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Abstract

This paper studies the asymptotic spectral properties of the sample covariance matrix
for high-dimensional compositional data, including the limiting spectral distribution, the
limit of extreme eigenvalues, and the central limit theorem for linear spectral statistics. All
asymptotic results are derived under the high-dimensional regime where the data dimension
increases to infinity proportionally with the sample size. The findings reveal that the limiting
spectral distribution is the well-known Marcéenko-Pastur law. The largest (or smallest non-
zero) eigenvalue converges almost surely to the left (or right) endpoint of the limiting spectral
distribution, respectively. Moreover, the linear spectral statistics demonstrate a Gaussian limit.
Based on our CLT result, we investigate a test problem on the population covariance structure
of the basis data. Simulation experiments demonstrate the accuracy of theoretical results.
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1 Introduction

In recent years, there has been increasing interest in the analysis of high-dimensional composi-
tional data (HCD), which arise in various fields including genomics, ecology, finance, and social
sciences. Compositional data refers to observations whose sum is a constant, such as proportions or
percentages. HCD often involve a large number of variables or features measured for each sample,
posing unique challenges for analysis. In the field of genomics, HCD analysis plays a crucial role
in studying the composition and abundance of microbial communities, such as the human gut
microbiome. Understanding the microbial composition and its relationship with health and disease
has significant implications for personalized medicine and therapeutic interventions.

Statistical inference in HCD involves microbial mean tests, covariance matrix structural tests,
and linear regression hypothesis testing. These inferences are intricately linked to the statistical



properties of the sample covariance matrix. Mean tests typically utilize sum-of-squares-type
and maximum-type statistics for dense and sparse alternative hypotheses, respectively. Cao
et al. [2018] extended the maximum test framework by Cai et al. [2014] for compositional data.
However, there’s a gap in having a suitable sum-of-squares-type statistic for dense alternatives
in HCD mean tests. Many sum-of-squares-type statistics, like Hotelling’s T2-statistic, rely on
the sample covariance matrix. For bacterial species correlation, Faust et al. [2012] introduced
the permutation-renormalization bootstrap (ReBoot), directly calculating correlations from com-
positional components. Shuffling is suggested due to compositional data’s closure constraint,
introducing negative correlations. Yet, compositional data’s unique properties require an additional
normalization step within the same sample post-shuffling, potentially impacting the theoretical
validity of permutation and resampling methods. Additionally, resampling increases computa-
tional complexity for p-value calculation and confidence interval construction. To address these
challenges, Wu et al. [2011] developed a covariance matrix element hypothesis testing method,
allowing control over false discovery proportion (FDP) and false discovery rate (FDR). All these
studies are closely related to the sample covariance matrix of HCD.

Current research predominantly focuses on sparse compositional data. In dense scenarios,
researchers often turn to the spectral properties of sample covariance matrices. Despite this,
there is a notable gap in the field of random matrices where specific attention to structures
resembling compositional data, where row sum of the data matrix is constant, is lacking. Statistical
inference for HCD encounters challenges arising not only from constraints but also from high
dimensionality. Recognizing the crucial role of spectral theory in sample covariance matrices is also
vital for addressing statistical challenges associated with high-dimensional data. Importantly, while
previous research on statistical inference for HCD has overlooked studies under the spectral theory
of sample covariance matrices, our work takes on these challenges from a Random Matrix Theory
perspective. Existing literature extensively covers spectral properties of large-dimensional sample
covariance matrices, but most results rely on independent component data structure, i.e. Z =TX,
where I' is determined, and X has independent and identically distributed (i.i.d.) components.
Seminal works by Marcenko and Pastur [1967] and Jonsson [1982] established the limiting spectral
distribution (LSD) of the sample covariance matrix n1XX', where X is an i.i.d. data matrix with
zero mean, leading to the well-known Marcenko-Pastur law. Subsequent research by Yin and
Krishnaiah [1983] and Silverstein and Bai [1995] extended these findings to the sample covariance
matrix 17! XEX for data with a linear dependence structure. Zhang [2007] extended to the general
separable product form n ' A/2XBX A2, where A is nonnegative definite, and B is Hermitian.
Another important area of interest is the investigation of extreme eigenvalues. Johnstone [2001]
explored the fluctuation of the extreme eigenvalues of the sample covariance matrix n~ XX/,
proving that the standardized largest eigenvalue follows the Tracy-Widom law. Related extensions
include sample covariance matrices with linear dependence structures [El Karoui, 2007], Kendall
rank correlation coefficient matrices [Bao, 2019], among others. Considerable attention has also
been given to the study of linear functionals of eigenvalues. Bai and Silverstein [2004] established
the Central Limit Theorem (CLT) for the Linear Spectral Statistics (LSS) of the sample covariance
matrix n71AY2XX A2, later extended to sample correlation coefficient matrices [Gao et al., 2017],
and separable product matrices [Bai et al., 2019]. To summarize, existing results in spectral theory
of large dimensional sample covariance matrix predominantly rely on independent component
data structure which, unfortunately, HCD does not fit in.

