended to sample correlation coefficient matrices [Gao et al., 2017],
and separable product matrices [Bai et al., 2019]. To summarize, existing results in spectral theory
of large dimensional sample covariance matrix predominantly rely on independent component
data structure which, unfortunately, HCD does not fit in.

Specifically, current second-order limit theorems do not apply to HCD, making the exploration
of spectral theory for HCD with distinct constraints crucial. This paper delves into spectral theory



for sample covariance matrices of HCD, including LSD, extreme eigenvalues, and CLT for LSS.
Analyzing HCD faces challenges due to compositional data’s specific dependence structure, making
existing techniques for i.i.d. observations less applicable. However, we can assume that HCD
are generated from unobservable basis data, while the underlying basis data follow independent
component model structure. In this way, spectral analysis of the sample covariance matrix of HCD
can be approached through the basis data. In fact, the structure of the sample covariance matrix
of HCD is similar to that of the Pearson sample correlation matrix in basis data. Therefore, we
leverage the analysis methods of the spectral theory of the Pearson sample correlation matrix to
study the spectral theory of the sample covariance matrix of HCD. In the field of random matrices,
research on the spectral theory of the Pearson sample correlation matrix based on independent data
is relatively mature. Jiang [2004] demonstrated that the LSD of sample correlation matrix for i.i.d
data is the well-known Marcéenko-Pastur law. Gao et al. [2017] derive the CLT for LSS of the Pearson
sample correlation matrix. The derivation of spectral theory for the sample covariance matrix of
HCD can benefit from methods in this context. The LSD of the sample covariance matrix for HCD
in Theorem 2.3 is established following the strategy in Jiang [2004], and we further investigate the
extreme eigenvalues in Proposition 2.4. The proof strategy of CLT for LSS in Theorem 2.5 follows
the methodologies outlined in Bai and Silverstein [2004] for the sample covariance matrix and Gao
et al. [2017] for the sample correlation matrix. However, due to the dependence inherent in HCD,
certain tools from these works cannot be directly applied to the sample covariance matrix of HCD.
In response, we introduce new techniques. Specifically, we establish concentration inequalities for
compositional data. One of the central ideas of the paper, grounded in concentration phenomena,
permeates the entire proof (details in Section 5.2 and Section 5.3), where we develop three crucial
technique lemmas (see Lemmas 5.3 — 5.5) essential for the proof. Finally, it is noteworthy that the
mean and variance-covariance in Theorem 2.5 differ from those in Bai and Silverstein [2004], and
additional terms are present in both the mean and variance-covariance.

The paper is organized as follows. Section 2.2 investigates the LSD and extreme eigenvalues
of the sample covariance matrix for HCD. Section 2.3 establishes the CLT for LSS of the sample
covariance matrix for HCD. Section 3 studies a test problem on the population covariance structure
of the basis data based on our CLT result. Section 4 reports numerical studies. Section 5 presents
the sketch of proof of our CLT for LSS. Auxiliary lemmas and technical proofs are relegated to the
supplementary material.

Before proceeding, we introduce some notations that will be used throughout this paper. We
adopt the convention of using regular letters for scalars and boldface letters for vectors or matrices.
For any matrix A, we denote its (i, j)-th entry by A;;, its transpose by A/, its trace by tr(A), its j-th
largest eigenvalue by A;(A), its spectral norm by ||A|| = {/A;(AA’). For a set of random variables
{Xyu};~; and a corresponding set of nonnegative real numbers {a,};",, we write X,, = Op(a,,) if, for
any ¢ > 0, there exists a constant C > 0 and N > 0 such that IP(|X,,/a,| > C) < e for all n > N. We write

5. P
X, = op(ay) if lim,_,P(|X,/a,| > €) = 0 for any € > 0. Furthermore, we write X, x (X, = X,

D
X — X respectively) if X,, converges almost surely (in probability, in distribution, respectively) to
X. We denote by C and K constants that may vary from line to line.

2 Main Results

2.1 Preliminaries and notations

Let X, = (xjj)uxp denote the n x p observed data matrix, and each row (x;i,...,x;,) represents
compositions that lie in the (p — 1)-dimensional simplex SP~! = {(yy,...,7,): Z?Zl y;i=1,9; > 0}. We
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assume that the compositional variables arise from a vector of latent variables, which we call the

basis. Let W, = (w;;),xp denote the n x p matrices of unobserved bases, where w;;’s are positive

and i.i.d. with mean y > 0 and variance o2. The observed compositional data is generated via the

normalization

__ Yij
Z?;l Wie

The unbiased sample covariance matrix of X,, is defined by S,, 5y = %x;cnxn, where C,, =1, — %1,11;1,

Xij ’ 1S1§ﬂ,1§]§p (].)

1, is a n-dimensional vector of all ones, and N = n—1 is the adjusted sample size. Since Zlgzl wip =
pu(l +¢;) with sup; €; = 0p(1), we rescale S,  as

1 )
Bp,N = pzsn,N = ﬁ(pxn) Cn(pxn)'

For any p x p Hermitian matrix A, its empirical spectral distribution (ESD) is defined by

where I denotes the indicator function. If F2(x) converges to a non-random limit F(x) as p — oo,
we call F(x) the limiting spectral distribution of A,. The LSD of A, is described in terms of its
Stieltjes transform. The Stieltjes transform of any cumulative distribution function F is defined by

1
mF(z):jA ZdF(/\), zeC":={z:Im(z)>0}.
Many classes of statistics related to the eigenvalues of B, 5y are important for multivariate inference,
particularly functionals of the ESD. To explore this, for any function f defined on [0,c0), we
consider the linear spectral statistics (LSS) of B, yy given by

By (v — L
ff(x)dF (%) b

1=

f(/\i(Bp,N))-

In this paper, we study the asymptotic spectral properties of B, y, including the LSD (see
Theorem 2.3), the behavior of extreme eigenvalues (see Proposition 2.4), and the CLT for LSS (see
Theorem 2.5).

2.2 Limiting spectral distribution and extreme eigenvalues

Analyzing HCD poses challenges due to its unique dependence structure, making existing tech-
niques for i.i.d. observations less applicable. To overcome this difficulty, we assume that the
compositional data is generated from basis data and the basis data follows the commonly used
independent component structure. Specifically, the unbiased sample covariance matrix of X, is
defined by

1
N
where X,, = A,W,,and A, = diag(1/ Z;]:l wyj..., 1/ Z?Zl wy;). Here, we assume that W, = (wy,...,w)
has i.i.d. components w;;, with E(w;;) = p> 0, Var(w;;) = 0. Recall that the Pearson sample corre-
lation matrix for W, is

1., )
Sn,N = ﬁxncnxn = WnAnCnAan’

~ ~ 1~ ’ ~
Rn - Exncnxn - EAanCnWHApJ
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where X, = W, A, A, = diag(vnlw, —Wlllgl,...,\/ﬁllwp —Wpllgl), and w; = n iy, w;;1, with 1,,
being an n-dimensional vector whose entries are all 1’s. It can be seen that the normalizing matrix
A, of S, v is very similar to A, of R,,. The former uses (Z?Zl wij)’1 for normalization, while the

latter utilizes \/ﬁlle - %jllgl. This allows us to leverage the techniques from the spectral theory of
the Pearson sample correlation matrix in studying the asymptotic spectral properties of the sample
covariance matrix for HCD.

Before diving into the LSS of B, iy, we first explore its LSD and extreme eigenvalues. Specifically,
suppose the following assumptions hold,

Assumption 2.1. {wij >0,i=1,...,n,j=1,...,p}arei.i.d. real random variables with Ewy; = u >0,
Var(wy1) = 02 and B(wy; —y)4 < co. For notational simplicity, we write A = 02/u? throughout the paper.

Assumption 2.2. cy = p/N tends to a positive ¢ > 0 as p, N — co.

Theorem 2.3. Under Assumptions 2.1 and 2.2, with probability one, the ESD of B,  converges weakly
to a deterministic probability distribution with a density function

) = 5B —x) - al., o)

and a point mass 1 —1/c at x = 0if ¢ > 1, where a:= A(1 —+/c)?, b := A(1 +/c)?, and [y], := max{y,0}.

Proof of Theorem 2.3. LetY, = anAan/\/N and Y, = Can/(\/ﬁy). Note that the LSD of Y, Y,,
is the well-known Marcenko-Pastur law with the density function given by (2). From Theorem
A.47 of Bai and Silverstein [2010] and our Proposition 2.4, it suffices to prove that

N a.s.
“Yn_Yn” — 0. (3)

By Lemma S1.3, we have maxlsiSnIZ?zl w;i/(pp) =1 23 0, which implies that |[puA, —L,|| Zo.

Moreover, we get from Theorem 2.9 in Benaych-Georges and Nadakuditi [2012] that ||Wn/(,u\/ﬁ)||
is bounded almost surely. Hence, we have

a.s.
— 0.

1Y, =Y, = |

W, S (i
Culpplhy =) 25| < lIppe, - Ll | 25
This completes the proof. O]

We denote the LSD of B, iy by F¢(x), whose density function is fyp(x), as defined in (2). The
superscript ¢ indicates the dimension-to-sample ratio. For each z € C*, by our Theorem 2.3 and
Theorem 1.1 in Silverstein and Bai [1995], the Stieltjes transform of F¢, denoted m(z) = mp<(z), is
the unique solution to the equation

1
Al—-c—czm)—2z

m =

in the set {m € C: —(1 —c)/z+cm € C*}. Consider a companion matrix B, N = Pﬁzcnxnx;cn, which
is of size n x n and differs from B, y by |n - p| zeros eigenvalues. The LSD of B, v is given by
Ff(x) = (1 = ¢)I[g,00)(x) + cF(x). Its Stieltjes transform

1-¢

m(z) = mpe(z) = cm(z) — —

with inverse
1 cA

m(z) " T+ Am(z)

2= 2(m) = -
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Proposition 2.4. Under Assumptions 2.1 and 2.2, we have

a.s

Amax(Bpn) S AL+ V) and  Apin(B,n) = A(L - V0)%, (4)

where Amax (B n) is the largest eigenvalue of B, n, and Ayin(B,, ) is the smallest non-zero eigenvalue of
B, n. Furthermore, for any € >0, 1, > A(1 + Ve)? and 0 <175 < A(1 = Ve)?[g<c<1), under the condition
lwij —pl < oV (i =1,...,n, j = 1,...,p) where {5,,} is a positive sequence satisfying that 5, — 0,
S, nl/* — co, 8,4 Elw; _”|4I{|wl—y|25n\ﬁ} — 0as n — oo, we have

P(Amax(Bpn) 2 11) = 0(n™)  and  P(Amin(Bpn) <112) = 0(n™). (5)

Proof of Proposition 2.4. The convergence (4) is an immediate consequence of Equation (2.7) in
Jiang [2004], Theorem 1.4 in Xiao and Zhou [2010], Equation (3) and Lemma S1.1. The proof of (5)
is postponed to the supplementary material. O]

Remark 1. The results of extreme eigenvalues are useful in locating eigenvalues of the population
covariance matrix and proving the CLT for LSS. Proposition 2.4 demonstrates that, with probability
one, there are no eigenvalues of B, \y outside the support of the LSD under Assumptions 2.1 - 2.2.
These results are crucial for applying the Cauchy integral formula (see Equation (11)) and proving
tightness.

Remark 2. For the special case when p = n, the matrix X,, = (wz’j/Z?:1 w;¢) is a random Markov
matrix. The work of Bordenave et al. Bordenave et al. [2012] provided key insights into the
first-order properties of both eigenvalues and singular values of the n x n matrix X,,, including the
limiting distribution of its singular values and the convergence of its extreme singular values. Our
first-order results (see Theorem 2.3 and Proposition 2.4) can be viewed as an extension of their
findings regarding singular values when p,n — oo and p/n — c € (0, o).

In contrast to the scope of Bordenave et al. Bordenave et al. [2012], our work focus on a different
setting and investigates a different aspect of X,,. Specifically, we examine the centered version
C,.X,, without requiring p = n and we focus on second-order fluctuations of LSS. Beyond first-order
limits, we derive the CLT for LSS of the sample covariance matrix of X,, (see Theorem 2.5 in the
following Section 2.3).

2.3 CLT for LSS

We focus on linear functionals of eigenvalues of B, v, i.e. %Zle f(Ai(Bp,n)). Naturally, it converges
to the functional integration of the LSD of B, y, that is, f f(x)dF¢(x). In this section, we explore the

second-order fluctuation of %Zle f(A;), which describes how such LSS converges to its first-order
limit. Define

Gy (f) =pff(x>d{PBp»N (x) = FN (x)),

where FN(x) is obtained by substituting cy for ¢ in F¢(x), the LSD of B, y. We show that under
Assumptions 2.1 — 2.2 and the analyticity of f, the rate of Jf(x)d{FBP'N (x) — FN(x)} approaching
zero is essentially 1/n, and G, y(f) convergence weakly to a Gaussian variable.

Before presenting the main result, we recall some notations. We denote A = ¢2/p®. Recall
that m(z) and m(z) are the Stieltjes transforms of the LSD F¢(x) and the companion LSD F¢(x),
respectively. Furthermore, we define m’(z) as the derivative of m(z) with respect to z throughout
the rest of this paper. The main result is stated in the following theorem.



Theorem 2.5. Under Assumptions 2.1 and 2.2, let fi, f»,..., fx be functions on R and analytic on an open
interval containing [A(1 = vc)*Ijp<c<1), A(1 +Vc)?]. Then, the random vector (G, N(f1),--., Gp N (fk))
forms a tight sequence in p and converges weakly to a Gaussian vector (Xg,..., Xz ) with mean function

oA f@)m’(2){1 + Am(2)}

T omi 1+)\m( )}2 —cA?m?(z)]? a
f(z)m”(2){1 + Am(z){z(hy + A)m(z) + A}
27(196 {1+Am( )2 —cA2m?(z) dz
f @22 @)1+ Am(z)H(@ + a)m?(z) + 2%m'(2) |
 2mi 96 {1+ Am(2)}? - cA2m?(z) “

and covariance function

Cov(Xy, X,) = - 9861 éjz lel )}2 dm(z;)dm(z;)

clan +az) Zl)g( 2)
d d ,
42 9Sc1 9502 {1+ Am(z)) {1+ Am(zp))? m(zy)dm(z,)

where a = B(wy1/p—1)* =312, ay = ~4AEw],/p® + 413 + 1202 + 47, hy = —2Bw;,/p3 + 302 + 51+ 2.
The contours C,Cy,C, are closed and taken in the positive direction in the complex plane, each enclosing
the support of LSD, i.e., [A(1 = V¢)*[jp<c<1p A(1 + V)?]

Remark 3. We restrict attention to functions f which are analytic in a region of the complex plane
containing the support of LSD. As demonstrated in Najim and Yao [2016], the analyticity require-
ment for f in the CLT can be relaxed by representing the LSS with the help of Helffer-Sjostrand’s
formula instead of the Cauchy integral formula. For now, we focus on analytic cases because
analytic functions are sufficient to achieve our current statistical objectives.

Applying Theorem 2.5 to three polynomial functions, we obtain the following corollary. The
proof of Theorem 2.5 is postponed to Section 5, and detailed calculations in these applications are
postponed to the supplementary material.

Corollary 2.6. Under the same notations and assumptions as in Theorem 2.5, let f, = x" forr=1,2,3,
we have

Gpn(fi) =tr(ByN) - P?\—>N(#1’V1)
Gpn(f2) = tf(Bp,N) —p(1+cy)A? 2 N(pa, V),
D
Gon(f3) = tf(B;,N) —p(1+3cy +c3)A° = N(pz, V3),
where cyy = p/N, and

p1=hy,  py=(1+c)A%+2(1 +c)Ahy +c(ag + ay),
3 = (2+6¢+3c¢*)A% +3(1 + 3¢+ c?)A%hy + 3c(1 + ) M) + az),
Vi =2cA? +clay +ay),
Vy =4c(2+¢)(1+20) A+ 4c(1 + )2 A% (a; + ),
Vs = 6¢(1+6¢+3c2)(3+6c+c2)A%+9¢(1 +3c+c?)? A4 ay + ay).



3 Application

)’ € R? be a random vector, where {w;}} , are independent random variables

w
Letx = (&, %2 £ i

wlw’ w
and w := szl w;. We aim to formally test

Hy: {w,-}f:1 arei.i.d., vs Hj: {wi}f:1 are not i.i.d.,

based on n samples under the regime p,n — oo, p/n — ¢ € (0,00). Under the null hypothesis Hy,
the vector x is exchangeable, that is, its distribution is invariant under any permutation of its
coordinates, implying identical marginals and symmetric dependence. Its covariance matrix is
given by
V3 1 V3
Cov(x) = —2(1 -1 1’):; —2_G,, (6)
plo-D\F p P ) T p(p-1)F

where vj := IE{pwl/(Ziz1 wy) — 1}2. Readers are referred to Section S2.5 of the supplementary
material for the proof of (6).
Remark 4. We cannot fully characterize “Hj : {w; }‘?:1 are i.i.d.” by Cov(x) alone because Cov(x) and
Cov(w) do not have a one-to-one correspondence. In fact, the observed data x may satisfy (6) even
when the underlying components {wi}f:1 are not independent. For example, consider the case
where p = 2k is even for some integer k > 1, and let

{w-}]f %Uniform(o 1), wp = w;, with probability %,
st T ! 1-w;, with probability %

It is easy to verify that {wz-}f:1 are uncorrelated but dependent, and therefore do not satisfy Hj.
However, Cov(x) still satisfies (6).

This example implies that even when w have entirely different dependency structures, the
covariance of x can still be the same. However, the dependence structure of w is critical to the
behavior of the LSS. When the dependence structure of w changes, the CLT for the LSS can also
change, altering the distribution of the test statistic. In other words, if we were to characterize
Hj in terms of Cov(x), the distribution of the test statistic under H, would be uncertain and
unidentifiable, making valid testing infeasible. Therefore, we must characterize H in terms of w,
since its dependence structure directly determines the behavior of the LSS and thus the distribution
of the test statistic.

3.1 Test statistic and its limiting null distribution

Given i.i.d. samples {x;};" ;, we construct a test statistic based on the rescaled sample covariance
matrix B, v, as defined in Section 2.1. We consider the following Frobenius-norm-type test statistic:

,VO
P2G

2
F’ B .= COV(pX) = F

1
T:= }—7||BP,N—B p

where ||Al|f := (Zi,]- Al‘zj)l/2 denotes the Frobenius norm of a matrix A. The statistic measure the
distance between Cov(px) and its empirical counterpart. We reject Hy when T is sufficiently large.
k

The test statistic T is closely related to LSS of B, v, particularly for test functions f(x) = x%,
k =1, 2. Specifically,




Here, we use the identity 11’,Bp,N 1, = 0. Using the CLT for tr(B,, ) and tr(B;’N) (see Corollary 2.6)
under Hj and the Delta method, the limiting null distribution of T is obtained:

Theorem 3.1. Suppose that Assumptions 2.1 and 2.2 hold, and Elwy; — u|®** < oo for any s > 0, under
Hy, we have

p(T = pr) > N(0, 02),

where 5
2 Ah{ + A
pl%, O'% :4/\2V1—4:/\V12+V2,

VIZ = 2/\C(1 +C)(2/\2 +aq + 0(2),

— A2y + 2
HT N D

hy, a1, a, are defined in Theorem 2.5, py, Vy, V, are defined in Corollary 2.6.