Specifically, current second-order limit theorems do not apply to HCD, making the exploration
of spectral theory for HCD with distinct constraints crucial. This paper delves into spectral theory
for sample covariance matrices of HCD, including LSD, extreme eigenvalues, and CLT for LSS.
Analyzing HCD faces challenges due to compositional data’s specific dependence structure, making



existing techniques for i.i.d. observations less applicable. However, we can assume that HCD
are generated from unobservable basis data, while the underlying basis data follow independent
component model structure. In this way, spectral analysis of the sample covariance matrix of HCD
can be approached through the basis data. In fact, the structure of the sample covariance matrix
of HCD is similar to that of the Pearson sample correlation matrix in basis data. Therefore, we
leverage the analysis methods of the spectral theory of the Pearson sample correlation matrix to
study the spectral theory of the sample covariance matrix of HCD. In the field of random matrices,
research on the spectral theory of the Pearson sample correlation matrix based on independent data
is relatively mature. Jiang [2004] demonstrated that the LSD of sample correlation matrix for i.i.d
data is the well-known Marc¢enko-Pastur law. Gao et al. [2017] derive the CLT for LSS of the Pearson
sample correlation matrix. The derivation of spectral theory for the sample covariance matrix of
HCD can benefit from methods in this context. The LSD of the sample covariance matrix for HCD
in Theorem 2.3 is established following the strategy in Jiang [2004], and we further investigate the
extreme eigenvalues in Proposition 2.4. The proof strategy of CLT for LSS in Theorem 2.5 follows
the methodologies outlined in Bai and Silverstein [2004] for the sample covariance matrix and Gao
et al. [2017] for the sample correlation matrix. However, due to the dependence inherent in HCD,
certain tools from these works cannot be directly applied to the sample covariance matrix of HCD.
In response, we introduce new techniques. Specifically, we establish concentration inequalities for
compositional data. One of the central ideas of the paper, grounded in concentration phenomena,
permeates the entire proof (details in Section 5.2 and Section 5.3), where we develop three crucial
technique lemmas (see Lemmas 5.3 — 5.5) essential for the proof. Finally, it is noteworthy that the
mean and variance-covariance in Theorem 2.5 differ from those in Bai and Silverstein [2004], and
additional terms are present in both the mean and variance-covariance.

The paper is organized as follows. Section 2.2 investigates the LSD and extreme eigenvalues
of the sample covariance matrix for HCD. Section 2.3 establishes the CLT for LSS of the sample
covariance matrix for HCD. Section 3 studies a test problem on the population covariance structure
of the basis data based on our CLT result. Section 4 reports numerical studies. Section 5 presents
the sketch of proof of our CLT for LSS. Auxiliary lemmas and technical proofs are relegated to the
supplementary material.

Before moving forward, we introduce some notations that will be used throughout this paper.
We adopt the convention of using regular letters for scalars and boldface letters for vectors or
matrices. For any matrix A, we denote its (i,j)-th entry by A;;, its transpose by A’, its trace
by tr(A), its j-th largest eigenvalue by A;(A), its spectral norm by [|A[| = \/A;(AA’). For a set of
random variables {X,}° ; and a corresponding set of nonnegative real numbers {a,} ,, we write
X, = Op(ay) if, for any € > 0, there exists a constant C > 0 and N > 0 such that IP(|X,,/a,| > C) < € for
all n > N. We write X,, = op(a,) if lim,,_, ., P(|X,/a,| > ¢) = 0 for any ¢ > 0. Furthermore, we write
X, x (X, LN X, X A X respectively) if X, converges almost surely (in probability, in distribution,
respectively) to X. We denote by C and K constants that may vary from line to line.

2 Main Results

2.1 Preliminaries and notations

Let X, = (xjj)uxp denote the n x p observed data matrix, and each row (x;i,...,x;,) represents
" .. . . . _ P _
compositions that lie in the (p — 1)-dimensional simplex SP~! = (W1, 9p) Zj:1 yi=1,9;>0}. We
assume that the compositional variables arise from a vector of latent variables, which we call the
basis. Let W, = (w;;),xp denote the n x p matrices of unobserved bases, where w;;’s are positive



and i.i.d. with mean p >0 and variance 2. The observed compositional data is generated via the
normalization

) 1<i<n 1<j<p. (1)
The unbiased sample covariance matrix of X, is defined by S, y = ﬁX%Can, where C,, =1, - %1,11;,
1, is a n-dimensional vector of all ones, and N = n —1 is the adjusted sample size. Since Z?Zl Wip =
pu(1 +¢;) with sup; ¢; = op(1), we rescale S, \ as

1 ,
Bp,N = pzsn,N = ﬁ(pxn) Cn(pxn)-

For any p x p Hermitian matrix B, with eigenvalues {)\i}le, its empirical spectral distribution (ESD)
is defined by

P
1
FBP(X) :]__’) E I{/\;(BP)SX}'
i=1

where [}, denotes the indicator function. If FB»(x) converges to a non-random limit F(x) as p — oo,
we call F(x) the limiting spectral distribution of B,,. The LSD of B, is described in terms of its Stieltjes
transform. The Stieltjes transform of any cumulative distribution function G is defined by

1
mG(z):J/\_ZdG(/\), zeC":={z: Im(z) > 0}.
Many classes of statistics related to the eigenvalues of B, iy are important for multivariate inference,
particularly functionals of the ESD. To explore this, for any function f defined on [0, c0), we
consider the linear spectral statistics (LSS) of B, 5 given by

p
Jf(x)dPBp,N(x) = %Zf(/\i),
1

i=

where A;,i=1,...,p, are eigenvalues of B, N-

In this paper, we study the asymptotic spectral properties of B, y, including the LSD (see
Theorem 2.3), the behavior of extreme eigenvalues (see Proposition 2.4), and the CLT for LSS (see
Theorem 2.5).

2.2 Limiting spectral distribution and extreme eigenvalues

Analyzing HCD poses challenges due to its unique dependence structure, making existing tech-
niques for i.i.d. observations less applicable. To overcome this difficulty, we assume that the
compositional data is generated from basis data and the basis data follows the commonly used
independent component structure. Specifically, the unbiased sample covariance matrix of X,, is

defined by
1

/ 1.
SuN = ancnxn = ﬁwnAnCnAnwn;
where X,, = A,W,,and A, = diag(l/Z;?:1 Wij-en 1/2?:1 wy;). Here, we assume that W), has i.i.d.
components w;;, with E(w;;) = p > 0, Var(w;;) = o2. Recall that the Pearson sample correlation
matrix for W,, is

~ ~ 1~ ’ ~
Rn - Exncnxn - EAanCnWHApJ

5



where X, = W, A, A, = diag(vnlw, —Wlllgl,...,\/ﬁllwp —Wpllgl), and w; = n iy, w;;1, with 1,,
being an n-dimensional vector whose entries are all 1’s. It can be seen that the normalizing matrix
A, of S, v is very similar to A, of R,,. The former uses (Z?Zl wij)’1 for normalization, while the

latter utilizes \/ﬁlle - %jllgl. This allows us to leverage the techniques from the spectral theory of
the Pearson sample correlation matrix in studying the asymptotic spectral properties of the sample
covariance matrix for HCD.

Before diving into the LSS of B, iy, we first explore its LSD and extreme eigenvalues. Specifically,
suppose the following assumptions hold,

Assumption 2.1. {w;; >0,i=1,...,n,j =1,...,p} are i.i.d. real random variables with Ewy; = p >0,

4

Var(wy1) = 02 and E(wy; — u)* < co. For notational simplicity, we write A = 02/u® throughout the paper.

Assumption 2.2. ¢y = p/N tends to a positive c >0 as p, N — oo.

Theorem 2.3. Under Assumptions 2.1 and 2.2, with probability one, the ESD of B,  converges weakly
to a deterministic probability distribution with a density function

fupl() = -0 x—a),, 2)

© 2mcAx
and a point mass 1 —1/c at x = 0 if ¢ > 1, where a := A(1 —+/c)? and b := A(1 ++/c)>.

Proof of Theorem 2.3. Let Y, = pC,A,W,/VN and Y, = Can/(\/Ny). Note that the LSD of Y, Y,,
is the well-known Marcenko-Pastur law with the density function given by (2). From Theorem
A.47 of Bai and Silverstein [2010] and our Proposition 2.4, it suffices to prove that

~ a.s.
1Y, = Y,[[ = 0. (3)
By Lemma S1.3, we have max1§i5n|Z;’:1 w;i/(pp) =1 %3 0, which implies that ||ppA,, —L,|| =o.

Moreover, we get from Theorem 2.9 in Benaych-Georges and Nadakuditi [2012] that ||Wn/(;4\/ITI)||
is bounded almost surely. Hence, we have

Cn(p.”An - In):j/nﬁ

This completes the proof. O]

1Y, =Y, = |

w, || as.
<llpu, Ll | M| S 0.

The LSD F¢(x) has a Dirac mass 1 — 1/c at the origin when ¢ > 1. We see that m(z) = m(z).

For each z € C*, by Theorem 2.3, the Stieltjes transform m(z) = mgc(z) is the unique solution to
m={A(1-c—czm)—z}~! in the set {me C: % +m(z) € C*}. Define m(z) as the Stieltjes transform

of the companion LSD F¢(x) = (1 —c)og + cF¢(x), where ¢ is the point distribution at zero. Then
m(z) is the unique solution in {m e C: % + m(z) € C*} to the equation:

B 1 N cA
m(z) 1+ Am(z)’

zeC*. (4)

Proposition 2.4. Under Assumptions 2.1 and 2.2, we have

Amax(Bpn) S AL +Ve)? and  Apin(B,n) =5 A1 - Vo), (5)

where Amax (B, ) is the largest eigenvalue of By, y, and Ain (B, ) is the smallest non-zero eigenvalue of
B, n. Furthermore, for any € >0, 1y > A(1 + Ve)2and 0 <1y < A(1 - \/E)ZI{O<C<1}, under condition (14),
we have

P(Amax(Bpn) 2 71) = 0(n™") and  P(Amin(Bpn) <112) = o(n7). (6)

6



Proof of Proposition 2.4. The convergence (5) is an immediate consequence of Equation (2.7) in
Jiang [2004], Theorem 1.4 in Xiao and Zhou [2010], Equation (3) and Lemma S1.1. The proof of (6)
is postponed to the supplementary material. O]

Remark 1. The results of extreme eigenvalues are useful in locating eigenvalues of the population
covariance matrix and proving the CLT for LSS. Proposition 2.4 demonstrates that, with probability
one, there are no eigenvalues of B, 5 outside the support of the LSD under Assumptions 2.1 — 2.2.
These results are crucial for applying the Cauchy integral formula (see Equation (10)) and proving
tightness.