The detailed proof is postponed to the supplementary material. In practical applications, we
replace y7 with its finite sample counterpart fiy. To eliminate correlation between T and jip, we
split the data X into two parts:

(1) 1)
X = Xinyxp = X , £—>Cl €(0,00), £_>cze(0,oo),
(2) x(2) n n
Xinpxp 1 2

where X(1) is used to calculate the test statistic, and X?) is used to compute fiy. The new test
statistic is defined by

A0 2
7_ Llgm _ P2
pll" PN p—1 7Pl
where Ny =n; -1, and
W) P e)Y (1) 1 kv
BperzN_l(X )Cnlx ’ pn2 thp ij
i=1 j=

Moreover, we estimate yu7 by fir, which is obtained by replacmg N in pup with N, =n,; -1, and
substituting the terms A, E(w;/p), and E(wy/p— 1)* with A = V3, and

E(_) pny Z«Z« E(%_l) -

i=1 j=1

1y

Mu

20 ]:1

The consistency of A, I/E\(wll/;/t)S, and E(wll/y —1)% follows from the law of large numbers. Using
these newly defined notations, we derive the CLT for T as follows:

Theorem 3.2. Suppose that Assumptions 2.1 and 2.2 hold, and Blw; | — u|®* < co for any s > 0, under
Hy, we have

~ .. D
p(T - jir) > N(pr, 07 +03),
where o*% is defined similarly to 0% in (7), with c replaced by 1, and
w 4
Ha :—2C1/\h1, GA_ /\2C1C {E(%—l) —/\2+h2—2/\h1}.
Here, hy and h; are defined in Lemma 5.3.
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The detailed proof of this theorem is postponed to the supplementary material. Based on
Theorem 3.2, the procedure for testing Hj is as follows:

Reject Hy if p(T — jir) — iy >za,/6%+6§, (8)

where z, represents the upper a-quantile of the standard normal distribution corresponding to

. . N A2 A2 .. . 2 2
the nominal level a. The quantities ji,, 6%, and d} are finite-sample estimates of y,, 0% and oy,

respectively. These estimates are obtained by substituting A, E(w;1/p)3, and E(w;/u - 1)* with
their corresponding empirical estimates as previously defined.

3.2 Power analysis and discussion

In this section, we conduct a power analysis for a specific alternative hypothesis in which Cov(w)
remains diagonal but has non-identical entries. We also briefly discuss the power of the test under
a non-diagonal alternative hypothesis using an example.

Consider the following notations:

wi]‘
Zi:l Wik
We assume that V = WX, where w;; i.i.d. (y, 0?), where X is positive definite and normalized by
tr(X) = p. This normalization is without loss of generality, as Y is invariant under scaling of the

basis data V. The matrices W and X are for the null hypothesis, and V and Y are for the alternative
hypothesis. Define the rescaled sample covariance matrices of X and Y as follows:

111']'

wnxp (wl]) Xn><p (xl]) Xij =
Zk 1vzk

’ Vn><p (vl]) n><p (yl]) yij

2 2

1
BO = p—X,Cnx, Bl = p_Y’CnY: Cn = In - _1711,
n n h

-
To guarantee that the proposed method have good power, we need to show that
E|[B, - B|? > E|B, - Bl;. (9)

We prove this inequality under the specific alternative hypothesis where X remains diagonal but
has non-identical entries. Specifically, the matrix ¥ has the form ¥ = diag(d,,...,d,) with the

normalization ij:l di = p. By detailed calculations (see Supplementary Material), we have

/\2 2 p d2
E ot o(p), 1E||&—B||%-¥+O<p>. (10)

E|[By - B||? =

By the Cauchy-Schwarz inequality, we have ZZ:l d,f >p, and Zizl d]f = p only holds when d; =
- =d, = 1. Therefore, inequality (9) holds true when {dk}iz1 are different.
In the following example, we provide a power analysis for a specific alternative where ¥ is
non-diagonal.

Example 1. Suppose that w;; iid Exp(1) and X has the following form

1 o

11



In this case, we can derive that (see Supplementary Material for details)

2 P2
E|Bo - B = =+ o(p),

(a2+ 1)2p2 N 6a2p3
(@+1)*n  (1+a)*(p+1)

E|[B; - B} = 5 +0(p).

Hence, the inequality (9) holds if and only if

2@®+a+1)(p+1)?
3a p

n>

Note that the RHS of this inequality serves as a critical threshold depending on both & and p. When
-1 <a <0, the threshold is negative, allowing the proposed test to detect non-diagonal covariance
structure for any sample size n. In contrast, when a > 0, the proposed test fails to effectively detect
such structure unless n exceeds the critical threshold.

The main challenge in a general theoretical power analysis arises from the complexity of the
transformation from w to x. If w were directly observable, changes in Cov(w) would be reflected
directly in the LSS of w, resulting in strong testing power. However, because we only observe x,
the normalization can weaken or even eliminate the signal from Cov(w). As shown in Remark 4,
different w can produce identical Cov(x), causing the test statistic based on the LSS of x to lose
power. This effect is challenging to characterize precisely, making a general power analysis very
difficult.

4 Numerical experiments

4.1 Limiting spectral distribution

In this section, simulation experiments are conducted to verify the LSD of the sample covariance
matrix B, y from compositional data, as stated in Theorem 2.3. Compositional data {x;;}i<i<n,1<j<p

is generated by the normalization x;; = wi]-/zgzl wi¢. We generate basis data w;; from three
populations, drawing histograms of eigenvalues of B, y and comparing them with theoretical
densities. Specifically, three types of distributions for w;; are considered:

1. w;; follows the exponential distribution with rate parameter 5;

2. w;j; follows the truncated standard normal distribution lying within the interval (0,10),
denoted by TN(0, 1;0,10), where the first two parameters (0 and 1) represent the mean and
variance of the standard normal distribution;

3. w;j; follows the Poisson distribution with parameter 10.

The dimension and sample size pair, (p,n), is set to (500,500) or (500,800). We display his-
tograms of eigenvalues of B, y generated by three populations under various (p, n) combinations
and compare them with their respective limiting densities in Figures 1 — 2. The figures reveal that
all histograms align with their theoretical limits, affirming the accuracy of our theoretical results.

12



(o] 1 2 3 4 0.0 0.5 10 15 20 o] 1 2 3 4
Eigenvalues Eigenvalues Eigenvalues

(a) Exponential(5) (b) TN(0,1;0,10) (c) Poisson(10)

Figure 1: Histograms of sample eigenvalues of B,y with (p,7) = (500,500). The curves are density
functions of their corresponding limiting spectral distribution.

2
Eigenvalues Eigenvalues Eigenvalues

(a) Exponential(5) (b) TN(0,1;0,10) (c) Poisson(10)

Figure 2: Histograms of sample eigenvalues of B,y with (p,7) = (500,800). The curves are density
functions of their corresponding limiting spectral distribution.

4.2 CLT for LSS

In this section, we implement some simulation studies to examine finite-sample properties of some
LSS for B, y by comparing their empirical means and variances with theoretical limiting values, as
stated in Corollary 2.6.

First, we compare the empirical mean and variance of G, y(x"), r = 1, 2,3, with their correspond-
ing theoretical limits in Corollary 2.6. Two types of data distribution of w;; are consider:

1. w;; follows the exponential distribution with rate parameter 5;
2. w;j follows the Chi-squared distribution with degree of freedom 1.

Empirical mean and variance of G, y(x"), are calculated for various combinations of (p, n) with
p/n =3/4 or p/n = 1. For each pair of (p,n), 2000 independent replications are used to obtain
the empirical values. Tables 1 — 2 report the empirical results for Exp(5) population and x?(1)
population, respectively. As shown in Tables 1 — 2, the empirical mean and variance of G, y(x")
closely match their respective theoretical limits under all scenarios. To verify the asymptotic
normality of LSS, we draw the histogram of normalized LSS, EPIN(xr) ={Gpn(x") - w/NV,, =
1,2,3, where y, and V, are defined in Corollary 2.6, and compare them with the standard normal
density. Figures 3 and 4 depict the histograms of EP,N(x’) for Exp(5) population with p/n =1 and
x%(1) population with p/n = 3/4, respectively. The histograms for the cases of Exp(5) population
with p/n = 3/4 and x%(1) population with p/n = 1 exhibit similar patterns and are omitted for
brevity. It can be seen from Figures 3 — 4 that all the histograms conform to the standard normal
density, which fully supports our theoretical results.

13



Table 1: Empirical mean and variance of G, y(x"), r =1, 2,3, with w;; ~ Exp(5).

Gp,N (x) Gp,N (XZ) Gp,N (x3)

p/n n mean var mean var mean var

100 -2.01 2.63 4 36.54 7.82  463.32

200 -1.99 2.93 -3.85 39.73 -7.23  485.05

Emp 3/4 300 -1.95 3.03 3.57  40.3 -6.32  483.76
400 -2.04 2.95 -3.98 38.78 7.67  460.01

Theo 2 3 3.75 39 6.81 457
100 -1.91 3.61 3.83  64.09 6.56 1064.75

200 -1.96 3.89 3.96 68.37 -6.91 1090.14

Emp 1 300 201 3.97 -4.06  68.7 -7.16 1082.72
400 -1.98 3.71 3.99  64.22 -7.07 1010.09

Theo -2 4 -4 68 -7 1050

Table 2: Empirical mean and variance of G, y(x"), r = 1,2,3, with w;; ~ x?(1).

Gp,N(x) Gp,N (x2) Gp,N(xs)

p/n n mean var mean var mean var

100 -5.79 15.53  -24.19 888.99 9731  46790.03

200 -5.96 16.74  -24.39  920.63 96.17 45375.75

Emp 3/4 300 _594 166 23.75 882.92 -90.59  42487.68
400 -5.88 17.51 222,68 912.28 -81.2  42922.06

Theo -6 18 23 918 83  41806.12
100 -5.92 20.81 26.15 1563.02  -102.73 107846.2

200 -5.98 23.01 25.15 1639.95 290.25 105467.9

Emp 1 300 581 21.82  -23.16 1526.34 7454 96864.11
400 -6.13 23.18  -25.41 1599.96 290.31 99475.82

Theo -6 24 24 1600 -80 96000

M 2 0 2 4 2 0 2 4 M 2 0 2
Eigenvalue Eigenvalue Eigenvalue

(a) Gp,n(x) (b) Gpn(x?) (c) Gpn(x?)

Figure 3: Histograms of normalized LSS EP,N(xr), r=1,2,3, with w;; ~ Exp(5) and p = n = 400. The
curves are density functions of the standard normal distribution.
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Figure 4: Histograms of normalized LSS EPIN(xr), r=1,2,3, with w;; ~ x%(1) and (p,n) = (300,400).
The curves are density functions of the standard normal distribution.

4.3 Covariance testing for basis data

We conduct numerical simulations to determine the empirical size and power of the proposed
test statistic. The nominal significant level is set to be a = 0.05. To evaluate the finite-sample
performance, we consider a range of (p, n) settings and perform 2000 independent replications for
each. To assess empirical size, we consider two scenarios for the basis data matrix W, = (w;;),xp:

* Exponential model: w;; Lid Exp(rate = 5);

* Chi-squared model: w;; Hd21).

To examine empirical power, we consider two types of alternatives. For both, an n x p matrix Z,,
with i.i.d. entries (from either distribution above) is first generated, and then the data matrix is
constructed as W,, = Z,, X, with two choices of the matrix X:

* ¥ =X;: The first diagonal entry is ¢;, the other diagonal entries are 1, and all other entries
are zero, with ¢, €{1,3,3.5,4,4.5}.

* ¥ =¥;: Ones on the main diagonal, 1, on the first subdiagonal (below the diagonal), and
zeros elsewhere, with i, € {0,-0.2,-0.25,-0.3,-0.35}.

Simulation results are reported in Tables 3 — 4. We conduct simulations under both the estimated
and known distribution scenarios for {w;;}, with the latter (benchmark) results reported in paren-
theses. In the unknown distribution scenario, the total sample is evenly split, with n; = n, =n/2,
where 1, is used for parameter estimation and n; for computing the test statistic.

The empirical power is close to the significance level a = 0.05 when (p, n) is large. The empirical
power increases as the strength of 1, and 1), increases, and it also grows with larger values of (p, n).
The power based on estimated parameters is generally lower than that using the true parameters,
which is due to the limited precision of the parameter estimation. These results confirm the
theoretical properties of the test and demonstrate its effectiveness in detecting alternatives.

5 Proof of Theorem 2.5

In this section, we first present the difference between the CLT for centralized sample covariance
Bg and unbiased sample covariance B, 5 by substitution principle in Section 5.1, where

2
P 1
Bg = pzsgl = F(XH - IEXn),(Xn - IEXn) = ;Y;lYVU
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Table 3: Empirical size and power (2000 replications) for X; values in parentheses are based on
known {w;;} distribution and true parameters are used.

Size Power
c p n 1y Pr=1 Pr=3 P1=35  ¢Pr=4 P;=45
Exp(5) model
150 150 150 0.0715 0.829 0.9175 0.953 0.9765
(0.0605) (1.0) (1.0) (1.0) (1.0)
300 300 300 0.068 0.9615 0.996 0.999 1.0
0.5 (0.041) (1.0) (1.0) (1.0) (1.0)
’ 450 450 450 0.0515 0.9895 1.0 1.0 1.0
(0.055) (1.0) (1.0) (1.0) (1.0)
600 600 600 0.046 0.995 1.0 1.0 1.0
(0.0535) (1.0) (1.0) (1.0) (1.0)
150 75 75 0.087 0.401 0.5215 0.613 0.675
(0.052) (0.9995) (1.0) (1.0) (1.0)
300 150 150 0.0585 0.4765 0.682 0.8205 0.8915
1 (0.052) (1.0) (1.0) (1.0) (1.0)
450 225 225 0.0625 0.5635 0.787 0.9115 0.9585
(0.0635) (1.0) (1.0) (1.0) (1.0)
600 300 300 0.0625 0.6095 0.8525 0.953 0.9885
(0.0625) (1.0) (1.0) (1.0) (1.0)
150 50 50 0.09 0.241 0.3295 0.3925 0.443
(0.045) (0.978)  (0.9985) (1.0) (1.0)
300 100 100 0.073 0.2705 0.3975 0.519 0.62
15 (0.047) (0.995) (1.0) (1.0) (1.0)
’ 450 150 150 0.067 0.291 0.467 0.645 0.771
(0.053) (0.9995) (1.0) (1.0) (1.0)
600 200 200 0.06 0.306 0.5195 0.7095 0.8275
(0.053) (1.0) (1.0) (1.0) (1.0)
x2(1) model
150 150 150 0.082 0.761 0.882 0.935 0.964
(0.0535) (1.0) (1.0) (1.0) (1.0)
300 300 300 0.0755 0.9075 0.9765 0.9935 0.997
05 (0.0505) (1.0) (1.0) (1.0) (1.0)
’ 450 450 450 0.0675 0.967 0.998 1.0 1.0
(0.0505) (1.0) (1.0) (1.0) (1.0)
600 600 600 0.0555 0.982 1.0 1.0 1.0
(0.0545) (1.0) (1.0) (1.0) (1.0)
150 75 75 0.0865 0.41 0.5315 0.615 0.6915
(0.0605) (0.984) (1.0) (1.0) (1.0)
300 150 150 0.069 0.486 0.661 0.7815 0.86
. (0.0525) (0.999) (1.0) (1.0) (1.0)
450 225 225 0.0705 0.5485 0.7615 0.8745 0.9315
(0.0425) (1.0) (1.0) (1.0) (1.0)
600 300 300 0.065 0.586 0.8015 0.924 0.965
(0.047) (1.0) (1.0) (1.0) (1.0)
150 50 50 0.0895 0.2745 0.3595 0.438 0.5005
(0.0545) (0.876)  (0.9695)  (0.9915)  (0.9985)
300 100 100 0.068 0.2935 0.4265 0.543 0.645
s (0.0455) (0.9595)  (0.998) (1.0) (1.0)
’ 450 150 150 0.0635 0.333 0.4885 0.6255 0.7345
(0.0575) (0.9875) (0.999) (1.0) (1.0)
600 200 200 0.0595 0.3265 0.5275 0.686 0.7935
(0.0535) (0.9905) (1.0) (1.0) (1.0)
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Table 4: Empirical size and power (2000 replications) for X,; values in parentheses are based on
known {w;;} distribution and true parameters are used.

Size Power
c p ny 1y ¥ =0 Pp=-02  Pp=-025 Pp=-03  ¢pp=-035
Exp(5) model
150 150 150 0.0715 0.5095 0.73 0.887 0.9575
(0.0605) (1.0) (1.0 (1.0) (1.0)
300 300 300 0.068 0.958 0.9995 1.0 1.0
0.5 (0.041) (1.0) (1.0) (1.0) (1.0)
’ 450 450 450 0.0515 0.9995 1.0 1.0 1.0
(0.055) (1.0) (1.0) (1.0) (1.0)
600 600 600 0.046 1.0 1.0 1.0 1.0
(0.0535) (1.0) (1.0) (1.0) (1.0)
150 75 75 0.087 0.1795 0.2315  0.2615 0.28
(0.052) (1.0) (1.0) (1.0) (1.0)
300 150 150 0.0585 0.334 0.495 0.678 0.79
1 (0.052) (1.0) (1.0) (1.0) (1.0)
450 225 225 0.0625 0.5785 0.836 0.959 0.9915
(0.0635) (1.0) (1.0) (1.0) (1.0)
600 300 300 0.0625 0.8055 0.9695 0.9985 1.0
(0.0625) (1.0) (1.0) (1.0) (1.0)
150 50 50 0.09 0.112 0.1215 0.1245 0.113
(0.045) (1.0) (1.0) (1.0) (1.0)
300 100 100 0.073 0.176 0.232 0.2885 0.325
15 (0.047) (1.0) (1.0) (1.0) (1.0)
’ 450 150 150 0.067 0.269 0.407 0.5415 0.6525
(0.053) (1.0) (1.0) (1.0) (1.0)
600 200 200 0.06 0.393 0.6005 0.7795 0.8925
(0.053) (1.0) (1.0) (1.0) (1.0)
x2(1) model
150 150 150 0.082 0.3895 0.553 0.687 0.765
(0.0535) (1.0) (1.0) (1.0) (1.0)
300 300 300 0.0755 0.845 0.9815 0.999 1.0
05 (0.0505) (1.0) (1.0) (1.0) (1.0)
’ 450 450 450 0.0675 0.9955 1.0 1.0 1.0
(0.0505) (1.0) (1.0) (1.0) (1.0)
600 600 600 0.0555 1.0 1.0 1.0 1.0
(0.0545) (1.0) (1.0) (1.0) (1.0)
150 75 75 0.0865 0.1375 0.1525  0.1475 0.127
(0.0605) (1.0) (1.0) (1.0) (1.0)
300 150 150 0.069 0.246 0.347  0.4395 0.4925
) (0.0525) (1.0) (1.0) (1.0) (1.0)
450 225 225 0.0705 0.4275 0.653 0.815 0.896
(0.0425) (1.0) (1.0) (1.0) (1.0)
600 300 300 0.065 0.617 0.8715  0.9745 0.9975
(0.047) (1.0) (1.0) (1.0) (1.0)
150 50 50 0.0895 0.1035 0.098 0.083 0.0625
(0.0545) (1.0) (1.0) (1.0) (1.0)
300 100 100 0.068 0.127 0.153 0.166 0.153
s (0.0455) (1.0) (1.0) (1.0) (1.0)
’ 450 150 150 0.0635 0.1915 0.263 0.329 0.363
(0.0575) (1.0) (1.0) (1.0) (1.0)
600 200 200 0.0595 0.284 0.4325 0.5645 0.6595
(0.0535) (1.0) (1.0) (1.0) (1.0)

17



2
Bp,N = pzsn,N = pﬁx;zcnxnl
and Y, = (9ij)uxp, ¥ij = 5~ —land w; = Z?Zl wje. By substituting the adjusted sample size N = n—1
for the actual sample size 1 in the centering term, the unbiased sample covariance matrix B, y and
the centralized sample covariance Bg share the same CLT (see, Section 5.1). The general strategy of
the main proof of Theorem 2.5 is explained in the following and three major steps of the general
strategy are presented in Section 5.3.