Remark 2. For the special case when p = 1, the matrix X, = (w;;/ Y i1 Wie)nxn is @ random Markov
matrix. The work of Bordenave et al. Bordenave et al. [2012] provided key insights into the
first-order properties of both eigenvalues and singular values of the n x n matrix X,,, including the
limiting distribution of its singular values and the convergence of its extreme singular values. Our
first-order results (see Theorem 2.3 and Proposition 2.4) can be viewed as an extension of their
findings regarding singular values when p,n — oo and p/n — ¢ € (0, ).

In contrast to the scope of Bordenave et al. Bordenave et al. [2012], our work focus on a different
setting and investigates a different aspect of X,,. Specifically, we examine the centered version
C, X, without requiring p = n and we focus on second-order fluctuations of LSS. Beyond first-order
limits, we derive the CLT for LSS of the sample covariance matrix of X,, (see Theorem 2.5 in the
following Section 2.3).

2.3 CLT for LSS

We focus on linear functionals of eigenvalues of B, v, i.e. %Zle f(A;). Naturally, it converges to
the functional integration of the LSD of B, y, that is, Jf(x)dPC(x). In this section, we explore the

second-order fluctuation of %Zle f(A;), which describes how such LSS converges to its first-order
limit. Define

Goan()=p [ FOIAED (- F¥ (),

where F¥(x) substitutes cy for ¢ in F°(x), the LSD of B, . We show that under Assumptions 2.1 -
2.2 and the analyticity of f, the rate of jf(x)d{FBP»N(x) — FN(x)} approaching zero is essentially
1/n, and G, n(f) convergence weakly to a Gaussian variable.

Before presenting the main result, we recall some notations. We denote A = 02/u?. Let m(z)
and m(z) be the Stieltjes transforms of the LSD F¢(x) and the companion LSD F¢(x), respectively.
Furthermore, we define m’(z) as the derivative of m(z) with respect to z throughout the rest of this
paper. The main result is stated in the following theorem.

Theorem 2.5. Under Assumptions 2.1 and 2.2, let fy, f5,..., fx be functions on R and analytic on an
open interval containing

(A1 -VO?, A1+ Vo)

Then, the random vector (Gp N(f1),---, Gpn(fk)) forms a tight sequence in p and converges weakly to a
Gaussian vector (Xfl""’ka) with mean function

_ ﬁgg fRm )1+ Am(z)}y
C

2w Jo [{1+ Am(2))? — cA2m2(z)]?

EX



f(z) N1+ Am(z)H{z(hy + A)m(z) + A}

- % {1 FAm(2) - eA2m?(z) @
f(2) 1+ Am(z2){(aq + ap)m?(2) + 2A%m’(z2)) d
 2mi 96 {1+ Am(2)}? - cA?2m?(z) “

and covariance function

Cov(Xy, X,) = 5 9601 9662 — lel )} 5 dm(z1)dm(z,)

a1+a2 gg 95 f(z1)8(22) dm(z) dm(z,)
4 ¢, Je, {1+ Am(z)} {1+/\m(22)}2 o -

where a = E(wy1/p—1)* =312, ay = ~4AEw],/p® + 413 + 1202 + 47, hy = —2Bw;,/p3 + 30?2 + 51+ 2.
The contours C,Cq,C, are closed and taken in the positive direction in the complex plane, each enclosing
the support of F¢(x), i.e., [A(1 —+/c)%, A(1 +vc)?]

Remark 3. We restrict attention to functions f which are analytic in a region of the complex plane
containing the support of F¢(x). As demonstrated in Najim and Yao [2016], the analyticity require-
ment for f in the CLT can be relaxed by representing the LSS with the help of Helffer-Sjostrand’s
formula instead of the Cauchy integral formula. For now, we focus on analytic cases because
analytic functions are sufficient to achieve our current statistical objectives.

Applying Theorem 2.5 to three polynomial functions, we obtain the following corollary. The
proof of Theorem 2.5 is postponed to Section 5, and detailed calculations in these applications are
postponed to the supplementary material.

Corollary 2.6. Under Assumptions 2.1 and 2.2, let f, = x" for r = 1,2, 3, we have

Gp(f1) =tr(B,n)— pA—>N(;11,V1)
Gp(f2) = tr(Bp,N) _p(l + CN)/\ _> N(”lb VZ)!
D
Gy(fs) = tr(B> \) = p(1+3ey +cR)A* = N (p3, V3),
where c = p/N, and

pr=hy, gy =1 +c)A?+2(1+c)Ahy +c(ag +ay),
M3 =(2+6c+3c HA3 +3(1+3c+cH)A%hy +3¢(1+ )My + ay),
V1 = 2C/\2 + C(Oél + az),
Vy = 4c(2+¢)(1 +20)A* + 4c(1 +¢)?A%(ay + ay),
Vs =60(1+6¢+3¢%)(3+60+c2)A+9¢(1 + 3¢+ c?)? A} aq + ay).

3 Application

Letx = %o, )’ be a p-dimensional random vector, where w = p w;. We aim to test the
w w w p =171

sphericity of the basis data w = (w;,w5,...,w,)" based on the samples {xl}l 1» namely the hypothesis
Hj: Cov(w) = O'ZIp where o2 is unspecified.



Note that E(B, ) = % , where G, := 1, p’llpll’). We consider the following Frobenius-
norm-type test statistic

pvs G

T:=—||B
p-1

pN "~

We reject Hy when T is too large. The test statistic is linked to particular forms of LSS of B, y by
taking f(x) = xk, k=1,2, that is,

pv3
p-1

—tr(B,n) +
Using the CLT for tr(B,, ) and tr(B;’N) under H, (Corollary 2.6) and the Delta method, the limiting
null distribution of T is obtained:

Theorem 3.1. Suppose that Assumptions 2.1 and 2.2 hold, under Hy, we have

p(T = pur) 2 N(0, 02),

Ur :/\2CN+?——, 0‘%24/\2V1—4/\V12+V2, V12:2/\C(1+C)(2/\2+(X1+062), (7)

hy, aq, ay are defined in Theorem 2.5, p,, Vi, V, are defined in Corollary 2.6.

The detailed proof is postponed to the supplementary material. In practical applications, we
replace yr with its finite sample counterpart fiy. To eliminate correlation between T and jip, we
split the data X into two parts:

X

1y Xp

2
X;Z)XP

(1)
X = z(x ) L e, L e (00),

X(z) np ny

where X1 is used to calculate the test statistic, and X(? is used to compute jiy. The new test
statistic is defined by

-1
p

pv2
p-1
The estimate jir is obtained by replacing N in pp with N, = n, — 1, and substituting the terms A,
E(w;1/p)3, and [E(w;;/p— 1)* with their finite sample counterparts as follows:

B\ = 2 (xV)c, XV, Ny=m -1

(1)
B pN; ]\]1

PNy

Gy

. 1 & i( (2) )2 1 & v
A=— pXii =1), E(wy/p)’=— ,
P =3 Y P12 = ]:1 o
A ) (8)
(wi/p=1)"=— Z(PX 1)
P2 i im

Using these newly defined notations, we derive the following CLT for T:



Theorem 3.2. Suppose that Assumptions 2.1 and 2.2 hold, under Hy, we have
~ . .D
p(T = fir) = N(py, 07 +03),

where U% is defined similarly to o in (7), with the limiting value c replaced by c,, and

4
Uy =-2c1Ahy, Gf = 4Achc2{IE(% - 1) — A2+ hy - 2/\h1}.

Here, hy and h, are defined in Lemma 5.3.

The detailed proof of this theorem is postponed to the supplementary material. Based on
Theorem 3.2, the procedure for testing H) is:

Reject H ifp(T—ﬁT)—ﬁ/\>zm/G‘%+o°§, 9)

where z, represents the upper a-quantile of the standard normal distribution at the nominal
level a. The terms i, c?%, and cfAZ are finite-sample estimates of y,, a%, and a/%, respectively.

These estimates are obtained by replacing A, IE(wy,/p)3, and [E(w;,/u — 1)* with their finite-sample
counterparts, as defined in (8).

4 Numerical experiments

4.1 Limiting spectral distribution

In this section, simulation experiments are conducted to verify the LSD of the sample covariance
is generated by the normalization x;; = wi]-/z[g:l wi¢. We generate basis data w;; from three
populations, drawing histograms of eigenvalues of B, y and comparing them with theoretical
densities. Specifically, three types of distributions for w;; are considered:

1. w;; follows the exponential distribution with rate parameter 5;

2. wj; follows the truncated standard normal distribution lying within the interval (0,10),
denoted by TN(0, 1;0,10), where the first two parameters (0 and 1) represent the mean and
variance of the standard normal distribution;

3. w;jj follows the Poisson distribution with parameter 10.

The dimension and sample size pair, (p,n), is set to (500,500) or (500,800). We display his-
tograms of eigenvalues of B, v generated by three populations under various (p, ) combinations
and compare them with their respective limiting densities in Figures 1 — 2. The figures reveal that
all histograms align with their theoretical limits, affirming the accuracy of our theoretical results.

4.2 CLT for LSS

In this section, we implement some simulation studies to examine finite-sample properties of some
LSS for B, y by comparing their empirical means and variances with theoretical limiting values, as
stated in Corollary 2.6.

First, we compare the empirical mean and variance of G, y(x"), r = 1, 2,3, with their correspond-
ing theoretical limits in Corollary 2.6. Two types of data distribution of w;; are consider:

10
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Figure 1: Histograms of sample eigenvalues of B,y with (p,7) = (500,500). The curves are density
functions of their corresponding limiting spectral distribution.
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Figure 2: Histograms of sample eigenvalues of B, y with (p, 1) = (500,800). The curves are density
functions of their corresponding limiting spectral distribution.

1. wj; follows the exponential distribution with rate parameter 5;
2. w;jj follows the Chi-squared distribution with degree of freedom 1.