The general strategy of the proof follows the method established in Bai and Silverstein [2004]
and Gao et al. [2017], with necessary adjustments for handling the sample covariance matrix of
HCD, where conventional tools are not directly applicable. Our novel techniques play a pivotal role
in overcoming these challenges. To begin with, we follow the strategy in Jiang [2004] to establish the
LSD of B, iy in Theorem 2.3. Then, we develop Proposition 2.4 to find the extreme eigenvalues of
B, n. Notably, these extreme eigenvalues are highly concentrated around two edges of the support,
a crucial aspect for applying the Cauchy integral formula (11) and proving tightness. Given that
compositional data x;; = w;;/ Z?zl wj¢ are not i.i.d., dealing with the CLT for LSS of the unbiased
sample covariance matrix B, y presents challenges. To address this, we employ the substitution
principle [Zheng et al., 2015] to reduce the problem to the CLT for LSS of the centralized sample
covariance Bg. By substituting the adjusted sample size N = n —1 for the actual sample size n in
the centering term, both the unbiased sample covariance matrix B, y and the centralized sample
covariance Bg share the same CLT (see Section 5.1). We then leverage the independence of samples
to further study the CLT for LSS of Bg. Specifically, we exploit the independence of samples to

establish independence for r; = L(@ -1 Zie _ ), w;=p~! Z’é \Wie,i=1,2,...,n, and express

Vi \ w; Tt w;
Bg as Bg 1Y’ Y, =Y/, r;ir.. The ultimate goal is to establish the CLT for LSS of B0
By the Cauchy integral formula, we have

| £ gSf a1

valid for any cumulative distribution function G and any analytic function f on an open set
containing the support of G, where 9% is the contour integration in the anti-clockwise direction. In

our case, G(x) := GO( ):= p{FB ?(x)—F(x)}, ¢, = p/n. Therefore, the problem of finding the limiting
distribution reduces to the study of M,(z) defined as follows:

My(2) = p{my(2) - m(2)} = n{m, (2) - m)(2)},

1 _
p(2) = g (2) = tr(By —2Lp) 7L, (2) = i (2),
1
1, (2) = myag (2) = er(By =) (2) =i (2),
p2
Eg (Xn IEXn)(Xn - IEXn),'

Note that the support of FB»~ is random. Fortunately, we have shown that the extreme eigenvalues
of B, y are highly concentrated around two edges of the support of the limiting MP law (see,
Theorem 2.3, Proposition 2.4). Then the contour C can be appropriately chosen. Moreover, as
in Bai and Silverstein [2004], by Proposition 2.4, we can replace the process {M,(z),z € C} by a

slightly modified process {Mp(z),z € C}. Below we present the definitions of the contour C and
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the modified process Mp(z). Let vy > 0 be arbitrary. Let x, be any number greater than A(1 ++/c).
Let x; be any negative number if A(1 —+/c)? = 0. Otherwise we choose x; € (0, A(1 —+/c)?). Now let
C, ={x+ivy:x€[x,x,]}. Then we define C* :={x;+iv:v e [0,v]JUC, U{x, +iv:v €[0,vy]}, and
C =C*UC*. Now we define the subsets C,, of C on which M, (-) equals to Mp(~). Choose sequence
{e,,} decreasing to zero satisfying for some a € (0,1), ¢, > n™%. Let

= (x+iv:ve[nle,v)), ifx >0,
{x;+iv:ve[0,vy]}, if x; <0,

and C, = {x, +iv:v € [n"'¢,vy]} for any vy > 0. Then C,, = C; UC, UC,. For z = x + iv, we define

M,(2), forze(C,
Mp(z) = { Mp(x, + in"te,), forx=x,ve[0,nle,], andif x; >0
M (xp + in"le,), forx=x,ve[0,n e,

Most of the paper will deal with proving the following proposition.

Proposition 5.1. Under the same notations and assumptions as in Theorem 2.5, ]\7Ip(z) converges weakly
to a two-dimensional Gaussian process M(z) for z € C, with mean

2(2){1 + Am(z)}

m
EM(z) = 1+ Am2) = cA2m’(2) [{z(hl + )m(z) + A}
(12)
2 2 2, cA’m(z)
+ez m(z){(al +a)m?(z) + 20%m (z)}— TES TR EElt
and covariance function
Cov(M(z1), M(22))
_ 2[ m(z)m'(zy) 1 ] clay +az)m’(z1)m’(z5) (13)
{m(z1) -m(z2)}?  (z21-22)% | {1+ Am(z))}?{1 + Am(z)}*

Now we explain how Theorem 2.5 follows from the above proposition. As in Bai and Silverstein
[2004], with probability one, |ff(z){Mp(z) —M,(z)}dz| — 0 as n — co. Combining this observation
with (11), Theorem 2.5 follows from Proposition 5.1. To prove Proposition 5.1, we decompose

M, (z) into a random part MI(,I)(Z) and a deterministic part Ml(,z)(z) for z € C,, that is, M,(z) =

M,(]D(z) + M;,z)(z), where

1) (

(z) = p{mp(z) —IEmp(z)} and MY)(z) = p{lEmp(z) - mo(z)}.

(
M, p

The random part contributes to the covariance function and the deterministic part contributes
to the mean function. By Theorem 8.1 in Billingsley [1968], the proof of Proposition 5.1 is then
complete if we can verify the following three steps:

Step 1 Finite-dimensional convergence of MI(7 )(z) in distribution on C,, to a centered multivariate

Gaussian random vector with covariance function given by (13).

Step 2 Tightness of the Mz(,l)(z) forzeC,.
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Step 3 Convergence of the non-random part MP(,Z)(Z) to(12)onzeC,.

The proof of these steps is presented in the coming sections. Before that, we introduce the
substitution principle, truncation and crucial lemmas in Sections 5.1 and 5.2 respectively. The
former explains the reduction of problem of the CLT for LSS of B, y to that of Bg, while the latter

provides truncation and essential lemmas for these three steps in proving the CLT for LSS of Bg.

5.1 Substitution principle

By the Cauchy integral formula, we have
Gyn(f) = nggf tr (Byn —2L,) "t — pmY(z )}d

valid for any function f analytic on an open set containing the support of p{FB»¥ (x)— Fo¥ (x)}, where

1
0 () —
My (2) = mpey (2) = ,
N P (2) /\(l—cN—chmlo\,)—z

with ¢y = p/N. To obtain the asymptotic distribution of G, n(f), it is necessary to find the
asymptotic distribution of tr(B, ny — zIp)‘1 - pm?\](z). To achieve this, we derive the following
Lemma 5.2 whose proof is postponed to the supplementary material.

Lemma 5.2. Under Assumptions 2.1 and 2.2, as n — oo,

tr(B, N — zIp)_1 —pm?\,(z) = tr(Bg - zIp)_1 —pmO(z) +op(1).

By Lemma 5.2, the asymptotic distribution of G, y(f) is identical to that of

GRUF) = 37 P Frr(B) = 21,) ! —po 2],

where c,, = p/n, m3(z) = mp.,(z) (note that we denote mJ(z) as mg(z) in other sections except this
subsection).
5.2 Truncation and some important lemmas

We begin the proof of Proposition 5.1 with the replacement of the entries of W,, with truncated
variables. Next, we introduce three pivotal lemmas that are essential for proving Proposition 5.1.

5.2.1 Truncation

In the following, we will show that the limiting distribution for the LSS remains unchanged before
and after truncation. Therefore, it suffices to derive the limiting distribution of the LSS after
truncation. Specifically, we can choose a positive sequence of {0,} such that

8y =0, oun't — 0o, O Elwiy — u*ly,, ss, iy = 0. (14)

— 2 ~ —~ — —~ —
Let Bg = %(Xn - EX,,) (X, - EX,,), where the (i, j)-th entry of X, is normalized using truncated
variables w;; = Wi L, <o, ) A8 described in (1). We then have

P(BY # BY) < (Ve jep{lwij = il > 0, Vi) ) < p (i = l > 6, Vi)
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5K5;4f lwig - pl* =o(1).
{|wll_}4|2‘571\/ﬁ}

Let Eg(x) be Gg(x) = p{FBg(x) — F(x)} with Bg replaced by §2, then Il’(@g(x) # Gg(x)) <o(1). In
view of the above, we obtain

jﬁ(x)dc,?(x) - Jﬁ(x)dag(x)+0p(1)-

Therefore, in the remaining part of the proof of the CLT for LSS, we assume that the underlying
variables are truncated at §,,Vn.

5.2.2 Some important Lemmas

In this section, we introduce three pivotal lemmas, which are crucial for proving the CLT for LSS.
These lemmas represent novel contributions of this paper and unveil the concentration phenomena.
Lemma 5.3 is crafted to estimate essential parameters, facilitating the derivation of estimates of
any order. Concerning v, and vy, (see Lemma 5.3 for their definitions), the terms h,/p and h,/p
emerge as non-negligible due to the multiplication by p in the CLT. To address these parameters,
we establish that the probability of the event Bj,(¢) decays polynomially to 0 and leverage Taylor

expansion on the event B,(¢) = {w : [w; — p| < e, w; = Z;}:l w;;/p} to handle the issue of dependence.
The proof of the CLT for LSS relies on two pivotal steps: the moment inequality for random
quadratic forms and the precise estimation of the expectation of the product of two random
quadratic forms. Lemma 5.4 establishes the former step, essential for converting them into the
corresponding traces, while Lemma 5.5 establishes the latter step, enabling the application of CLT
for martingale differences. The proof of Lemmas 5.3 — 5.5 are postponed to the supplementary
material. In the following, we write p < n if and only if there exist constants C;, C, > 0 such that

Cin < p < Cyn for all sufficiently large n.

Lemma 5.3. Suppose that w = (wl,...,wp), has positive i.i.d. entries with Bw; = u> 0, E(w; —p)? = 02,

and IE|w1 —,u|4 < oo, and that p < n. Then for the truncated data w; = Wil —pi<s, vi) (j=1,...,p)
where 0, satisfies condition (14), we have

B 2
v, :IE(w_1 —l) :)\+—1+o(p_1),
w p
P 2,5 2
V12 _IE(w_1 —1) (112—1) —/\2+—2+o(p_1),
w w p
5 4
Vi _15(2—1) :E(ﬂ—l) +o(1),
I3
where i = p~! Z?:l W, A= o?/y?, and
Ew} 2 Ew; 3 2
hy=-2—+31"451+2, hy=-81—5+101"+221" +8A.
I3 I3

Lemma 5.4. Suppose that w = (wl,...,wp), has positive i.i.d. entries with Bw; = u > 0 and E(w; —p)? =

oz,han;l that p < n. For any p x p matrix A and q > 2, then there is a positive constant K, depending on q
such that

1 q
E[r'Ar——E (wy/w—1)’ trA|

21



TPy ) JIAIF + [ (wy /T~ 1)~ AV A1,
where r = n~ Y2 (wy /w — L..,w/w-1), A= o?/u?, By(e) ={w:|lw-pl<ew= Zle w;/p}, and

IP(B;(E)) < Cte‘t{p_t/z(lElwl — )2 +p T Elwy -

j (15)

in which €, t, C; (which depends on t) are positive constants. Furthermore, if E |w1 - ;4|4 < oo and ||Al| is
bounded, then for the truncated data w; = WLl —pi<s, yi) (j=1,...,p) where o, satisfies condition (14),
we have

E

, 1/ — 2. .| 1 2a-
rAr—EIE(wl/w—l) trA| < Kyn 16,367 * forany q>2,
where r = n~ V2 (i /i — 1,...,u>p/5— 1), and v = p~! Z?Il ;.

Lemma 5.5. Suppose that w = (wl,...,wp), has positive i.i.d. entries with Bw; = u > 0 and B(w; —p)? =

o2, p = n, A and B are p xp matrices, if E |w1 - ,u|4 < 0o, |[|A|| and ||B|| are bounded, then for the truncated
data w; = ij{|wj—y|<6,,\/H} (j =1,...,p) where 9, satisfies condition (14), we have

IE(r’Ar - 2tm)(r’Br - ﬁtrB)
n n

P 2
V4 —3V12 V12 Vipg—V _
R — ;_1 AjiBii+~ {tr(AB) +tr(AB)} + — 5 trAtB +o(n”),

__ _ N 2 N 4 N 2/ . 2
wherer:n‘l/z(wl/ﬁ/—1,...,wp/w—1)’, Vs :IE(@—l) , m:lE(%—l) , V12 :IE(%—l) (&—1) ,

and w =p~! Z?:l w;.

5.3 CLT for LSS of the centralized sample covariance matrix Bg

Recall that in the following, we assume that the underlying variables are truncated at 6,,n. To
simplify notation, we suppress the superscripts on the variables w;;; that is, we use w;; in place of
w;; below.

5.3.1 Step 1: Finite dimensional convergence of M,(,I)(z) in distribution

Lemma 5.6. Under Assumptions 2.1 and 2.2, as p — oo, for any set of r points {z1,z,,...,2,} UC, the

random vector (M,(,l)(zl), e ,Ml(,l)(zr)) converges weakly to a r-dimensional centered Gaussian distribution

with covariance function (13).

We now proceed to the proof of this lemma. By the fact that a random vector is multivariate
normally distributed if and only if every linear combination of its components is normally dis-
tributed, we need only show that, for any positive integer r and any complex sequence {a]-}]r.zl,

the sum Z]r':1 ajM;,I)(zj) converges weakly to a Gaussian random variable. To this end, we first

approximate Ml(,l)(z) by a sum of martingale difference, which is given in (17). Then, we apply
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the martingale CLT (Theorem 35.12 in Billingsley [1995]) to obtain the asymptotic distribution of
Mz(,l)(z). Details of these two steps are provided in the following two parts.
Part 1: Martingale difference decomposition of M,(,I)(z).

First, we introduce some notations. In the following proof, we assume that v = Imz > vy > 0.
2 2 2
Moreover, for j = 1,2,...,n, let wj = p‘lzgzleg, vy = IE(@ - 1) , Vig = IE(@ - 1) (@ - 1) )

wy wq wq
w 4
_ 1
V4 = ]E( D, 1) )

1 [w w; !
I']‘:___]l_lz ;# 1); D(Z):BS—ZIP,

Vi \ w; wj

1

D:(z) =D(z)-r;r, (z) = ’
=Dt BE) = T
_ 1 1
Bi(2) . byla)=

1+ n*lvztrD]Tl(z) 1+ 01y, EtrD7!(2)’

. | ) -1
gj(z) = r;D; (2)r; - 7trDJ- (2),

&j(z) = r}D;z(z)rj -

By Lemma 5.4, we have, for any g > 2,

K - K 2g—
Elej(2)|7 < Tn_lé,zzq * and E|&;(2)|7 < = plgat (16)
v2q v2q

noo
It is easy to see that
D™'(z)-Dj'(2) = -Dj ! (2)r;r'D; " (2);(2),

where we use the formula that AIl - A;l = Agl (A, — Ay )AI1 holds for any two invertible matrices

A; and A;. Note that |;(z)], |Ej(z)| and |b,(z)| are bounded by |v£| Let [E;(-) denote conditional ex-
pectation with respect to the o-field generated by {rl,r2,...,r]~}, where j =1,2,...,n. By convention,
we use [E( = [E to denote expectation. By using the above identity, we write

n

My (z) =) (B~ E)D (@) == ) _(B;—E;_1)Bj(2)r/D72(2)r;.
f= =1

From the identity ;(z) = Bj(z)—ﬁj(z)ﬁj(z)ej(z) = ﬁj(z)—gjz-(z)ej(z)+E;(z)ﬂj(z)ef(z) and the definition
of &;(z), we obtain that

(Ej - Ej1)Bj(2)r'D; % (2)r;
— -2 -2 2 . V) -2
= (B~ E;1)| (B (2)- B; (hej) + B (2B 203 @) () + 2D (2|
= = Yj(2)+ By Vi) - (B - B )| ()fes (205(2) - (2163 20D (2

where

Yi(2) 1= ~Ei{F) (20(2) - ;) (2)ej(2) 2 4eD;%(2) |,
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and the second equality follows from (E; - IEj_l)Bj(z)trDjfz(z) = 0. By using (16), we have

n

Z(IEj_IEjfl)E?( )€j(2)€;(z)

=1

E

<4ZIE|/5] (2] = o(1),

here we use the martingale difference property of (E; — IE]-_l)E;(z)ej(z) f

R
X
—
=n
c
»
gl

)/5]( 2)¢j(2)€j(z )—>0 By the same argument, we have

n

-2 e~ P
) (B ~E;)B; (2);(2)r D} (2)rjef (2) = 0.
j=1
The estimates above imply that
1 n
My(2)= ) (Yj(2)~ ;1 Yj(2)) +op(1), (17)

=1

where {Y;(z) - E; 1 Y/(z )} _, is a sequence of martingale difference.
Part 2: Application of martmgales CLT to (17).

To prove finite-dimensional convergence of Ml(,l)(z), z € C, we need only to consider the limit of
the following martingale difference decomposition:

XaM (2) ZZal z;) = Ej1 Yj(z)} + 0p(1), (18)
j=11i=1

where Im(z;) # 0, and {a;}’_, are constants. We apply the martingale CLT [Billingsley, 1995,
Theorem 35.12] to this martingale difference decomposition (18). To this end, we need to check
two conditions: as n — oo, for any € > 0

ZIE

ZIE] 1[{ (1) IEj_llqzl)}{ifj(zZ)—IEj_le<Z2>}]5(13). (20)

~Ej1Yj(z)) I{m’la( 2)-E; 1 Yj(z))ize) — O (19)

First, we verify (19). By Lemma 5.4, we obtain
E|Y;(2)|* < KEle;(2)* = o(p~"),
which, together with Jensen’s inequality, implies that
E|E;_; Yj(2)|* < E(E;_|Yj(2)]*) = E|Yj(2)|* = o(p~").

It follows from the above two equations that

Za — 0.

LHS of (19) <—ZIE

n r 4
E ZaiIE]'_l Y](Zl)
= 1:1
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Then, we verify (20). Since Y/(z) = sz{ﬁ]( )e (z)} we have

2
aaz

1(21,22) ZIE] 1[ i{Bi(z1)ej(z1) j{ﬁj(zz)gj(zz)}],

LHS of (20) = 5= —{V1(z1,2) - V2(z1,22)}, (21)

2(21,22) zlEjlﬁ]zl 2)JEjL1{B;(22)¢(z2)].

Thus, it is enough to consider the limits of Y;(zy,2;),i = 1,2, which are provided in the following
lemma.

Lemma 5.7. Under Assumptions 2.1 and 2.2, as n — oo, we have
0?
02,02,

2

p
myz(zl,ZZ) — 0.

Vi(z1,22) > (13),

The proof of Lemma 5.7 is postponed to the supplementary material. This lemma and Equation
(21) complete the proof of (20).

5.3.2 Step 2: Tightness of MI(,l)(z)

Tightness of MI(,I)(Z) can be established by Theorem 12.3 of Billingsley [1968]. It is sufficient to
EIM; (21)-My (2:)
2125
proof exactly follows Bai and Silverstein [2004], and is postponed to the supplementary material.

is finite. Its

prove the moment condition of Billingsley [1968], i.e., sup,,., , ¢

5.3.3 Step 3: Convergence of MI(,Z)(z)

Recalling that My (2) = p{Em,(z) - m(2)} = n(Em,(z) - m)(2)}, where ni,(z) = m

p F p p
ey (2), m,(2) = mFgg(Z), mg(z) = My, (2), ¢, = p/n. From
1 cpA 1 Cy
p— = 1 - IE ’
IEmp(z)+z 1+)\1Emp(z) IEmp(z){ nT4 m”( 2+ 1+ AEm ( )}
we have
Ac Ap(z) 7!
E —J_ n I4 ,
m,(2) { SR AEm,(2) " Em,(z)
where A,(z) := W’}’ﬂ() +zc,Emy(z). From this equation and the identity mg =(-z+ 1;\5;’”0 )7L, we
—P
get

V@ Em,(s) T
()}] . (22)

Ofy _ .0 _
Em,(2) - m,(z) = -m (Z)AP(Z)[l {1+ AEm, (2){1 + Am(z

P P

Note that IEmp(z) — m(z), mg(z) — m(z). It suffices to derive the limit of nA,(z), which is provided
in the following lemma.
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Lemma 5.8. Under Assumptions 2.1 and 2.2, as n — oo, we have

m(z){z(A + hy)m(z) + A}
1+ Am(z)
cz22m?(2){(aq + ay)m?(z) + 2A%2m’(z))
1+ Am(z)
cA’m?(2)
T Am@)(L+ Am(2)? - cA2m?(z)]

nAp(z) - -

The proof of Lemma 5.8 is postponed to supplementary material. By (22) and Lemma 5.8, we

have Ml(,z)(z) — (12) as n — oo. Combining two parts above yields Lemma 5.6.
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Supplementary Material for “On eigenvalues of sample covariance
matrices based on high-dimensional compositional data”

S1 Auxiliary lemmas

This section introduces several auxiliary lemmas used in the technical proofs of our theoreti-
cal results. Lemmas S1.1 — S1.4 are from existing literature, while Lemma S1.5 is our original
contribution, and its proof is provided in Section 52.13.

Lemma S1.1 (Weyl’s inequality, Corollary 7.3.5 of Horn and Johnson [2012]). Let A and B be two
p xn matrices and let r = min{p,n}. Let s1(A)>--- >s,(A) and s;(B) > --- > s,(B) be the nonincreasingly
ordered singular values of A and B, respectively. Then

max |s;(A) —s;(B)| < ||]A - B,

1<i<r
where ||A — B|| denotes the spectral norm of A —B.

Lemma S1.2 (Burkholder’s inequality, Burkholder [1973]). Let {X}} be a complex martingale difference
sequence with respect to the increasing o-field {F;}, and let IEy denote conditional expectation with respect
to Fy. Then, for g > 1,

By x| <k (B(Y Beal)” B Y ).

Lemma S1.3 (Uniform law of large numbers, Lemma 2 of Bai and Yin [1993]). Let {Xl-j, i,j=1,2,...}
be a double array of i.i.d. random variables and let o > 1/2, p > 0 and M > 0 be constants. Then as

n— oo,
n

n? Z(Xij -0

i=1

a.s.
max -,

j<Mnf

if and only if the following hold:

EXq4, ifaﬁl;

E[X; |1/ <00, = .
any number, if a > 1.

Lemma S1.4 (Martingale CLT, Theorem 35.12 of Billingsley [1995]). Suppose that for each n, the
sequence {Yy1,..., Yy, } is a real martingale difference sequence with respect to the increasing o-field {F,;}
having second moments. If as n — oo,

ZIE ﬂ] 1 2!

where 02 is positive constant, and for each € > 0,

ZIE wiliv, 2e) =0,

then Y7, Y,y B N(0,62).
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Lemma S1.5. Suppose that X, = \/Lﬁ(l, 1,...,1) is a p-dimensional normalized all-one vector, then for

the random variables {wij,i =1,...,n,j=1...,p} satisfying Assumptions 2.1 and 2.2 and the truncation
condition |w;; — p| < d,\n, where 5, satisfies condition (14), we have

IE|X;,D71(z)xp +1/2> -0,

forz=u+iv, v>0.

S2 Proofs

$2.1 Proof of Proposition 2.4

The proof of the first part of Proposition 2.4 is given in the main text. In the follows, we present
the proof of the second part. Recall that Y, = anAan/\/ﬁ, Y, = Can/(\/ﬁy), and B,y =YY,
Let Bp,N =Y, Y,,. For any positive constant ¢ small enough such that

m—e> A1+, i+ 2e <M1= Vo) Tocc<r)s (52.1)
we have
H)(/\max(Bp,N) e ’71)
= H)(/\max(Bp,N) > 171, Amax(Bp,N) = 11 = 5)
+ IP(/\max(Bp,I\r) > 11, Amax(Bp,n) <111 — 6‘)
<P(Amax(By,n) 2 111 =€) + P Amax (By,n) = Amax By )| = €)
and

H’()\min(Bp,N) < ’72)
= IP(/\min(Bp,N) <12 Amin(Bpn) <112 + 5)
+ H’(/\min(Bp,N) <12, Amin(Bp ) > 112 + 6)
< P(Amin(Bp,n) <772+ €) + P(|Amin(Bpn) = Amin(By,n) = £).

To prove the second part of Proposition 2.4, it suffices to give the following three estimations:

P max 1 (By) - 4Byl 2 ¢ = o(n™), (52.2)
P(Amax(Bp,n) 2 1 —¢) = o(n™), (52.3)
P Amin (By,n) S 112+ &) = o(n™). (S2.4)

The proof of these estimates are provided as follows:
Proof of (52.2): By Lemma S1.1, we have

max |4;(By,n) = Ai(Bp NI < IIBpn =By NIl IV, = Yoll? + 211Y, = YV,

1<i<p
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Note that ||Y,, - Y, || < llpuA, — In||||Wn/(,u\/IV)||. We get from Theorem 2.9 in Benaych-Georges and
Nadakuditi [2012] that ||Wn/(,l/l\/ﬁ)|| is bounded almost surely. In view of the above inequalities
and (52.3) (will be proved below), it suffices to show that, for any £ > 0 and ¢ > 0, P(||[ppA, - L,|| >
) = o(n~t), which is guaranteed by

Z?Zl w;i/p B

IP( max
K

1<i<n

1‘ > e) =o(n7). (S2.5)

This inequality follows from Equation (B.115) in Gao et al. [2017], and thus we complete the proof
of (52.2).
Proof of (S2.3): Let B N = (Y5)'Y;, where Y, = WuBWu Brom Bai and Silverstein [2004], we have

VNu
P(Amax (B ) 2 11 =€) = 0(n ™), (52.6)
P(Amin(Bj n) < 12+ €) = 0(n™"), (52.7)
By the identity Y, = C, Y3, we have
B,n =By - %(Y;)’lnl;Y;. (S2.8)

This, together with Cauchy interlacing theorem, implies that
Ai(By ) = A(ByN) > A2 (B ) = Ay(Byn) > > Ap(Bj )= Ap(Bp ) (S2.9)
For the largest eigenvalue, we have
Amax (B3 ) = 41(BS ) 2 A1 (Byn) = Amax (B ),

which, together with (52.6), implies (52.3).
Proof of (52.4): When p > n, the smallest eigenvalue of ﬁp’N is its (n — 1)-th largest eigenvalue. By
using (52.9), we have

/\min(];p,N) = /\n—l(];p,N) = /\n(B;,N) = /\min(B;,N)r

which, together with (52.7), implies (52.4). When p < n, the smallest eigenvalue of EP,N is its p-th
largest eigenvalue, and all eigenvalues of EP,N and B;’N are interlaced each other as in (52.9). From
(52.8), we have

Z?Zl w,’j/ﬂ 1

p
o s, n 2
tr(Bp’N):tr(Bp,N)+NZA]~’n, Ajn = ==
=1

Hence, there exists some constant C such that /\min(fip’N) = Amin(Bp N) = %ﬁ Z;):l A]%n, and thus
Pr(/\min(Bp,N) < "2 + 8)

p
y Cn
:Pr(/\min(Bp,N) Smte ;N ZAin < 6)
j=1
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e By £ ——zAm- g

<Pr(/\mm(Bp N) S+ 25) + Pr( max |A; A2 > .s/C) (52.10)
l<j<p
From (S2.1) and Bai and Silverstein [2004], the first term in (S2.10) is of order 0( ¢) for any £ > 0.

Similar to (52.5), for any ¢ > 0 and ¢ > 0, we have P(max;<j<, |A],n| > ¢) = o(n~¢). Therefore, we
conclude that (52.4) still holds true when p < n.

S2.2 Proof of Lemma 5.2

The proof of this lemma is quite similar to Sections 5.3.1, 5.3.2, and 5.5 of Zheng et al. [2015], it is
then omitted. For readers’ convenience, we present the outline of the proof for this lemma. In this
Wit wlP

situation, Bg = %Y;Yn =), ;= \%(71 -1,...,=t-1) = \/H(Vil;---:}’ip)/' w;=p! Z?Zl Wig.
As for moments of y;;, by Lemma 5.4, for any q > 0, we have

wi]' a
(5]

where By(¢) = {w : [w; —u| < e,w; = p! Z?Zl w;¢}, in which € > 0 is a constant. Therefore, in the
following proof, the requirement of truncation of y;; reduces to truncation of w;;. First, we get that

< K]E(w,] —]l)q,

q wij |\
]Eyi]-:IE %—1 IBP(£) +E

1

tr (BpN—zI )t —pmd(2)
= tr{A™! (2)} — pmy(2) + p{my(z) - m (z )}+tr{A *(2)A)
+tr[A HAA™L(2) }2]+tr[ A(z)-A 1(2)}3],

where A(z) = Bg —zl,and A = Bg — B, N Moreover, after truncation and normalization, for every
zeC" ={z: Imz >0},

m(z) +zm (2)

plmy(z) =m () = {1+ zm() ===+ 0p(1),  tr{A(2)A) = 0p(1), (82.11)
tr{A2(z)AA " (2)A)} = {m(z) + zm (2){1 + zm(z)} + 0p(1), (S2.12)
tr[{AA" (2)) 1] L +zm(z _Z{m((z))”m(z)}wpu). (52.13)

Note that, we also need to check the tightness of tr(B, x — zIp)_1 - pm?\,(z). Since

tr(B, N - :z,Ip)_l —pm?\,(z)
= tr(B,n —2I,) " —tr{A™! (2)} + tr{AT (2)} - prg(2) + plm(2) - my (2)),
and the tightness of tr{A~!(z)} — pm%(z) is proved in Step 2 of Section 5.3, it suffices to prove

tightness of tr(B, y — zIp)_1 —tr{A~!(z)}). It can be obtained from similar arguments in Section 5.3.2
of Zheng et al. [2015] and we omit the details. Finally, the proof is completed.
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$2.3 Proof of Lemma 5.3
Note that, by Taylor expansion, there exist C; > 0 such that, for any -1/2 <x <1/2,

1

=1-2x+3x>+a(x), |a(x) < Cylx.
(1+x)2

Hence, there exist C; > 0 such that, for any 0 < € < 1/2, on the event B’p(e) ={w: [ —p,| < e, =
Yi_ Wi/p, = Eiby),

1 1 1 2(w - 3(wW—p,)? (-
L _2[1 _2(W — ) N (W zl"n) +a(w Fn )]
R NSV o Z Z
where |a((W — p,,)/py)| < C1€3. Hence, we have
b2 s 2wi(w— 3w — py)? W2 -
213(‘):{& 1= f) | S04~ ) }IB(,)+—§a(w By (52.14)
w7 l‘n Hn Hn Hn Hn b
This, together with the fact Ig (e)= 1= I (o), implies that
w? wf _ 203 (W - ) ) 3% (W — py)?
W M i i (S2.15)
wf 207 () | 30T - )’ w?
— 3 + IB;(€)+a+__2‘[B,C,(£)’
Vn Hn Hn w

2 )
ZIE 3Ew
]Efé _lel — w1(1;/ ) + “I1 10— )’ —IEb+Ea+Ec. (S2.16)
w .”n Hn ,”n

where b := (W2/p2 - 2W3 (W — p,, )/ pd + 3% (W — ,un)z/]/tﬁ}llgz(g) and ¢ := (u?%/ﬁz)léé(g). Note that
[Ec| < p°P(Bj(¢)). (S2.17)

Next, we derive a bound for [Eb. In save of notation, we denote by

_uwr 207 (- py) 3w (i — py)?
V1 = 2 V2= 3 ’ V3 = 4 .
Un Hn Hn
It is obvious that
|1E(y113;(€)) < C2|1Eu>f132(8)| < C,P2(BS(e), (52.18)

where C, > 0 is a constant. Note that

Ed? (@ — ) 1 Ed? () — pry)

l’l?l p ﬂn

, (S2.19)
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(S2.20)

By (52.19), we get

s 1131/2(13;(5))+11>1/4(B;<e))}, (52.21)

where C3 > 0 is a constant. By (52.20), we get

p_l A A
g “wa[@yw}{m(wl =) Iy (o))
P Hn
C C N .
<3+ VB ) (B o))

< @{# + %P(Bg(e))}, (52.22)

’E(%Iézm)

I
: W‘E“’f(“’l =) Igg
n

where C4 > 0 is a constant. By (52.18) — (52.22), we have

[Eb| < Cs{PV2(By () + 11—71131/4(3;(5)) " ;%} (52.23)

where Cs5 > 0 is a constant. Now, we provide an estimate for IP(B;(E)). By Markov’s inequality and
Burkholder inequality, we get

P
| L .
<e'E —Z(w]-—yn)
P
]
p t/2 p
SCté'_tp_t{IE(ZIEj—lle_,"ln|2) +IEZ|w]—ﬂn|t}
j=1 =1
P t/2 P
= Ctgtpt{(ZIEhf/j - l"nlz) + IEZW’] - P‘n't}
j=1 j=1

t/2
= Cts_tp_t{(plElwl — yn|2) + pE|w, — Iunlt}

. . . 4
where ¢, t, and C; (which depends on t) are positive constants. Since 1E|w1 —y| < 00, and the
truncation |w; — p| < 5,\n, where {6,} is a positive sequence satisfying 6, — 0, 5,n/* — oo,

6, Elw; — ”|4I{|wl—/4|25n\/5} — 0 as 1 — oo, we have supnIE|u71 —ptn|4 < co and [} — p,| < 46,\/n for
sufficiently large n (note that p < §,,\/n for sufficiently large n). Based on the estimate for I[’(E;(s)),
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supnlE|u71 - yn|4 < oo and [W; — p,| < 45,\/n where {5,} is a positive sequence satisfying 6, — 0,
5,nV* = o0, 8,4 E|lw; — ”|4I{le—14|25n\/ﬁ} — 0 as 1 — oo, we have IEa — Eb + [Ec = o(p~!). From (S2.16),
(52.17) and (52.23), we get

Ew% WD 2ED{(0 - ) N 3EW (W — py)? s olp ) (52.24)
=2 2 3 4 p : '
Hn Hn Hn

Plugging (52.19) — (52.20) into (52.24), we get

a2 ) ~3 .
w w h Ew 2
E— _E—L =Y ool hy,=-2—L4302451,+2, A, =E[Z_1),
—2 2 p , 3 n
w Hn p Mn Hn
and hence
) 2 3
w w h Ew
__;— —; = _1+0(p71)’ hl :—2—31 +3/\2+5/\+2,
) K p H

which implies the first equation in Lemma 5.3.
Similar to the previous calculation, we obtain

A 2/ an 2
w1 w)
(T _1) (:A_l) Iép(e)

w w
(@ V22V v by, U ;
() (22 )ty (2 =1t it

A

W 2 3
# (22 =1 folabn, ) )+

n

where |Ed| = o(p~!),

P N 2 2 . 5
fl(z‘ul,wz,yn) :—2w1 (ﬂ_l)(ﬁ_l) _&(ﬁ_l)(ﬂ_l) ,

Hn \ Hn Hn Pn \ Hu Hn
A wy Wy (W 122
) = 45202
fo (g 2]4n) 1y i \ i

(BB o 20
Hn (wl/,un_l) wl/l’ln_l

A 2 A 2 A2 2 2 A
+(ﬂ_1) (&_1) { sz/yn 2+ . w2/lfin } (8225)
Hu Hn (WZ/Vn - 1) w2/l’1n -1
Similar to (52.14) — (52.24), we get

A 2 /a0 2
(512

w w

) 20w 2 w o w 2 _
:E(—l—l) (—2—1) +1E(——1)f1(w1,w2,ptn)+IE(——1) fo(y, 9, py) +o(p 1)

Hn Hn Hn Hn
=T+ T+ T3+0(p7t). (S2.26)

Similar to (S2.19) and (52.20), we obtain

1_(w; W N
T :—IE(—+——2) Wy, 1y, (52.27)
i f1 (0, W, py)
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and

A -2 (W 2 o
ZIE(——l) folin o )+ (L1 B ). (5228)

n

Thus, by (52.26) — (52.28), we get

A 2 /N 2 D, h
113(“’1 —1) (liz —1) :E(ﬂ—l) (ﬂ—l) lIE(ﬂ+ﬂ—2)1‘1(7@1,702,#;1)
Hn Hn P \MUn MHu

A N -
+?”1Ef2(w1,w2,yn)+o(p Y
—m(ﬁ—l)z(ﬂq) L, o) (52.29)
Hn Hn p 2 ' ‘

A3
IE“;l +10A3 +2212 +81,, and hence

(2 {2 (2 B

where h; , = -

3
where h; = —8/\% +10A3+ 2212 + 81, which implies the second equation in Lemma 5.3.
Similarly, we get

IE(wl 1) :IE(ﬂ—1) +o(1),
w H
which implies the third equation in Lemma 5.3.