Empirical mean and variance of G, y(x"), are calculated for various combinations of (p, n) with
p/n =3/4 or p/n = 1. For each pair of (p,n), 2000 independent replications are used to obtain
the empirical values. Tables 1 — 2 report the empirical results for Exp(5) population and x?(1)
population, respectively. As shown in Tables 1 — 2, the empirical mean and variance of G, y(x")
closely match their respective theoretical limits under all scenarios. To verify the asymptotic
normality of LSS, we draw the histogram of normalized LSS, EPIN(xr) ={Gpn(x") - NV, =
1,2,3, where y, and V, are defined in Corollary 2.6, and compare them with the standard normal
density. Figures 3 and 4 depict the histograms of EPIN(xT) for Exp(5) population with p/n =1 and
x%(1) population with p/n = 3/4, respectively. The histograms for the cases of Exp(5) population
with p/n = 3/4 and x%(1) population with p/n = 1 exhibit similar patterns and are omitted for
brevity. It can be seen from Figures 3 — 4 that all the histograms conform to the standard normal
density, which fully supports our theoretical results.

4.3 Covariance testing for basis data

Numerical simulations are conducted to determine the empirical size and power of our proposed
test statistic. We apply the procedure (9) to test Hy. The nominal level is set to be a = 0.05. To
evaluate the finite sample performance of the test statistic, data are generated from different model
scenarios for various (p,n) combinations. For each pair of (p,n), we conduct 2000 independent

replications. To assess empirical size, we consider two scenarios for the data matrix W,, = (w;;)xp:

* Exponential model: w;; ~ Exp(rate =5)ii.d. for 1 <i<n,1<j<p;

11



Table 1: Empirical mean and variance of G, y(x"), r =1, 2,3, with w;; ~ Exp(5).

Gp,N (x) Gp,N (XZ) Gp,N (x3)

p/n n mean var mean var mean var

100 -2.01 2.63 4 36.54 7.82  463.32

200 -1.99 2.93 -3.85 39.73 -7.23  485.05

Emp 3/4 300 -1.95 3.03 3.57  40.3 -6.32  483.76
400 -2.04 2.95 -3.98 38.78 7.67  460.01

Theo 2 3 3.75 39 6.81 457
100 -1.91 3.61 3.83  64.09 6.56 1064.75

200 -1.96 3.89 3.96 68.37 -6.91 1090.14

Emp 1 300 201 3.97 -4.06  68.7 -7.16 1082.72
400 -1.98 3.71 3.99  64.22 -7.07 1010.09

Theo -2 4 -4 68 -7 1050

Table 2: Empirical mean and variance of G, y(x"), r = 1,2,3, with w;; ~ x?(1).

Gp,N(x) Gp,N (x2) Gp,N(xs)

p/n n mean var mean var mean var

100 -5.79 15.53  -24.19 888.99 9731  46790.03

200 -5.96 16.74  -24.39  920.63 96.17 45375.75

Emp 3/4 300 _594 166 23.75 882.92 -90.59  42487.68
400 -5.88 17.51 222,68 912.28 -81.2  42922.06

Theo -6 18 23 918 83  41806.12
100 -5.92 20.81 26.15 1563.02  -102.73 107846.2

200 -5.98 23.01 25.15 1639.95 290.25 105467.9

Emp 1 300 581 21.82  -23.16 1526.34 7454 96864.11
400 -6.13 23.18  -25.41 1599.96 290.31 99475.82

Theo -6 24 24 1600 -80 96000

M 2 0 2 4 2 0 2 4 M 2 0 2
Eigenvalue Eigenvalue Eigenvalue

(a) Gp,n(x) (b) Gpn(x?) (c) Gpn(x?)

Figure 3: Histograms of normalized LSS EP,N(xr), r=1,2,3, with w;; ~ Exp(5) and p = n = 400. The
curves are density functions of the standard normal distribution.
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Figure 4: Histograms of normalized LSS EPIN(xr), r=1,2,3, with w;; ~ x%(1) and (p,n) = (300,400).
The curves are density functions of the standard normal distribution.

* Chi-squared model: w;; ~ x2(5)iid. for1 <i<m, 1<j<p.

To examine empirical power, we consider two alternatives. An nxp matrix Z, with i.i.d. components
is generated from either the Exp(5) or x?(5) models, then the data matrix W,, = Z,,X is constructed
with a covariance matrix ¥ defined as follows:

* ¥ =%, is diagonal. The first diagonal element is 11, and the remaining elements are all 1.
We vary 1 =4,5,6,7,8.

* ¥ =%, is tridiagonal. The main diagonal elements are all 2, and the lower/upper diagonal
elements are 1. We vary ¢, = 0.1,0.2,0.3,0.4,0.5.

The simulation results are reported in Tables 3 — 4. The empirical size values are generally close
to the nominal level (a = 0.05). The empirical power increase consistently as ¢; or 1, increase.
For large values of p, n, 11, 1,, the power approaches one, indicating that the test performs well
in distinguishing between the null and alternative hypotheses as sample size and signal strength
increase.

5 Proof of Theorem 2.5

In this section, we first present the difference between the CLT for centralized sample covariance
Bg and unbiased sample covariance B, y by substitution principle in Section 5.1, where

2
7 1 7
B) = pS% = L (X, ~EX,) (X, ~EX,) = -Y,Y,,

2
BP;N = pzsn,N = %X;Cnxnt

and Y, = (9ij)uxp, ¥ij = %—?—1 and w; = %Z?:l wjj. By substituting the adjusted sample size N = n—1

for the actual sample size 7 in the centering term, the unbiased sample covariance matrix B, ; and
the centralized sample covariance Bg share the same CLT (see, Section 5.1). The general strategy of
the main proof of Theorem 2.5 is explained in the following and four major steps of the general
strategy are presented in Section 5.3.