S2.4 Proof of Lemma 5.4

First, we establish an estimate for IP(Bj(¢)), where By(e) = {w : [w —u| < e,w = Z;?:lw]-/p}. By
Markov’s inequality and Burkholder inequality, we get

P(B5(¢) = P([w— il > )

p
4|1
<e'E _Z(wj_,”)
P&
j
p t/2 4
<K;e~ pt{IE(ZIE]_ﬂw] - }4|2) + IEZW] —,”|t}
j=1 j=1
p t/2
= Kte_tp_t{(Z]Elw] —ylz) + lEZIw] - ylt}
j=t j=1
t/2
= Kts_t{p_t/z(IElwl - y|2) +p T Ew, - ,4|t}, (S2.30)

where ¢, t, and K; (which depends on t) are positive constants. We aim to derive an estimate for the

2
g-th moment of r’Ar — %IE(% - 1) trA. For any q > 2, there exists a positive constant K, such that

1

1 q
lEr’Ar——lE(g ) ¢ Al <K (IEIr Ar——trA| +IE| tA——IE(——l) trA’ )
n w
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Note that

A 1 2 q 2 q
IE)—trA——IE(g—l) trA SKq‘IE(Q—l) —/\‘ A, (52.31)
n n w w

Now, we consider E

r'Ar - %trA|q. There exists a positive constant K; such that

A

A q , q A
Efr'Ar — EtrA| < Kq{]E|(r Ar-— ;trA)IB;(S) +E (r’Ar - ;trA)IBP(S)

q}. (52.32)

Estimating E|(r’Ar — n’l)\trA)IBZ(E)W: Since |r’Ar - %trA| <|ItllllA]l+ ClIAl| < C - p||A]l, C is a positive

constant, we have

, A q
IE|(1' Ar - ZtrA)IBi(f) < CplAlITIP(By(¢)), (52.33)

where C, denotes a positive constant depending on g.
Estimating [E|(r’Ar —n~! )\trA)IBp(g)l‘I: Write

trA =: V1 +Vp, (8234)

2 ((w-—wl,)Aw-wl 27752 _
o {( p) ( p)—trA}+U/w A

—2 2

A
r'Ar — —trA =
n nw

o

where 1, =(1,1,...,1)" € RP. For 0 < ¢ < 1/2, there exists a positive constant K, such that

A
1E|(r’Ar - —trA)IB ©
n p

q
< Kq(lElvllgp(g)l”I + IEIvZIBp(s)W)-

On the event B,(¢), we have —¢ <w-p <¢,and

trA 1

9— 42
Efvalp, )" = o™ —

111 1
g e

(w—p)(w+p) I
w2ﬂ2 By(e)

< K, IAITE@ -

q
< o?4||A||7E

_ _ wp—p|M
qu||A||4(p 21 p q“nlel ) (S2.35)

where the last inequality follows from the same argument in the proof of (52.30). By using
w-wl,=w-pul,—(wl, - pul,), we get

~ (w-wl,) (w-wl)) 1
IElUllB (g)lq < an QIE‘ A —trA IB (€)
p o o p
w—pul,) (w-pul q
San—qnz’{( Hp) (W iLy) —trA}IB ©
o o P
- (W1, —pl,) (w—ply) 1
+Kq1/l QIE{ . A > IB,,(E)
_ (W_P‘lp)/ (WIP_,MIP) 1
+an QIE{ . A o IBP(S)
wl,—ul,) (wl,—ul q
+an‘qIE{( p—H1p) A( p~H p)}IB ©
o o P
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= an_q(Vll +V12+V13+V14). (8236)

By Lemma 2.2 in Bai and Silverstein [2004], we have

4/2 2
Vi <K [{m| ”| tr(AA )} |w1 ”| Ttr(AA )W] (52.37)
From (w—-p)1, = ;lpl;,(w—ylp) and p‘llEtr(lpléA) = p‘2]Etr(1p1;,A1p1;,) <||Al|, we get
1(W_P‘1p), , (W_/"lp) 1
Via :IE‘{E—IPIPAT I (¢)
w—ul,) w—ul q q
qu{lE’( Hp) (11p1;A)(—””)_tr(l1p1;A) +1Etr(l1p1;,A)' }
o p o p p
w-pul,) (1 w—pul 1 q
SKq{IE’( 1) (—IPI;A)M—U(—IPI;A) +||A||‘7}
o p o p
- 1 4/2 —up2a (1
<Kq[{IE| o tr(—2 plg,AA’lplI;)} +E|=E t(—zlplpAAl 1 ) ]+Kq||A||‘1
p p
<V (S2.38)
Similarly, we get
Vis < Vi, Viga < Vi1, (52.39)
By (52.36) — (52.39), we get
_ wy —p4 72 wy—p /2
Efvs I, o7 < Kyn q[{ua| ["tr(aa )} [ | F(AA')f ] (52.40)

From (52.32) — (S2.35) and (S52.40), we have

r’Ar—%trA)q
— 4 q/2 —u2
<K dn 1E|u| tr(AA) +1E|u| Tir(AA)P?2
1 o o
+ AN (p 2 4+ p B 4 AP B e >>}

x|

By this inequality and (52.31), we get

qsKq(n“7[{113|wla_’”rtr(AA’)}W2 |w1 ”|2q (AA )4/2]

q/2 |w1 m

Can)" B an?] iAo

E

1 2
r'Ar— —IE(& - 1) trA
n \w

+nq||A||qu><B;<e>>+|1E(%—1) —A‘ ||A||q).

Finally, we prove the last inequality in Lemma 5.4. Furthermore, if ||A|| is bounded, IE |w1 - ;4|4 <

0o, lwj —pl < o,Vn (j =1,...,p) where {5,} is a positive sequence satisfying 6, — 0, 5,nt/4

— 00,

5, 4 Elw; — ;4|4I{|wlfy|25”\/ﬁ} — 0 as n — oo, then, for any q > 2,
— 4
n*q[{m|u| tr(AA')} ’wl ”’ tr(AA )Wz] <K 'on™
o
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and

2
‘E(%‘l) B 19 < K,n Al < Kgn~' 37,
Taking e =n"%, 0<a <1/2,and t > 1= 2a yields that
n||AlIP(BS (e)) < Kgn~ton" .

In fact, from (S2.30), we write
t/2
P(By(¢)) < Kte_t{p_t/z(IEle —ylz) +p 1 Elw, —ylt} =P +D.

Since P, < K,e~fp~t+1(n1/25,)t7* < K, 6! e tn~"?~1 < P, we obtain that
P(By(¢)) < 2Py. (52.41)
Take e =n* (0 <@ <1/2) and t > = into (52.41), we have
2q—4

n1P(By(e)) < Kynln~ (z-a)t <Kyn —4/2 <K, n e,

Combining all these estimates, we obtain the last inequality in the Lemma.

S2.5 Proof of Lemma 5.5

First, we denote R; = \/Lﬁ(% - 1) and derive some identities that will be used in the proof. It is

obvious that Z?:l Rj=0and Z?:l R]z + Zjlijz i Rj, = 0. Since {w]}] | arei.i.d., taking expectation
on the above two identities yields that, forany 1 <i = j <p,

- 2_ 12 - . 4_ e 2p2 - Y12
ER;=0, ERj=-% [ERR, = 1) ERj=—3, ERIR}=—7. (S2.42)

Recall that r = (Ry,...,Ry)". From (52.42), we have

n_ PV2 1
IE(rr)_—(p_ )(1 p1 1 ) (S2.43)

where 1, = (1,1,...,1) € RP. It is obvious that

lE(r’Ar _ %trA)(r’Br _ %trB)
, (52.44)

trB v
V2t IE(r'Br - 2trB) - —étrAtrB.
n n

= IE(r'Arr'Br) -

trA
IE(r'Ar - 2t1rA) _ 2t
n n
We first estimate each terms in the RHS of the identity above, and finally prove the equation given
in Lemma 5.5. The details are provided in the following three steps.
Step 1: Estimate the first term. It follows from (52.42) and the identity Z?Zl R;j =0 that

IER3R2_ [R3(ZR Rl)] (p o (S2.45)
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p
1
ER?R,R;5 = pTzIE[R%RZ(ZR]- “Ry - Rz)]
j=1

1 3 1 2p2
= —E]E(Rle) - EIE(R1R2)
(52.45) V4 V12
mta) _ - , (S2.46)
n*(p-1)(p-2) n*(p-2)
ER{R,R3R 1]E[RRR(£R R;-R R)]
1RR3Ry = ——E|R; RyR;3 i—R1 =Ry —R3
p-3 =
= —ilE(RZR R3)
- p— 3 1023
(S2.46) 3vy 3v1z
= - + . (52.47)
n*(p-1)(p-2)(p-3) n*(p-2)(p-3)
To calculate E (r’Arr’Br), we expand it as
E(r’Arr’Br) = IE(ZRiAi]-R]- ZRkBkgRg) - Z E(R;R; Ry ReA;Bre): (S2.48)
i Kt ijkt

To calculate (52.48), we split it into the following 11 cases:
l.i=j=k=¢ Y (R})A;Bi;
2. i=j,k=Cizk Y ix(R7R})A;iByi;

i=k
3. i=j,k#6Yike(R2RcRy)A;iBiss
k=
4. i= ],k =4, Zl,],k(RlR]R]%)AZJBkk)
i#]

5.i%j,k#i=kj=0Y,;(R*?R?)A;B

i#]

ij
6. izjkzli=0j=kYij (RfR]?)Aiiji;
i#]
7.i#j,k=li=kC=}Y ijc (RFR;R¢)A;;Bis;
i#j#l
8. 1= ],k * Lp,g = ],l * k,z i,j,k (RlRJZRk)Al]Bk],
i=jzk
9. i# ],k * f,k = ],l * f,z i,j,€ (RZ‘R]?RZ)A”'B]‘[;
izj2l
10. i#j,k=Ci=Ck=jY ijk (R7RRQ)A;;By;
i=j=k
11. i# ],k 20,0 j,i * k,z i,j.k,€ (RiRijRg)AijBkg.
i#jzk#l

For ease of presentation, we still keep v, in the expectations although we have obtained its value.
The expectations of all cases are listed as follows.
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Case 1: From (52.42), we have
V4
E ZR?AiiBii = ZAiiBii-
1 1

Case 2: From (52.42), we have

V12 2
]EZRI-ZR]%Aiink =2 ZA”Bkk - T(trAtrB ZA”B”)
i

izk 1¢k

Case 3: Note that

IEZR2RkRgA”Bkg = ER?R,R; Z A;;Bi, +ER RZ(ZA”B o+ ZA”Bkl) (S2.49)
ikl ikl ik
k:tf 1¢k¢€ €¢z k#i
Now, we estimate the magnitude of the summation terms on the RHS of (52.49). Recall that
for any p x p matrix, we have Etr(M) < pE[M|| and max, <;<, M;; <[[M||. By using these facts
and the Holder’s inequality, we obtain that

B[y AuBie| = Bl(trA)1;B1,] < pE(AI 1,81, < (AL B = 0, (5250

ik,C
IEZAiing = EtrAtrB < p”E(||Al|-|[B])) = O(p?), (52.51)
E ZAan < pE||diag(A)diag(B)|| < pE(l|All- |[BI}) = O(p)- (52.52)

Let 1;, be the p-dimensional vector with all components being 0 except for the i-th component
being 1, then we have

1E|ZA”BI€ IE|ZA” 1,)B1 ’<IE(ZA )I/Z{Z )'B1p1;1;1;;}1/2:0(p3/2). (52.53)

From (S52.50) — (52.52), we have

E Z Azszf - (ZAHBM ZAHBIZ ZAzszz ZAzzB€€+ZZA11Bzz) )

ikt ik,
izk=l

(S2.54)

It follows from (52.45), (52.46), (52.49), (52.53), and (52.54), that

E E (R?RyR;)A;iBye = - E AiiBo+o(nh).
i,k,l i,k,l
k=l izk=l

Case 4: Similarly to Case 3, one can conclude that

IEZRiRjR,fAijBkk =-— 12 2 Z A;jBy +o(nt).
i,j,k i,j,k
i#] i=j=k
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Case 5:
V12
E ZR?RJZAZ]BZ] = E(R%R%) ZAl]Bl] = F{tr(AB’) - ZAiiBii}'
i i

i,j

i%j i#]
Case 6:
2p2 2p2 V12
E ZRZ R]AIJB]z = E(Rle) ZAZ]B]l = ?{tr(AB) - ZAiiBii}‘
i,j L] !
i%] i#]

Case 7: By (52.46), we have

E Z R?R;R¢A;jBip = O(n) x Z A;jBi¢. (S2.55)
i,j, i,j,C
i#j=l i#j=l

Not}tle that, 1,A’B1,, < plAl|-|[B|| = O(p), tr(A’B) < pl|Al|-[B]| = O(p), and by (52.52) and (52.53),
we nave

IEZAHBM = IEZAiiBM—IEZAiiBii = 0(p™?), (52.56)
i2l il i
thus,
E Z AijBig = IE{I;A’BIP —tr(A’B) - ZA,-Z-BM - ZAijBii} = 0(p*?). (S2.57)
i, i=l i+
i#j=l
It follows from (S2.55) and (S2.57) that
E Z RI-ZR]‘RgAi]‘Big = 0(1’1_1).
i,j,0
i#j=l
Case 8: Similarly to Case 7, we have
E Z RiRZRAj;Byj = o(n™).
i,j,k
i#jzk
Case 9: Similarly to Case 7, we have
E Z RiRR;A;iBj¢ = o(n™").
il
i#j=l
Case 10: Similarly to Case 7, we have
E Z (RZR;R¢)A;;By; = o(n™").

i,jk
i#j=k
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Case 11: By (52.47), we have

§ -4 E
E RiRijRgAijBkg = O(Tl ) AijBkZ-
L,jk,C L,jk, €
i#jzk#l izjzk=l

Note that, by (52.57) we have

E )  AijBy

i,j,kC
i#jzk#l
= E(1,A1, — trA)(1,B1, - trB) ~ E Z AijBi—E Z AijByi —IEZAijBij
i,j,€ i,j,k i,j
izj=l i#jzk i#]
=0(p?).
Thus,
E Z R;R;RyReA;Bys = o(n™").
i,j,k,l
i#jzk#l

Combining (52.48) and Cases 1 — 11 gives us

3
E(r’Arr'Br) =22 V12 ZA”B” + 22{irAtB + tr(AB') + tr(AB)}
( Z A;;Bo+ Z A,]Bkk] +o(nh). (S2.58)
ikl i,j,k
l:tk:tf z;c]¢k

Step 2: Estimate the second and third terms. From (52.43) and (52.56), we have

, V) v,trB { . Vo } v2 2trB
E(r'Ar— —=trA|= [Etr(Arr’) — —=trA} =
(r r—-—Str ) ” r(Arr’) ot Z Y

(ZBkkAkg + ZBNAM + Z BuAke]
k k¢€

VztI‘B
n

ik,
20 izk=l
ZB”Angro ) (S2.59)
ik,C
z¢k¢€
Similarly, we obtain
2
VotrA (, Vs ) V5 1
E(r'Br— —=trB|=——-— A;iBre + . S2.60
E(rBr-—ur nz(p_l)u;ukg o(n™) (52.60)
ikl

Step 3: From (52.44) and (52.58) — (52.60), we have
IE(r'Ar - 2trA)(r'Br - 2trB)
n n

43



where in the third “=" we use Equation (52.54), and in the last

-3
R

i=1

n2 p 5 [ ) AiBye+ Z A,]Bkk] [ ) BiiAke+ Z A”Bke)

i,k i,j,k i,k i,k
z¢k¢€ izjzk z¢k¢€ i#2k=l

2
- —ztrAtrB +o(n7!)
n?

-3 Vi, —v2
S Ikl ZA”B” + 221r(AB') + tr(AB)} + —2 2 trAuB
n

n i=
—Vi2
n2 : [ZA”BM+ ZAl]Bkk)Jro -1
(p- i,k,¢ i,j.k
izk#l i#jzk
_3 Vip— V3 vi-v
== n2 = ZAZszz+ {tr(AB )+tr(AB)}+ - 2 2trAtrB + O(—2—2) + o(n"),

i=1

-3 Vi, —v2
MZA”B”+ "2 ltr(AB') + tr(AB)} + — 22 trAtrB +o(n "),

n2
i=1

o_n»n

we use Lemma 5.3.

S2.6 Proof of Lemma 5.7
Limit of 9% (z1,2,)/(02,02,):

Since 1E|Bj(z) - bp(z)|2 < K|z|4/(nv8), it is enough to prove that

82
821822[ 22 ZIE] ! ]
m(z

(52.61)
iz[ m'(z)m'(zp) 1 ]+ clag + ax)m’(z1)m’(z;)
{m(z1)-m(z)}2  (z1-22)% | {1+ Am(z1)}2{1 + Am(z,)}?
By Lemma 5.5, we have
2
LHS of (8261) = m{yn(zl,zz) +y12(21,22) +y13(21,22)} +0p(1), (8262)
where
— n P
yll(zlrz2) 1/411—21/1217 & ;IE] Zl ]zzlE [D ( ]zw
Vi2(z1,22) = 2v12b (22 Zt { _1 (z1)E;D; Yz )}
_ Via—v; - -1 -1
Vislz1,22) = =52 by(21)by(z2) ) _tr{E;D; (z1)}tr ;D (z2)},

=1
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2 4 2 2
where v, = IE(lzj—lll— ) , Vg = IE(m— ) , Vi = IE(%—T —1) ('%—112 - 1) , W = Z?Zl wye/p. We claim

wy
that the following statements hold true as n,p — oo (to be proven later):

*V11(z1,22) P caym’(z1)m’(z,)

92102, [1+Am(z) (1 + Am(z)} (52.63)
PVia(21,25) P 2m'(z1)m'(2)) 2

02107 (m(z)-mz)P  (z1-2)" (52.64)
*Vi3(21,25) P caym’(z1)m’(z;)

0210z, {1+ Am(z)P(1+ Am(z) (52.65)

By (52.61) — (52.65), we obtain the limit of %222)71(21,22).
Now, we provide the proofs of (52.63) — (52.65) as follows:
Proof of (S2.63): It is enough to find the limit of

n p
% ZZIEJ'[D?(ZI)]iiIEJ'[DJTl(ZZ)]ii'

i=1 i=1

By similar calculation of Gao et al. [2017], we get the following lemma and its proof is postponed
to Section S2.7.

Lemma S2.1. Under Assumptions 2.1 and 2.2, for any 1 < j < n, we have as p — oo
ZIE][D (21 ] ][D (25 ] — m(zy)m(zy).

By E|2trD™!(z) - ZEtrD ! ()9 < an—q/zvaq (K, is a positive constant), the formula (2.2) of
Silverstein [1995], mp(z) = —% ;’:1 Bj(z), and Lemma 5.4, we have

1bp(2) ~ P (2 '<T EB1(2) = ~zBm (2), [by(2) + zm0(z)] <

Thus, by (52.66), Lemmas 5.3 and S2.1, we have as n,p — oo

(S2.66)

Biks

cajm(zy)m(z;)
{1+ Am(z1)}{1 + Am(z,)}

Vi1(21,25) & cayzyzym(zy )m(zp)m(zy )m(zy) =

where the equality above follows from m(z) = —z~'{1 + Am(z)}~'. Thus, the in probability (i.p.) limit

%Y :
of % isin (52.63).

Proof of (82.64): By similar calculation of Bai and Silverstein [2004], we get the following lemma
and its proof is postponed to Section S2.8.

Lemma S2.2. Under Assumptions 2.1 and 2.2, for any 1 < j < n, we have

=l 2.0 0
—c,vim_ (z1)m (z;)
-1 1 n CnVoIip\21)np(2)
tr[IEj{D]- (zl)}D] (22 ][1— — 5 ol 5
+ = Vzmp(zl)}{ + 5 Vzmp(zz)}
nc, 1 172
= + Op(n™'7).
2173 1+ Byl o)1+ Byl T )



By using (52.66) and this lemma, },(z1,2,) can be written as

ay(21,22)V12 2
p -1/2
V12(21,22) = 5 Z =) +O0p(n~'?),
nv, =T 1-5rap(z1,22)

2
v2e,md(z)m(z,)

{1+%V2m2(21 )}{1+%V2m2(22)}

I and thus the i.p. limit of #;Zzylz(zl,zz) is (S2.64).

where a,(z1,2;) = . By Lemma 5.3, the limit of a,(z1,2;) is a(zy,25) =

c/\zm(zl )m(z,)
{1+Am(z))H1+Am(z,

Proof of (52.65): We have E Il]trIEijfl(zl)Il—,trlEjD]TI(zz) - mg(zl)mg(zz) =o(1). By Lemma 5.3, we

getlim, ., p(vi2— v3) = a,. This, together with (S2.66), implies that as n,p — oo

P cam(zy)m(z)
V130 22) = N Am(z))

Thus, the i.p. limit of %222)/13(21,22) is (S2.65).

Limit of 823)2 (le Zz)/(azl 922)1
For any p x p matrix A, we have

-1 -1 Al
[r{D7(2) - D7 (2)}A| < el (S2.67)
By Lemma S1.2 and (52.67), we have
K
1E|QtrD—1(z) - QﬂatrD-l(z)}q <1 (52.68)
n n nq/zvg
where K, > 0 is a constant depending on g, which implies that
- 2 Klz|*
E[B;(2) - by(2)]” < —¢ (52.69)
nv;

The above inequalities will be used in the following proof.
Denoting ), j(z1,23) := IEj_l{Ej(zl)ej(zl)}IE]-_l{Ej(zz)sj(zz)}. To prove the second part of the
lemma, it is enough to show that, foreach 1 <j <mn,

Va,i(21,22) = by(21)bp (22 Ej 1 (20 ) Bj18(20)f = 0p(n7"), (52.70)
and
by(21)by(22){Ej_1€j(z1){Ej_1€j(22)} = op(n). (52.71)

Proof of (52.70): We write

LHS of (52.70) = By |{§ (21) - by(z1)}ej(21) By F (220 22)

+ 1 (Bp(z1)e 20 [By 1| (B (22) - byl e )]
= AV} (21,20) + AV (21,22).
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Note that, for any q1,9, > 1 with 1/g; + 1/q, = 1, we have

(1) = o\ = 02\
E|AY]) 1z < (B[E 1 (B e - byl ) (BB 1Bz 2)] )
_ g1\ 7 _ 9:\1/92
< (] tz0) = byt ) (E[Bj e 22] )
From Lemma 5.4 and (52.69), for any 1 < g; <2 and g, > 2, we have
291

E| (B~ yefesten)|” < (B[ a0 - b,;(zl)lq”zl)ql/z(lElsj(zﬂl””‘z“)

_9 _241 4g,-4
<Kn zn 2 &,

_1 <494
=Kn6,"

and

= q 2|7y 2g,-4
E|ﬁj(22)€j(22)| ZSK—qun (anz .
0

Thus,

491-4 | 244

1E|Ayéy1j)(zl,22)| <Kn's," % =o(n).

Similarly, we can obtain 1E|Ay§,2j)(zl,22)| = o(n~1). Thus, we complete the proof of (S2.70).
Proof of (52.71): By (52.43), we get

J1N— v -
E; 1€j(z) =Ej4 {r].Dj l(z)r]' - ftrDj 1(z)}

_ . -1 4 2 . -1
_tr{]E]_lD]- (z)]Er]r]-}— nIE]_ltrD]- (2)

%) _ 1 %) _
= p tr{]Ej—lel(z)(Ip_Elplé)}_g]Ej—ltrDjl(z)

n(p-1)
- ﬁﬂ@j—l{tm;l (2)-1,D7"(2)1,}.

By Lemma 2.3 in Bai and Silverstein [2004] and our Lemma S1.5, we have as p — oo

1 _ P 1 _ p 1
}—)trDjl(z) — m(z), 51;1)]. Y2)1, > -

By (52.68) and the identity mp(z) = —% }7:1 Bj(z), we have
|bp(2) + B, (2)] < Kn™'/2,
This, together with Lemma 5.4, yields that
by (2) + zmg(z)l <Kn 12

Equation (52.71) follows from the above estimates.
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S2.7 Proof of Lemma S2.1

By Lemma 51.2, the inequality |B;;(z)| < %, and Lemma 5.4, we get

E|(1) (D7 (21) - EDT 2115

n 2
~E|) (B~ B)(15){Di'(z) - Dy e

=1

n

i i 2

< KZIE|(IE]- ~Ej_1)p1j(z0)r}D715(15) Dy e ]|

L 2
< KZIE|/51]'(21 r Dl] 1;,(11 ) I}r]-|
<Knl, (S2.73)

where 1;, is the p-dimensional vector with all components being 0 except for the i-th component
being 1. Hence, we have

nZZZ]E][D (21)~ED;" (z1)] ;[ D ( zz]‘

]11

(13){D7!(z1) - EDT' (21| < Kn ™2,

and thus

1 & ) _
n? IEJ[ ~EDj (2 ]'ilEj[Djl(ZZ)]ii:OP(n ).

j=11i=1
Similarly, we have
1 & &
— IE][ (22) - ED; zz]IE[D zl] = Op(n~'2).
n

1

]: i=

With the above two inequalities, it remains to find the limit of
1 p
-1 -1
5 Z IE[D ; (zl)]iiIE[D 3 (zz)]ii. (S2.74)

It is easy to see that the sum of expectations in (52.74) is exactly the same for any j. Moreover, we
have

p
> ) E[D; )] B[ )], S iz, asp— oo
i=1

This completes the proof of Lemma S2.1.
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S2.8 Proof of Lemma S2.2

Let
D;i(z) =D(z) -r;r.—r:;¥;, by(z) = !
Y trr 1+ n‘lvzlEtrDI%(z)’
1
i(z)= ———.
ij(2) 1+1‘§Di_].1 (2)r;
We have the equality
n-— - n-1
D]‘(Zl) + 2z IP — V2b1(21 )IP = ZI’Z‘I'; — V2b1(21 )IP

i#]

Multiplying by Q,(z;) := {z(I, - n=ly b, (zl)Ip}‘1 on the LHS and D]Tl (z1) on the RHS, and using

n

réDJTl(zl) = Bij(z )rgDi_jl(zl), we get

Dfl (z1) = —Qp(z1) + b1 (21)A(z1) + B(z1) + C(z1), (52.75)

where

AGz1) = ;Qp«zl)(rir; - 21, )7} (),

B(z1)= ) {Bij(z1)~b1(21)}Qp(z1)rir D (1),
i#]

Clz1) = “2b1(21)Qp(z1) )_ (D5} (z1)-Dj" (@)}

i#]

For any t € R, |1 - tbh;(z)/z|' < I]JIZ{/Z%(:()Z')} < lzl{H%(MO)}. Thus,

1Q, (21l < %ﬁ””o) (52.76)

For any random matrix M, denote its nonrandom bound on the spectrum norm of M by |||[M]||. Since
the same argument in (52.68) holds for DI%, and from (52.76), Lemma 5.4, we get

|Z1|2{1 +P/(”Vo)}n1/2'

E|trB(z;)M] < K]|IM]]| 0 (82.77)
From (S52.67), we have
trC(zy M| < g 2212 L vo)) (52.78)
0
From (52.76) and Lemma 5.4, we get, for M nonrandom,
E|trA(z;)M| < K||M||L§nv())nl/2. (S2.79)
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Note that

tr[IEj{A(zl)}D]Tl(zz)]
=tr ZQP Z1 (r - p)IE]{Dzjl( )}lejl(ZZ)
i<j

#tr)_ Qplan)(rr) - 221, By (D7 (20D (22) - D7 22)

<
+ trIE]-{ iQp(zl)(rir; _ %1,, )D;jl(zl)}n;l(zz),
S
thus, by using D;'(z) - D} (2) = —;;(2)D;}! (2)r;x/D; ! (2), we can write
tr[IEj{A(zl)}D]Tl(zz)] = Ay(21,22) + Ax(21,22) + As(21,22) + R(z1, 22), (S2.80)
where
1(21,22) Zﬁw 20 E,{D}! (21D (22)ri/D ! (22)Qp (21 )y, (S2.81)
s

As(z1,3) = —-2tr ) Qy(21)E;{D;}! (z)}{D; " (22) - D (z2)},

i<j

As(z1,20) =tr ZQp(Zl)(fil‘;— %Ip)IE]{D ]l( )}D ]1(22)

i<j

R(z),2y) = trIEj{ ZQp(zl)(rir; - %Ip )Di—jl(zl)}pjfl(@), (S2.82)

i>j

It is easy to see that R(z1,z;) = Op(1). We get from (S2.67) and (S2.76) that |Ay(z;,25)| < —v(m’O),
0
Similar to (S2.79), we have [E|A3(z1,2;)| < —“”7//(3””0)111/2. It remains to derive the limit of A;(zy,2,).
1]

By using Lemma 5.4 and similar argument in (52.92), we have, for i < j,

E|Bi(22)t/E;{D}! (21))D7} (22)ri1D7 (22)Qp (21 )r;
2
-Lb, <zz>tr[1Ej{D;; (z1)}D7} (z»]tr{D;; (22)Qy(21))|

< E|Bij(22)t/E;{D}} (21)|D;} (z2)rix/ D (22)Qp (21 )
2

- 2 sty 4D oD 2o) |7 2y 1)

2
| {p, )by e e[ D7 D5 ) oD (210 )
< B|Bij(z2)( /B, {D7} (20)]D7} (z2)r; - 22tr| By {D7} (21)|D7 (22) | Jo/ D7} (22)Q (21 )rs
j ] n 1 1 /
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+ 22,5z By (D7 2)ID;} (22)] [ 11D )@y 21 s - 2t{D; (22)Q, (21 |
n 1E|Z—§{/5ij(zz) by (zz)}tr[IEj{Dz Hz))jD7 (zz)]tr{Di—jl (22)Q, (21

<Kn™V2, (S2.83)

By (52.67), we have
1E|tr[1Ej{D;j1(z1)}D;jl (zz)]tr{Di_-l (22)Qp (1)}
_tr[IEj{D (z)|D7 (= )]tr{D H2)Q,(20)}| < Kn. (52.84)

It follows from (52.83) and (52.84) that

IE|A1(zl,zz) + j;—zlvgbl(zz)tr[lEj{Djl(zl)}D (2 )]tr{D (zz)Qp(zl)}| < Kn'2, (52.85)
By using (52.75) - (52.80), we have

tEj{D; ! (z1)}D; " (20)] = tr[IEj{—Qp(zl )+ bl(z)A(zl)}Djfl(zz)] +0p(n”?)

= —tr{Qy(21)D} " (2)} + by (21 rE{A (21 }D7 (z0) + Op(n'?)
= —tr{Qp(Zl)D]Tl (22)} +by(21)A1 (21,22) + Op(n'/?).

This, together with (52.85), implies that
I, D7 D7 e[ 14 255 021 (201 (22)0{D} 200y 20|
= - tr{Qp(21)D; ! (z2)} + Op(n “2>.
By using (52.75) — (52.79) and (52.67), we have
5 D} D 2] 1= L5 w21 (201 (22)r{ @y 22)Qp )|
= tr{Qy(22)Qp(z1)} + Op(n' ). (52.86)

From (52.67), we have |b;(z) - by(z)| = O(n!). This, together with (52.72) and (S2.86), implies that

—w%m,?(zl)mg(@)
B {p ][ 2Ly md(z )1 + %vzmgm)}]
_ ncy 1 +0 ( 1/2)'

2123 {1+ 2l vym (21 + Bk vamb(2,))

This completes the proof of Lemma S2.2.
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$2.9 Tightness of Ml(,l)(z)

The proof of the tightness of Ml(jl)(z) is similar to that provided in Bai and Silverstein [2004]. It is
sufficient to prove the moment condition (12.51) of Billingsley [1968], i.e.

1 1
EIM (z)) - MY (z5)2

n;21,2,€C,, |Zl - Z2|2

(S2.87)

is finite.

Before proceeding, we provide some results needed in the proof later. First, moments of
ID~1(2)||, ||D]71 (z)|| and ||Di_].1 (z)|| are bounded in p and z € C,,. It is easy to see that it is true for z € C,
and for z € Cp if x, < 0. For z € C, or, if x, > 0, z € C;, we have from Proposition 2.4 that

IE”D]_l (Z)Hm < Kl + ‘l}_mP(”B(])” > 1y O /\mln(B(])) < TM)

< K] + Kznmefmnfg <K

0
p
A(1 ++/c)? and x,; if x, > 0, #¢ is any number between x, and A(1 - yc)? and if x; < 0, 17, can be any

negative number. So for any positive integer m,

for large £, where B(;) =B, — rjr;, K1, K3, K are positive constants. Here 7, is any number between

max (BID™! 2)", BID; @)™, BID; (2)") < K. (52.88)
By the argument above, we can extend Lemma 5.4 and get
q
|IE(a(v)]_[(r’1B(g)(v)r1 - n_ltrB<g)(v)))| <Knl62* (S2.89)

where B(v) is independent of r; and

max(la(w)l 1B (V) < K( 147 gy or a2 )

for some positive s, with B being Bj) or Bg. By (52.89), we have
Ele;(z)|" < Kyn ' 87, (S2.90)

where K, is a positive constant. Let y;(z) = r;.D]TI(z)r]- - n’lvzlEtrDjfl(z). By Lemma S1.2, (52.89)
and Holder’s inequality, with similar derivation on page 580 of Bai and Silverstein [2004], we have

Elyj(z) - €j(z)|" < ,5:72' (S2.91)
It follows from (52.90) and (S2.91) that
Ely(z)|" < Kpyn '67"7%, m>2. (S2.92)
Next, we prove that bp(z) is bounded. With (52.89), we have for any m > 1,
E|B:1(2)|" < K. (52.93)

Since b,(z) = Bi(z) + B1(2)by(2)y1(2), it is derived from (52.92) and (52.93) that |b,(z)| < K +
Kzlbp(z)ln‘l/z. Hence, we have
Ky
With (S2.89) — (52.94) and the same approach on Page 581 — 583 of Bai and Silverstein [2004],
we can obtain that (S2.87) is finite.
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S$2.10 Proof of Lemma 5.8
Let ap(z) =1, + /\]Emp(z)lp, then

nA, = #m,,u + pzEEm,(2) = E{f1 (2)P1 (2)} + E{B1 (2)P2(2)), (52.95)

where

Pi(2) = nrD!(2)Q; ' (2)r1 ~ Mr{Q, ' (2)ED; ()}
Py(z) = Atr{é;l(z)ml);l(z)} - Atr{é;l(z)IED_l(z)}.

Since By =b, —byy; + /Slbf,ylz, where y; = 7 (z) := 1D} (2)r; —n v, EtrD; ' (2), we have

E(B1(2)Py(2)} = b, (2)EP (2) = b (2)E{p1(2)Py (2)) + b (2)E(B1 (2) 7 (2) P1 (2))- (52.96)

The estimates for EP;(z), E{y,(2)P;(z)}, IE{[j’l(z)ylz(z)Pl (z)}, and E{B;(z)P>(z)} are provided in the
following lemma, and its proof is postponed to Section S2.11.

Lemma S2.3. Under Assumptions 2.1 and 2.2, we have

EP,(z) Ey;(z)+ va-A EtrD;! (z)}, (52.97)

_ n {
1+ /\IEmp(z) n

E(1(2)Pi(2))
= ({1 ey~ oD |17 2105 e e 210 |
2
* n(pv - 1)115[{@{1(2) - 1;,D;1(z)1p}tr{D;1(z)6;I<z)}]
A
" T AEm,(7)

Etr{D;!(2)}Ey; (2) +o(1), (S2.98)

E{1 (207 (2)P (=)}
= E{nf1 (2772017 (2, (2)r) | - E| g1 (217 22)(AG; (2ID7 2|

+ Cov(ﬂl(z)ylz(z), tr{,\é;l(z)DIl(z)})
= 0(82), (52.99)

pvaAbiz)
~ n(p-1)

where 0, is as defined in the truncation condition (14).

E{py (2)Ps(2)) ]Etr{D[l (z)é;l(z)DII(z)} o), (52.100)
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From this lemma and (52.95), (52.96), we get

nAp:]1+]2+]3+o(1), (52.101)
where
_ nby(z) vy —A . by (2)Atr{ED (2)}Eyy(2)
Jr=17% A]Emp(z){]Eyl(z) t By (z)} i 1+ AEm, (z)
b2(z)v? B L o

- n’(’p L 12)1E[{tr1)1 '(2)-1)D}' (211, (D} (2)Q; ! (z)]],
Iy = —nb;(z)m({r;D;1 (z)r) — %tngl(z)}[r;Df(z)G; (z)r — %tr{Dgl(z)QI;l(z)}]),

pb2(z)Av ~

5= 61 EufPr (G, (D7 ()

The limits of J;, J, and J5 are provided in the following lemma, whose proof is postponed to Section
S2.12.

Lemma S2.4. Under Assumptions 2.1 and 2.2, as n,p — oo,

m(z){z(A + hy)m(z) + A}
1+ Am(z)
cz2?m?(2){(ay + ap)m?(z) + 2A%m’(z))
1+ Am(z)

cA?m?(z)
{1+ Am(2)}[{1 + Am(2)}? = cA2m?(z)]

h—--

s

Jo— -

s

Jz—

By this Lemma and (52.101), we get the limit of nA,,.

S2.11 Proof of Lemma S2.3

Proof of (52.97): this equation follows from the definition of y;(z).
Proof of (52.98): For E{y;(z)P;(z)}, we have

E{y1(2)P1(2)}

= ”E({riDII(Z)n - 24Dy () + 2Dy (2) - %IEtrD[l(z)}
<D (@05 (@ - 2Dy (205 2] + %tr{Df(z)é;l(z)}])

-1
_me(z)mtr{m (2)}Ey1(2)

. nnz({r;D;l(z)rl - %tﬂ);l(z)}[rgngl (2)Q;' () - (D7 (2)Q; (z)}])

2
V)

e 1)1E[{trD;1(z) - 1;,D;1(z)lp}tr{Dgl(z)G;I(z)}]
pv3 -1 11
+ (p— 1)Cov(trD1 (z),tr{D1 (2)Q, (z)})
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- " Cov(trD_l(z) l'D_l(z)é_l(z)l)
n(p—1) I
A

_1+/\1Emp(z)

_ nIE({r’lDII(z)rl - %trDIl(z)}[riDIl(z)a;l(z)rl _ %tr{Dgl(z)égl(z)}])

2
V)

+
n(p-1)
B A
1+ /\IEmp(z)

Etr(D7 (2)}Ey; (2)

IE[{trD;I (2)-1,D;"(2)1,}tr[D; ()@} (z)}]
Etr{D;!(2)}Ey; (z) + O(n 1),

which is the second equation in Lemma S2.3. Below are some interpretations of the above equalities:
1. The second equality uses the following derivation: By (52.43), we get
| {1 D7 (@ - 27 21} - 2ur{D7 (9, )|
+ nlE[{%terl (z) - %lEtrDI1 (z)} -r}D7! (2)6;1 (z)rl]
_ v2tr(IE(r1r’1 )E[D;l(z)tr{Dgl(z)égl(z)}])— %glE[trDjl(z)tr{D[l(z)a;,l(z)}]

+ Vztr[IE{DI1 (2)6;1 (z)trD7! (z)}IE(rlri )] - vzlE{trD[l (Z)}tr[IE{D[1 (z)(SI;1 (z)}IE(rlri )]

= n(; : E[{trDi(2)- 1,07 (201, D7 (G, ()|

1
pv

)
2
2

o l)cOv(trD;1 (2). (D" (2)Q;' (z)})
v3
n(p-1)

Cov(trDI1 (), 1;,DI1 (2)6;1 (2)1, )

2. The last equality is due to

%Cov(trDIl(z), tr{D;l(z)(S;l(z)}) —om™), (52.102)
o 1)cov(trD;1 (2), 1,071 (2)Q; (2)1 p) — o). (52.103)

The equation (52.102) follows from the inequality
E[trD; ! (z)M - EtrD} ' (2)M|” < K|M]P%, (52.104)

where M is any deterministic p x p matrix. The proof of (52.104) is similar to Equation (4.7)
of Bai and Silverstein [2004]. The equation (S2.103) follows from (S2.104) and Lemma S1.5.