The general strategy of the proof follows the method established in Bai and Silverstein [2004]
and Gao et al. [2017], with necessary adjustments for handling the sample covariance matrix of
HCD, where conventional tools are not directly applicable. Our novel techniques play a pivotal
role in overcoming these challenges. To begin with, we follow the strategy in Jiang [2004] to

13



Table 3: Empirical size and power over 2000 replications when the covariance matrix is X;.

Size Power

c p no Pp=1 P1=4 P1=5 P1=6 P1=7 YP;=38
Exp(5) model

100 200 0.1 0.876 0.9345 0.974 0.9885 0.9985
0.5 200 400 0.073 0.9845  0.995 0.9995 1 1
300 600 0.076 0.998 0.9995 1 1 1
400 800 0.063 1 1 1 1 1
100 100 0.0905 0.5175 0.6045 0.69 0.74  0.806
] 200 200 0.077 0.6995 0.8245 0.891 0.921  0.954
300 300 0.0785 0.8165 0.922 0.963 0.983 0.986
400 400 0.0615 0.8815 0.9655 0.988 0.995 0.9975
100 50 0.1105 0.284 0.319 0.347 0.398 0.4255
) 200 100 0.0795 0.3235  0.452 0.4945 0.5805 0.5925
300 150 0.064 0.379 0.5515 0.631 0.695 0.749
400 200 0.07 0.4215 0.6065 0.691 0.808 0.8315
x?(5) model
100 200 0.0755 0.7455 0.843 0.888 0.898 0.903
0.5 200 400 0.0635 0.9675 0.9955 1 1 0.9995
300 600 0.055 0.997 1 1 1 1
400 800 0.05 1 1 1 1 1
100 100 0.0705 0.272 0.3235 0.3525 0.3815 0.416
] 200 200 0.0735 0.4345 0.624 0.752 0.7875 0.8225
300 300 0.0565 0.5875 0.814 0.914 0.9475 0.972
400 400 0.054 0.7005 0.906 0.979 0.996 0.995
100 50 0.083 0.1005 0.127 0.1445 0.1275 0.1405
200 100 0.064 0.1145 0.1845 0.2255 0.278 0.2885
2300 150 0.0565 0.153 0.231 0.3245 0.414 0.4545
400 200 0.067 0.159 0.2985 0.4205 0.5655 0.625

establish the LSD of B, iy in Theorem 2.3. Then, we develop Proposition 2.4 to find the extreme
eigenvalues of B, . Notably, these extreme eigenvalues are highly concentrated around two
edges of the support, a crucial aspect for applying the Cauchy integral formula (10) and proving
tightness. Given that compositional data x;; = w;;/ Zlg:l wjp are not i.i.d., dealing with the CLT
for LSS of the unbiased sample covariance matrix B, y presents challenges. To address this, we
employ the substitution principle [Zheng et al., 2015] to reduce the problem to the CLT for LSS
of the centralized sample covariance Bg. By substituting the adjusted sample size N =n -1 for
the actual sample size 7 in the centering term, both the unbiased sample covariance matrix B,
and the centralized sample covariance Bg share the same CLT (see Section 5.1). We then leverage

the independence of samples to further study the CLT for LSS of Bg. Specifically, we exploit the
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Table 4: Empirical size and power over 2000 replications when the covariance matrix is X,.

Size Power

c p n P, =0 Y,=01 ¢,=02 ¢,=03 ¢,=04 ,=05
Exp(5) model

100 200 0.1055 0.149 0.397  0.8165  0.9845 1

0.5 200 400 0.075 0.197  0.7895 0.999 1 1
300 600 0.0635 0.29  0.9775 1 1 1

400 800 0.066 0.395 0.999 1 1 1

100 100 0.1035 0.1135 0.1885 0.332 0.527 0.741

] 200 200 0.076 0.1245 0.2775  0.6135 0.923 0.993
300 300 0.063 0.1245 0.432 0.87  0.9985 1

400 400 0.0645 0.138  0.5665  0.9765 1 1

100 50 0.098 0.1125 0.129  0.1695  0.2335 0.319

) 200 100 0.068 0.0875 0.1385  0.2445 0.361 0.5615
300 150 0.061 0.0885 0.165 0.3035 0.5685 0.789

400 200 0.062 0.0955 0.1975 0.434  0.7385 0.938

x2(5) model

100 200 0.0605 0.1505 0.4535 0.8915 0.996 1

0.5 200 400 0.064 0.2085 0.88 1 1 1
300 600 0.051 0.3195 0.994 1 1 1

400 800 0.055 0.45 1 1 1 1

100 100 0.0815 0.0975 0.18 0.356  0.6255 0.812

] 200 200 0.064 0.1125 0.3035 0.72 0.966  0.9985
300 300 0.0585 0.1135 0.487 0.947 1 1