Proof of (S2.99): For E{B;(z)y#(z)Py(z)}, we have

E{p1(2)y}(2)P1(2))
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= B{nf1 (2721 DT (Q; (2 | - BB () (2)) B [ (G, (21D (o)
= E{npr (2 (@) @} IE[ﬁl 2722 (A (2)D7 ()]
+C0V(ﬂ1( )7i(2), tr{/\Qp (2)D7(2)}).
From Lemma 5.4 and equation (S2.104), we have

E{np1 (27221 D7 (21, (@)1 |~ B [1 (207 >tr{A6;1<> )]

1/2
Sn{]E|7’12(Z)ﬁ1(Z)| } [IE|Y1 (2)Q;' (2)ry ——tr QP | ]

Kn(if1 63)1/27171/2 = Ké,%,

IA

and
Cov(ﬁl(z)yf(z), tr{/\agl(z)Dfl(z)})
<{Big 1 ED @14 4(1E‘tr{/\(~2;1(Z)Dfl(Z)} - Etr{A6;1<z)Dil(z)}‘2)l/2
<Kn™1483.

These estimates yield (52.99).
Proof of (52.100): From (52.43), and

we have

E{B1(2)P>(2)}

= Aby(2)E{B1 (2))| Efri D' (2)Q;," (2)D7 (2)r1 | - E{B1 (2)1 (z)riD?<z>6,;1<z>D;1<z>r1}]
= Abz(z)m{rgn;l (z)é;l(z)Dgl(z)r J+0(n™2)

/\bf’( z)pv, »
Vl(p_l) tr[ { ( )Qp ( ) 1 (Z)}(Ip lp p)]+o( 1 )
/\bz(z)Pvz I ) )

= ﬁEtIIDll(Z)Qpl(Z)Dll(z)}+o(n 172y

which is (52.100). Below are some interpretations of the above equalities:
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1. The fourth equality follows from

E{1(2)71(2)r{ D1 (2)Q," (2)D7 ! (2)r1} = O(n72),
which can be proved by using Lemma 5.4.

2. The last equality follows from

/\b2(z)v2 o i / )
ﬁmtr{]}lI(Z)Qpl(z)Dll(Z)lplp} _ O(n 1)'

This can be proved by using Lemma 5.3 and Lemma S1.5.

$2.12 Proof of Lemma S2.4
Step 1: Consider J;. By Lemma 2.3 in Bai and Silverstein [2004], we have

;—)trD]Tl(z) 5 m(z).

By this estimate, Equation (52.43) and Lemma S1.5, we get

v 1 s\ _
nEy;(z) = %Etr{(ll, - 1—71p1 )Dll(z)} - vzlEtrDll(z)

:—pTllEtr{l D] ( 1 pl+%lEterl(z)
— Mm(z) +1/z}.

By Lemma S1.5, we have

_ bl(%;z)vlzz)m[{terl(z) - lz’JDfl(z)lp}tr{D[l(z)aljl(z)}]
cz°m(z )/\2 m(z)
-y (a2

By Lemma 5.3, Equation (52.66) and the above estimates, we have

/\} _ m(2){z(A+hy)m(z) + A}

zm(z) {(/\+ hy)m(z)+—1 = 1+ Am(z)

Ji= 1 +j\m(z)

Step 2: Consider J,. By Lemma 5.5, we have

Jo =21 +2]20+]23+0(1),

where
_ 2
It :_(V4 31;12)17;7( Z ([Dl ] [Dl ]”)’
i=1
Ja2 = —VUZI%(Z)IE“{DIZ(Z)Qz;l(Z)}x
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(vi2 = v3)by(2)

Jps = - JE[trD;I(z)tr{Dgl(z)é;,l(z)}].
~ 2
Since 37| lE([DIl(z)]ii[Dfl(z)Q;,l(z)]ii) BN #‘m()) we have
- —ca,2°m?(2)m?(2)
2l 1+ Am(z)
Note that %lEtrDIZ(z) — m’(z), thus we get
. _c/\zzzm’(z)mz(z)
= 1+ Am(z)
By Lemma 5.3, we get
e Ene)
2 1+ Am(z)

From these estimates, we have

cz’m? (2){(ay + ap)m?(2) + 2A%m’(2))
1+ Am(z)

Jo—-

Step 3: Consider J3. To calculate the limit of J5, we can expand DIl(z) like (S2.75) and find the
limit of J5 using the method similarly to Bai and Silverstein [2004]. The limit of J5 is

cA?m?(z)
{1+ Am(2)}[{1 + Am(2)}? = cA2m?(z)]

S2.13 Proof of Lemma S1.5

By Lemma 5.4, we obtain, for any 2 < g € IN¥, there exists a positive constant K, such that

Elr/D;" (2)x,x,D; " (2)r;]f

q
<K,(E

1 ) TN— V) — R
erj l(z)xpxij 1(z)rj - Ztr{Dj 1(z)xpxijl(z)H

V) _ _ q
+ |71Etr{Djl(z)xpx,’7D]-1(z) | )

<K

S22 et = 0(n72), (52.105)

where %tr{DJfl(z)xpx;,DjTl(z)} = nl—plz’jD]TZ(z)lp =O(n!). Write

Il
»
= 0~
—
—_
&
~
|
o3
~
N
~
e
o
N
—
Kab
I
=
=
—
—
N
~
——
—_—
e
S
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n
- - Z(IE]- ~E;_1)8;(2)r)D; (2)x,x,D; ! (2)r;.
j=1
By Lemma S1.2, (S2.105), and |8;(2)| < |z|/v, we have
IE|x;,D_1(z)xp —x;,lED_l(z)xp|2

n
< i—IE;1)Bj(2)r' D7 (2)x,x, D7 (2)r;
<K ) EI(E;-Ej)j(2)r)D; (2)x,x,D;" (2)r;|?
j=1

n
<K anmj(z)r;l);l (2)%,%, D7 (2)r; 7
=1
<Knl

Thus, we have
Elx,D~" (2)x, - x,ED " (z)x,|> — 0. (S2.106)

Recall that ap(z) =1, + AEm,(2)I,. From m,(z) = —% 27:1 Bj(z) and r;-D‘l(z) = ﬁj(z)r;D]TI(z),
we obtain

=~ z Zﬁj(z)agl(z)r]‘r;D;I(z) +——Q, (z)D7(2).

Taking expectation of the above identity yields that
~ -1
{-2Q,(2)} -ED(z)

=~ "E[p,(20; (¥} D} (o)) + TN

. Q,'(2)ED(2).

Multiplying by —x,, on the left and x,, on the right, we have

x‘;IED_1 (z)x, + m = 01(2) + 02(2) + 03(2),

where
01(2):= ZE{1 (2)on (2)),

) ~N— ) IN— /\ ) ~N— _
pll(z) = prpl (Z)rlrlDll(z)xp - ;Xprl(z)Dll(z)xpr

0a(2) = B[ 12, (DT ) - D @) |
03(2) = SB[ 121, (D () - ED (), |
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Recalling the notations defined above and the following equalities:
01(2) = ZE{B, (2)o11(2)} - ZE{B1(2)B, (2)er (2)ona ()],
B1(2) = by(2) - 2b,(2)By (2)tr{D7 (2) - EDy ' (2)).

From (52.107) - (52.108), Lemma 5.3 and Lemma 5.4, it is easy to see that

01@)=”E0“(ﬂ{ = +oUJ}

z 1+ cAm(z)

From (52.43) and Lemma 5.3, we have

1 A,
Ep1(2) = _W;{XPIEDI Yz)x, + 0(1)}.

Therefore, by (52.109) — (52.110), and Lemma 5.3 we have

01(z) = /\;%T()lex;,IEDIl(z)xp +o(1).

Similarly to Bai et al. [2007], one may have p,(z) = o(1) and p3(z) = o(1). Hence, we obtain

x,ED"(2)x, 1
1+ Am(z) " z{1 +EAm(z)}

which implies that

_ 1
x,ED 1(Z)xp -

This, together with (S2.106), completes the proof of Lemma S1.5.

$2.14 Proof of Corollary 2.6

(52.107)

(S2.108)

(52.109)

(52.110)

We begin by presenting some expressions that will be used in the subsequent calculations:

. 1+ cA
om 1+ Am’

(1+ Am)? —cA?m?

dz = dm,
T am?
— —m
1 -Am+cAm’
dm _ m?(1 + Am)?

dz {(1+Am)2 —cA?2m2} (=1 = Am +cAm)?’

As their derivations are straightforward, the proofs are omitted.
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§2.14.1 Calculation of expectation

The contours C is closed and taken in the positive direction in the complex plane, enclosing the
support of F¢. Let C be m(C).

For fi =x,
_cA? zm?(z){1 + Am(z)}
EXy = 27 960 [{1+ /\m(z)} —cA2m?(z)]?
1 m?(z) (hym(z) + Am(z) + A/z} {1 + Am(z)) J
" 2mi Je {1+ Am(2))2 - cA?m2(z) :
¢ [ 2m’(2){(ay +ay)m?(2) + 2A%m/(2){1 + Am(2)) d
T 2mi gy {1+ Am(@)? — cA2m?(2) ”
= 1Ii(fi) + (A1) + I3(fL)-
For I;(f1), by using (52.111) and (52.112), we get
cA? zm’(2){1 + Am(z))
W= 5 ) 1 T e
B c)? m3(1 + Am) (=1 = Am+cAm){(1 +/\m)2—c/\2m2}d
" 2 Je (1 Am)? - cA2m?)? m3(1+ Am)? =

1 cA?(1+ Am—cAm)
C 27 I (L+ Am)2{cA2m? — (1 + Am)?)  —

The poles of I;(f;) are A1, — 1+\f +» we have by the residue theorem

L(fi)= 1+c—31+«f —%1—()2:0.

For the second integral I,(f;), by using (52.111) — (52.113), we have,

1 22m?(2){1 + Am(2)}{hym(z) + Am(z) + A/z)
Ll =-25 . {1+ Am(z)}2 — cA2m?(z)
1 m?(1 + Am)

- mn m(1+Am)
T 2mi Jo (L+ Am)? —cA?m? ¢ {(h1+)\)m+(h1+/\ hlc)—l—/\erc/\m}

(L= Am et cAm)? (1 + Am)? — cA2m?)

d
m4(1+ Am)* =

1 L (Pm-hy)(=1-Am+cAm)

C2mi Jp m(1 + Am)3

The pole of I,(f;) is —A~!, we have by the residue theorem

L(f) =
For I3(f1), by using (52.111) — (52.114), we get

¢ [ 2’ (2){(ay + ax)m?(2) + 227w/ (2){1 + Am(2)) d
()= 2mi Jp {1+ Am(z)})2 - cA?2m?2(z) z
_ 1 —m ? 222m* (1 + Am)?
2w Jp (o + aZ)( -1-Am+ c/\m) " {(1+Am)2 —cA?2m2}(-1 - Am+cAm)?
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cm®(L+Am) (=1 =Am+cAm)*{(1+ Am)* —cA>m?)

d
(14 Am)? —cA?m? m>(1 + Am)> o
1 cla; +az)(-1=Am+cAm) dm+ 2A%¢(=1 = Am+ cAm) d
- 2mi (1+ Am)* = (1+Am)2(1+Am)2—cA?m?} | —
The poles of I5(f;) are —%, —ﬁ, we have by the residue theorem
I;(fi) = —2M1+c)+ A(1 + V)2 + A(1 —+c)? = 0.
Thus, we get
IEXX = I’ll.
For f, = x2, we have
cA? 22m3(2){1 + Am(z )}
EX,. = — — d
¥ 2ni 95 [T+ Am()? = X2 (z) P
1 2m?(z) (hym(z) + Am(z) + A/z} {1 + Am(z)}
2mi Je {1+ Am(z2)}? - cA?m?(2)
o L@ + )+ 22 @)1+ Am(z)
27 Jp {14+ Am(z2)}? — cA?m?(z)
1 cA?(—cAm+ Am+1)?
" 2mi m(1+Am)3{(1+ Am)2 —cA?m?} —
1 (AP —h)(=1 = Am+cAm)® |
27 Jp m2(1+ Am)* -
1 clay +ay)(=1 = Am+cAm)? 20%¢(-1 - Am+ cAm)?
-— m+ dm
2mi Je m(1+Am)® = om(L+ AmP{(1+ Am)? —cA?m?} )
=:11(f2) + Lo(f2) + I3(f2).

For the first integral I;(f,), the poles are —A~1, — 1+\[ 5> we have by the residue theorem,

Li(f2) = —cA%.
For the second integral I,(f,), the pole is —A~!, we have by the residue theorem,

Iz(fz) = /\(/\ + ZChl + 2]11 )

1

(1)1’

For the third integral I5(f,), the poles are —A~!, — we have by the residue theorem,

I3(f>) = c(ay + a) + 2A%¢.
Thus,
EX,2 = (c+1)A% +2(c+ 1) Ay + c(ay + ay).
For f3 = x3, we have

cA? 2m3(2){1 + Am(z))
980[ {1+ Am(2)}? - cA?m?(2)]?
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1 z4m?(z) {hym(z) + Am(z) + Mz} {1 + Am(z)) J
" 2mi e {1+ Am(2)) — cA2m?(2) :
< 95 22m3(2){(ay + ap)m?(2) + 2A2m’ (21 + Am(z))
[

2mi {1+ Am(2)}? - cA2m?(2)
1 cA?(-1=Am+cAm)3
i o

dz

T 2 1+ Am)*(1+ Am)? —cAZm?} —
~ ng (APm—h) (1= Am+cAm)®
27 Jp m3(1 + Am)> -
1 96 clag +ay) (-1 —Am+cAm)3 20%¢(-1 = Am+cAm)3
-— m+ dm
2 m2(1 + Am)® = m2(1+ Am)H(1+ Am)2 —cAZm?} | —
=:11(f3) + Io(f3) + I3(f3)-
For the first integral I;(f3), the poles are —A~!, — 1+\f +» we have by the residue theorem

I,(f3) = =3c(1 +c)A°.
For the second integral I,(f3), the pole is —A~!, we have by the residue theorem

L(f3) = A2{(2+ 3¢)A + 3(1 + 3¢ + c)hy ).

For the third integral I5(f3), the poles are —A~!, — 1+\f +» we have by the residue theorem

I3(f3) = 3c(1 + c)May + ay) + 6¢(1 +c)A°.
Thus,

EX,s = (3c2+6c+2)A3 +3(c? + 3¢+ 1)A%hy + 3c(c + 1) AMay + ay).

S$2.14.2 Calculation of variance

We claim that
COV(erl ,X rz)

Acn+mii( )( )( )kﬁkzrlZg(”l_rll_fl 5)(2r2_r21__f2+€) ($2.115)

=0k,=0 (=1
ki +k
41 5] —c\"17"2 21’1 kl 27‘2—]{2
/\ (a1+a2 )(Ac) EOkE 0( )( )( ) ( "1 )( o1 ) (S2.116)

where r,7, € IN*. By using this result, we obtain the variances in Corollary 2.6. It suffices to
prove the above equation. The contours Cy,C; are closed and taken in the positive direction in the
complex plane, each enclosing the support of F¢. Let C; be m(C;) for i = 1,2. From Theorem 2.5, we
have

P
Cov(Xyn, Xyr) zé 98 a7 2 dm1 dm,
m ¢, Je, (my —m,

0(1 +0(2 Zl ZZ
dm, dm,,
C4n? jicl 9602 1+ Amy)2(1+ Am,)2 1 =2
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=: Covy, r,,1 + Covy, 1, 5.

The proof of “Cov,, ,, 1 =(52.115)” is exactly analogous with Bai and Silverstein [2004], it is then
omitted. Now, we prove that “Cov, , > =(52.116)". Note that

é é Zl 22 d d é ZII d é Z? d
m m, = —dm, X —F Aam,.
e Jo, (L+Am)2(1+Amy)? ' 27 Je (1+Amy)2 ' 7 3G, (14 Am,)2 2

By (52.111), we have

r
9‘5 Z—ldm
e, (1+Amy)2 1

1 A\
é (_m_l + 1+C/\m1 )
= ) > dﬂ1

1 1—-c\
— 1 _ -1 -2
(Ac) 9661(1+/\m1+ . ) {1=(1+Amy)) 7 (1 + Amy)~"dm,

r

: 1—c\k = i—1 ,
:(Ac)”g%;(,?l)(%) (1+Aml)k1“Z(ﬁ+; )(1+Am1)](1+/\m1)2dm1

]:

7 ok 3
= (/\C)n ( ) C 1 ) (7’1 +] 1)(1 +Am )kl r+j— dely
120

by substitution ﬁl = Am,, we get

96 z)' dm, (Ac)“ 1—c "196 Z r1+J—1 |+ 7, N2 A
¢ (L+Am)2 A - -

where C| is the 7, contour. For this integral, the pole is —1, we have by residual theorem

r . r k
Z; 271 ri\(l—c\*(2r -k
9§ I dmy = T (A0 ) (—) .
2 T Ay ™= ko(kl) c (ﬁ—l
=

Similarly, we get

1) . Ty k
Z, 27ti ) (1—c)2 2ry — ks
96 — 2 _dm, =)o) E - _
) T Amyy M2~ 3 (kz) c ) \n-1

kzIO

Using the two equations above, we derive (52.116).

S2.15 Proof of Theorem 3.1

Before moving to the proof of Theorem 3.1, we first establish a lemma of v := IE{pwl/(ZZ:1 wy)—1)?
as follows. The proof of this lemma is provided in Section S2.17.

Lemma S2.5. Suppose that p < n and w = (wl,...,wp)/ has positive i.i.d. entries with Ew; = pu > 0,

E(w, - p)? =02, and E |w1 - ;/t|6+s < oo for any s > 0, then we have
h
vi=A+—+o(p™),
p
where A = 02/p?, and hy = —=2Bw;/p® + 312 + 51 + 2.
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Recall that

2v3 p(v5)?

)
2 +(B ALY
I‘( p,N)+ p- 1
Taking r; =1 and r, =2in (52.115) — (52.116), we obtain that
Viz 1= Cov(tr(B,,n), tr(B2 ) = 2Ac(1 +¢)(2A° + a1 + ).

From Theorem 2.5 and Corollary 2.6, we have the following joint CLT:

Ler(B2 ) - A%1+qn 2Y\p  ((o\ (V, V.
p[p 1tr( N)—A- p]_”v((o)’ (Vlzz \/112))'

Define a function f(x,y) = x — i,pvf y )

1 1
T:f(gum;Ny;uw%N»

2pvs\
Vf()\2 (1+c )+% /\+&):(1, _ppvz),

2Ah; + A2
A(1+c +&,/\+&):/\2c +&—1—+O( 2),
f( (1+cn) P NED o1 p

=Yt

where in the last equation we use Lemma S2.5. By the Delta method, we obtain that p(T — ) is
asymptotically Gaussian with mean zero and variance

2pv5\ [V, V. 1
o2 _ 2 2 12 _ 112V, _
o= pm{{ S0 Vg

This completes the proof of Theorem 3.1.

S2.16 Proof of Theorem 3.2
Define

then we have

= e ) , plv3)? = (99)%)
T-T" = P tr(B, \, ) + i
1 _1_ _ 1 2 -2y _ 32
:2{/\ A—=hy/p—o(p )}{p)\+OP(1)}+p{/\ +2Ah/p+O(p~*)— A7}
p-1 p-1
A—1)2
=—p(p_1) +op(p h
= Op(p~2)+op(p™) = 0p(p™")
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The second equality follows from Corollary 2.6 and Lemma S2.5. In the fourth inequalities we use
the CLT of A as shown in (S2.118). Let

A f 2AM A

nm-1 p 1’
then we have
~ . § § ~ 2/\2_/‘2
p(T—jr)=p(T-T")+p(T —w)+%
= p(T" = jir) + pc1 (A% =A%) + 0p(1). (52.117)

The two leading terms in (S2.117) are independent, so we consider their asymptotic distributions
separately. From Theorem 3.1, we obtain the asymptotic distribution of the first term in (52.117)
as follows:

p(T" — fir) = N (0,02),

where O‘% is defined similarly to 02 in Theorem 3.1, with the limiting value ¢ replaced by c;. We

claim that the asymptotic distribution of A (will be proven later) is
P(A=2) 2 N (b, (B — 14 = A% + iy — 2A1y)), (S2.118)
where w;; is defined below in (S2.119). Using the Delta method again, we have
per(A2 =A%) 2 N (261 Ay, 422G e IB(wy, — 1)* = A% + by = 2A1y)).
This, together with (52.117), Theorem 3.1, and the fact that T and A are independent, implies the

asymptotic distribution of T.
Finally, we prove (52.118). Let

p
- Wij k k, 1 -
W;j = - L p—_d :21_7 E wk. k=1,2. (52.119)

By the Lindeberg-Feller CLT, we have

ol Y )

i

By Taylor’s theorem and Lindeberg’s CLT, we have the following approximation:
1y
A 1 A 1
A=— ) Ai+0pl—5)
1, ; irep ( ps/z)

ii = wz[z] - 2wz[.1] +1- 2(“’1[2] - w[l])(wll] - 1)+ (3w1[2] - Zw[”)(w[l] - 1)2.

i i i i

where

Define a function f(x,y) =x—2y+1-2(x-y)(y — 1) + (3x - 2p)(y — 1)>. Then we have

A= f(w ) FA+L) =2 VAA+11)=(1,-20-2).
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Note that

oy (Fen G EE A g

= Ed}, —4(A+ DEw3, + (A +1)%(41 + 3)
= IE(”U?ll - 1)4—/\2 +h2— 2/\]’[1

By the Delta method, we have

VB(Ai = A) 2 N (0, By, —1)* = A% + 1y — 201y ). (52.120)

Since
p(A-1)= nz\/_Z\/_/\ A)+op[1], (S2.121)

it is necessary to expand the expectation of A; up to the order O(p~'). From direct calculations, we
obtain that

E(w) (@] - 1) = %’ Bl (@' -1)) = %'
(w[l] _ 1)2} — M

+0(p™?),
; p

and thus,

A —2Ew3, +3A2+51+2 h
EA, = A4 ; +op(p*1):A+?1+op(p*1). (S2.122)

From (52.120), (52.121), (52.122) and the fact that {A; } 2, are independent, we obtain (52.118).
This completes the proof of Theorem 3.2.

S2.17 Proof of Lemma S2.5

Similar to the derivation of equation (52.24), we have

2 2 2Ewi(w-p) 3Ewi(w-p)?
i; w_;:_ wl(;u ]/l)+ wl('l: P‘) +Ea® —Eb° + Ec°, (82.123)
K H H

where w = p~! Z;’:l wj, a° = Zj ﬂ(w ”)IB with |ﬂ( )| <G |

3w%(ﬁ—y)2/,u4}135(5), c° = (wl/w )IB;(E), By(e) ={w:[w-pl <ew= ijl wi/p,p = [Ew;}, and the
probability of its complement admits the following bound

{wl/ﬂ —2w1(w ,“)/P‘ +

t/2
P(By(e)) < Ctg_tp_t{(PlElwl —P‘|2) + pElw, —ylt}, (S2.124)
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where ¢, t, and C; (which depends on t) are positive constants. By straightforward calculations, we
have

C
[Ela°| < CelEIw%(E—y)ZIB )| < CeElw?(w - p)? ¢ Z Ew?(w =)

p
Ce Ce _
=27 )_Bwiwi—p)® = 5By -+ = —EwiBw, —p)* < Cep”,
. 1 1
[Eb°| < c{11>1/2 (B5(e)) + Elpl/‘*(Bg(e)) ; ;7}’

[Ec®| < p*P(Bj(e)),

where C > 0 is a constant. Given that [E |w1 - ;4|6+5 < oo for any s > 0, we use this moment condition
to estimate IP(B;';(E)) by taking t = 6+s in (S2.124). Consequently, we obtain IEa®—~Eb°+IEc® = o(p~1).
Combining this with equation (52.123), we have

wy hy -1
E(—=2-1) =1+ )
(w ) /l+p+0(p )

which corresponds to the result stated in Lemma S2.5.

$2.18 Proof of Example 1 in Section 3.2
Consider the following notations:

W=(w) X=(v) w=—rd— V=(), Y=@) u;=—p
- 1] » = 1] » 1] —n = 1] ’ = 1] ’ 1] = —75

Zk 1 Wik lezzl Vik
Xij = xij—Bxjj, 9= yij - Eyij.

We assume that V = WX, where ¥ is positive definite and normalized by tr(X) = p. This normaliza-
tion is without loss of generality, as Y is invariant under scaling of the basis data V. The matrices
W and X are for the null hypothesis, and V and Y are for the alternative hypothesis. Define the
rescaled sample covariance matrices of X and Y as follows:

p2 p2 1
By = —X’C X, B, = —Y/C Y, C,=I,--1 1’/
0 n 1 n n n

The goal is to show that

2 1+a) p2 6a? p3
E|By—BIE =2 1o(p), EB; B2 =" P + $2.125
IBo- Bl =E-vop), BIB B = T s P s o) (52029)
Recall the assumption
1 a
ii.d. a 1

fwij) ==Exp(1), E={ [ a>-L (S2.126)

a 1
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From this assumption, we have

(X]],X12,...,X1p) ~Dirichlet(1,1,...,1),
X CKX"‘ 1
1] 4 1,]+

yl] 1+a 1+a i,p+1 11)
We summarize several moments of the Dirichlet distribution. All results below are derived

from following Dirichlet moment identity

Py T k!
E(I_[xf;):#, ki€{0,1,2,...).

j=1 F(p+2?:1 kj)

Using this identity and direct calculation, we obtain the following results:

1
Exy; =Ey;; = -,

p
1 1
E%}, = Var(%;) = P

P Bg %, = Covify, f1a) = ————, $2.127
pz(p+1) X11X12 ov(%y1,%12) pz(p+1) ( )
B2, 2, = O(pY), Var()=O0(p), Var(f 5) = 21 $2.128
1%, =0(p7"), ar(%1) = O(p™), ar(Xy1 %) = T , (S2. )

and similarly for the 7;;-terms:

p(1+a?)—(1+a)?

(1+a)2p2(p+1) Ep11912 = O(p™), Ep} 97, =0(p™"), (52.129)

pa—(1+a)? -1

Ep7, = Var(9);) =

Cov(911,7912) = (+a)rp+1) Cov(911,913) = m; (52.130)
Var(97,) = O(p™), Var(§11912) = O(p™*), Var(§11913) = 4 +(01(2J220{[;4;Z(1)} (S2.131)

Proof Sketch of (52.125): To simplify the proof, we first show that
E|B, - B||? = BB, - B|2{1+0(1)}, £=0,1, (S2.132)

where
2 2

B, = %(x _EX)(X-EX), B;= %(Y— EY)(Y - EY).

Based on this result, we can prove (S2.125) with B, replaced by B,. Specifically, we will show that

2
E|Bo - Bl = £ +o(p), (52.133)

(1+ a2)2 p2 6a? p3

E||B, —B||2 = L
1By —Bllz (l+a)* n (1+a)(p+1)?

+o(p). (52.134)

Now, we prove (52.132), (52.133), and (52.134) as follows:

* Proof of (52.132): We first show the proof for £ = 0. We begin with the following identity:

E||Bo - BIZ = ElIBo — Boll7 + EIBo — BIZ + 2Etr{(Bo — Bo)(Bo — B)').
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LetX; = %Zzzl X;- From the identity

1 1 . -
- Z Xki = X;) xk] —X; ) n Zxklxk] ;( xki)( xk]');

we have

E|[By - Boll

-re (L)

el o) e

k=1

2
=
=
~.
~—
N}
~——

k
5
= %{nlEf‘lll +3n(n— 1){1E(x%1)}2}

4.2
PP =p)

- {nnzazflez n(n—1)ER, ) +n(n - 1)(11332113212)2}

= O(p?/n?), (S2.135)

where in the last equality we use (52.127) and (52.128). Moreover, we have

Etr{(Bo — Bo)(By - B ZIE (B1 —By);;(Bo—B);j}
-5 m{(zxm)(kzxw)%;(wkf—m)}
=1 =1

3ZZ(IExk’ka p_zBijIEfkifkj)
= (pz/n )

The above estimates and (52.133) yield (52.132) for £ = 0.
For the case € = 1, we use the similar argument with the help of (52.129) and (52.130).

* Proof of (52.133): Let §0,i]- be the (i, j)-th entry of B,.

n

E|[B, - B|2 = ZVar By,i;) ZVar( xk])

i,j =1

p> p*(p? —p)
n

= —Var(x11)+ Var(%1%1,)

(52.128) p 2{1+0(1)}

n

* Proof of (52.134): Note that

E|[B, - B||? = E|[B, - EB,||? + |[EB, - B|%.
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Thus, we need to estimate two terms on the RHS.

Let El,ij be the (i, j)-th entry of B;. Then, we have

4 n
BB, - EByIF = ) Var(Biij) =) Var() sisi)
o k=1

i,j

5 2 5 4 2_3
= %Val’(?ﬂ) + %Vaf(?n?lz) + wvaf(ﬁu?m)
(52.131) (1 +a?)? p*{1 +o(1)}
 (1+a) n ’

By using (52.127), (52.129), and (52.130), we obtain

dy b b b b
b ody b b
B:Eﬁo: b b " " .' : » ]EElZ b
b b a
b b b b d b b a
where
p-1 -1 p(1+a?)—(1+a)? pa—(1+a)?
do=P"= bp=_—"" 4,-= , a=lElTY
p+1 p+1 (1+a)?(p+1) (1+a)?(p+1)

Then, we have
6&2 p3

EB, — B||> = p(dy —dg)? + 2p(a—b)? = :
IIEB, HF p(d; 0) +2p(a->b) (1+a)4 (P+1)2

Combining these results, we obtain (52.134).

$2.19 Proof of power analysis in Section 3.2

The goal is to show that

BBy B2 = 2 Lofp), B, B2 = w +0(p). (52.136)

We first list some moments (will be proven later) of ;; as follows:
Ef1112=0(p™), Bty =0(p™), Egpio1,=0(p™"), Egfy=0(p™), (52.137)
Var(y~12i) = 6114(1:14—;5&){1 + op(p—l/z)}’ Var(91;91) = d?pj—i(;}{l + op(p—m)}, (52.138)

where x4 := E(w;; — u)* — 30* denotes the fourth cumulant of wy;.
The idea of the proof of (52.136) is similar to that of (52.125) in the previous section. It suffices
to show the following three results:

E|[B, - B||2 = E[B, - B|[3{1+0(1)}, ¢=0,1, (S2.139)
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1
—— ;HBl - B[, (a=0.5)

1
—_—— 5\\B1 —BJ|%, (o = —0.15)

=
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Detection succeeds
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Figure S.5: Numerical simulation for non-diagonal alternative. Comparison of normalized Frobe-
nius norm distances ,l,”Bo - B||1% and 11—7||B1 - B||123 against sample size n under the setting (52.126),
with fixed p = 200. Results are averaged over 1000 independent replications. For a = 0.5, the
vertical dashed line marks the critical threshold n = 22 3;1) ’ , below which the proposed test cannot
effectively detect such non-diagonal covariance structure. For a = —0.15, the proposed test can

detect such structure for any sample size n.
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Figure S.6: Numerical simulation for diagonal alternative. Comparison of normalized Frobenius
norm distances %HBO - B||§; and %HBl - B||12: against sample size n, with fixed p = 200. The diagonal

matrix ¥ = diag(3,1,...,1) represents a single spike alternative. The basis data {w;;} Lid Exp(1)
follow an exponential distribution. Results are averaged over 1000 independent replications.
As expected, |[B; - B||Z > |IBy — B||Z across all sample sizes, confirming the test’s ability to detect
diagonal alternatives.
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~ /\2p2

E|Bo - Bl = ——+olp), (S2.140)
. /\2(21’_ d2)2

E|[B, - BJIZ = —= L% 4 O(p), (S2.141)

where B = %GP'
Now, we prove (52.137), (52.138), (52.139), (52.140), and (S2.141) as follows:

* Proof of (S2.137) and (S2.138): Let

P
S= Zdiwli, 0j =Wy — p
in1

Because d s are of constant order, and Zle d; = p, we have

S- 1 & B
e:i= PR~ N, = 0p(p72).
Py PHi=
Hence, for each i,
diwy;  djwy; o diwy; 2 _d;d; _3/2
= = L (14+e)  =—(1l—-¢c+e"—--), = +0 .
yu= gt = e = =2 b = 0nlp)
Moreover, we have
d?s? drsd
~2 11 -5/2 ~4 11 -9/2
91, =—55+0p(p"), 97;= +Op(p™""),
1i pzﬂz 1i p4}44
and thus A A
y d; (x4 +207) _
Var(j7;) = ———F— {1 +Op(p 1/2)}'

piut
where x4 := E(w;; — u)* —30* denotes the fourth cumulant of wy;. Similarly, for i # j, we have

poct
Var(9,,7;) = T{l +Op(p~ )}-

* Proof of (52.139): We only show the proof for ¢ =1, since the case ¢ = 0 is a special case of
¢=1by taking d; =---=d, = 1.

We begin with the following identity:
ElB; - Bl = E|[B; — By[? + E|[B, — Bl + 2Ftr((B; — B;)(B; — B’}

Lety, = %Zzzl Yxi- From the identity

1o _ ol 1 v 3
;;ﬁMWM%—WZE;ﬂMr;& %X kﬂ
=1 =1

=

we have

[E[|B,; —§1||%
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i -1 k=1
4 P T 4 4 n 2 n 2
_P - p - _
SR RN R PENIVENY
i=1 k=1 i#] k=1 =1
Pty
= — Evy 3 1)E
" Z{{” Py +3n(n—1) Vlzyzl}
LS (gt o SR + )
i#]
= 0(p*/n?),

where in the last equality we use (52.127) and (S2.128). Moreover,

Etr{(B, —B,)(B, ~ B} = ZIE{(& ~B1);;(B1 - B);j}

=3 ZE{(Z%)(Z%J) Z(yklyk] P_zBij)}
= % ;[l;(m?fiﬁﬁj —P_2BijIE}7ki37kj)+ Zm{ﬁki?kj(?eiﬁej _p_ZBij)}]

k=
= O(p?/n?).
The above estimates and imply (52.139) for £ = 1.
* Proof of (52.140) and (S2.141): By using (52.138), we have

E|B, - EB, |} = ZVar B1,ij) ZVar(Zyk,yk])

Hence, we have

_ o (Y a2y
E|[B; — Bl = EIB, — EB,|If + |[EB, — B|; = —=""—"—+0(p)
Under the null case, we have d; =--- = dp =1, and thus
~ —~ A2p2{1 +0(1
B, - 1B, 2 = 22
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The above estimates complete the proof of (52.140) and (52.141).

§3 Simulation of CLT for M,(z)

In this section, we compare the empirical mean and covariance of M,(z) = tr(BIOj - zIp)‘1 — ptipe, (2)
with their theoretical limits as stated in Proposition 5.1. This proposition is a key step for the proof
of our main result, Theorem 2.5. Readers are referred to Section 5 for more details of M,(z). We
consider two types of data distribution of w;; as follows:

1. w;; follows the exponential distribution with rate parameter 5;
2. wj; follows the Chi-square distribution with degree of freedom 1.

Empirical values of EM,(z) and Cov(M,(z;), M,(z;)) are calculated for various combinations of
(p,n) with p/n = 3/4 or p/n = 5/4. For each pair of (p,n), 2000 independent replications are used to
obtain the empirical values. Table S.5 reports the empirical mean of M(z) with z = +3 + 2i for both
Exp(5) population and x?(1) population. The empirical results of Cov(M,(z1), Mp(22)) are reported
in Table 5.6. As shown in Tables 5.5 - 5.6, the empirical values of EM,(z) and Cov(M)(z1), M,(z2))

closely match their respective theoretical limits under all scenarios.

Table S.5: Empirical mean of M,(z) with z = ¥3 + 2i.

Exp(5) x2(1)
p/n  n -3+2i 3+2i -3+2i 3+2i
100 0.0586+0.0857: -0.0373-0.249i 0.1405+0.1628i  -0.55-0.2732i
200 0.0582+0.0858i -0.0311-0.2526i 0.1459+0.1697i -0.5761-0.3089i
Emp - 3/4 300 0.0567+0.0844i -0.0336-0.2566i  0.1465+0.1712i -0.5705-0.3212i
400 0.0596+0.0878i -0.0352-0.2528i 0.1463+0.172i -0.5631-0.3465i
Theo 0.0587+0.08721 -0.029-0.2529i 0.15+0.1768i -0.5792-0.3764i
100 0.0547+0.0766:i -0.1069-0.26711 0.1366+0.1473i -0.5458-0.1545i
200 0.0572+0.0793i -0.1109-0.2757i 0.1395+0.1518i -0.5847-0.1787i
Emp 5/4 300 0.0587+0.0808i -0.1074-0.2752i 0.1382+0.1511i -0.5747-0.1934i
400 0.0559+0.0778i -0.0949-0.2733i 0.1434+0.1553i -0.5751-0.1933i
Theo 0.0578+0.0804i -0.0919-0.2764i  0.1432+0.1569i -0.6025-0.2149i
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Table S.6: Empirical covariance between M, (z) and M,(z5).

Exp(5)

x2(1)

p/n n (-3+2i,-1+1i)F (3+2i,5+11)

(-3+2i,-1+1i)

(3+2i,5+11i)

100 -0.0038+0.0147i
200 -0.0041+0.0163i
Emp 3/4 300 -0.0043+0.0171i
400  -0.0043+0.0168i

-0.04+0.00351
-0.0418+0.00221
-0.0446+0.0011:
-0.0465-0.0003:

0+0.0304:
0.0004+0.03261

0+0.03351
0.0002+0.03561

0.089+0.014i
0.117+0.0284i
0.1372+0.0294:
0.1273+40.0361

Theo -0.0044+0.0172i -0.0448-0.0002;

0.0006+0.0363:

0.1491+0.0524:

100 -0.0032+0.0197i
200 -0.0032+0.0196i
Emp 5/4 300 -0.0036+0.0212i
400 -0.0032+0.02i  -0.0594+0.0742i

-0.0483+0.0765i
-0.0545+0.07631
-0.0566+0.0708:

0.0025+0.0349i
0.0032+0.035:

0.0026+0.0336i

0.0038+0.03741

0.0931-0.0373i
0.0991-0.0406i
0.0955-0.02091:
0.1138-0.0297i

Theo -0.0034+0.0206: -0.0624+0.0743i

0.0035+0.0388i

0.1099-0.0323i

tThis row denotes different combinations of (zy, z,).
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