400 400 0.056 0.155 0.6865  0.9965 1 1

100 50 0.079 0.0865 0.1325 0.184 0.234 0.342

200 100 0.065 0.086 0.134 0.242 0.431 0.6305

2 300 150 0.0595 0.0965 0.174  0.3715  0.6445 0.877
400 200 0.06 0.099 0.222  0.5215 0.8355 0.973

independence of samples to establish independence for r; = \/LE(%} -1,..., %’f’ - )’,i =1,2,...,n,

and express Bg as Bg = %Y;Yn =) i_; rir.. The ultimate goal is to establish the CLT for LSS of Bg.
By the Cauchy integral formula, we have

ff(x)dG(x) - SBC f(2Imo(z)dz (10

valid for any c.d.f G and any analytic function f on an open set containing the support of G, where

1
27

996 is the contour integration in the anti-clockwise direction. In our case, G(x) = p(FBg(x) — Fé(x)).
Therefore, the problem of finding the limiting distribution reduces to the study of M, (z) defined as
follows:



1 _
my(z) = mFsg(z) = ‘l—)tr(Bg —zl,) L mg(z) = MFpe (2),

1 _
iy (2) = myag(2) = S tr(B) ~2L) ", m(a) = g (2),
2

BY = £ (X, ~EX,)(X, ~EX,)"

Note that the support of FB»N is random. Fortunately, we have shown that the extreme eigenvalues
of B, n are highly concentrated around two edges of the support of the limiting MP law F¢(x) (see,
Theorem 2.3, Proposition 2.4). Then the contour C can be appropriately chosen. Moreover, as in
Bai and Silverstein [2004], by Proposition 2.4, we can replace the process {M,(z),z € C} by a slightly

modified process {Mp(z), z € C}. Below we present the definitions of the contour C and the modified

process Mp(z). Let x, be any number greater than A(1 + v/c)?. Let x; be any negative number if
A(1 = +e)? = 0. Otherwise we choose x; € (0, A(1 - vc)?). Now let C;, = {x +ivg : x € [x},x,]}. Then
we define C* :={x; +iv:v e [0,v]JUC, U{x, +iv:v €[0,v5]}, and C =C* UC*. Now we define the

—

subsets C,, of C on which M,(-) equals to M,(-). Choose sequence {¢,} decreasing to zero satisfying
for some a € (0,1), &, >n"“. Let

- (x+iv:ive[nle,v)), ifx >0,
{x;+iv:ve[0,v9]}, if x; <0,

and C, = {x, +iv:v € [n"'¢,vy]} for any vy > 0. Then C,, = C; UC, UC,. For z = x + iv, we define

M,(2), forzeC,
M,(z) = M (x, + in!
M, (x; + in"le,), forx=x,ve[0,n

e,), forx=x,ve[0,n'e,], andif x; >0
el
Most of the paper will deal with proving the following proposition.

Proposition 5.1. Under Assumption 2.1 and 2.2, Mp(-) converges weakly to a two-dimensional Gaussian
process M(-) for z € C, with mean

_ mP(a){L+Am(2))
EM(z) = T3 (@) — A2 (@) [{z(hl + A)m(z) + A}
, A m(z)
+ czzm(z){(al +ay)m?(2) + 20 %m (z)} - i+ /\m(cz)};n—zc/\zmz(z) , (11)
and covariance function
_ m'(z1)m'(z3) 1 clay +az)m’(z1)m'(z)
Conttay () =2| s - | e 2

Now we explain how Theorem 2.5 follows from the above proposition. As in Bai and Silverstein
[2004], with probability one, |If(z){Mp(z) —M,(z)}dz| — 0 as n — co. Combining this observation
with (10), Theorem 2.5 follows from Proposition 5.1. To prove Proposition 5.1, we decompose

M,(z) into a random part M:,l)(z) and a deterministic part M,(,Z)(z) for z € C,, that is, M,(z) =

My (2) + M (z), where

My (2) = plmy(2) - Emy(2)} and  M7(2) = p{Em, (2) - m(2)).

16



The random part contributes to the covariance function and the deterministic part contributes
to the mean function. By Theorem 8.1 in Billingsley [1968], the proof of Proposition 5.1 is then
complete if we can verify the following four steps:

Step 1 Truncation.

Step 2 Finite-dimensional convergence of Ml(f )(z) in distribution on C,, to a centered multivariate
Gaussian random vector with covariance function given by (12).

Step 3 Tightness of the Ml(,l)(z) for ze(C,,.

Step 4 Convergence of the non-random part M;f)(z) to(11)onzeC,.

The proof of these steps is presented in the coming sections. Before that, we introduce the
substitution principle and crucial lemmas in Sections 5.1 and 5.2 respectively. The former explains
the reduction of problem of the CLT for LSS of B,y to that of BY, while the latter provides essential

lemmas for these four steps in proving the CLT for LSS of Bg.

5.1 Substitution principle

By the Cauchy integral formula, we have

Gy (f) = nggf e By - 21,) - i ()} d
valid for any function f analytic on an open set containing the support of G, n, where

1

0

My\2) = Mpey(Z) = ’
() FN() /\(1—CN—CNZTII?\7)—Z

with ¢y = p/N. To obtain the asymptotic distribution of G, n(f), it is necessary to find the

asymptotic distribution of tr(B, ny — zIp)‘1 - pm?\,(z). To achieve this, we derive the following
Lemma 5.2 whose proof is postponed to the supplementary material.

Lemma 5.2. Under Assumptions 2.1 and 2.2, as n — oo,

tr(B,  —zI,)"" —pm(z) = tr(B) — zI,) " — pmy(z) + op(1).

By Lemma 5.2, the asymptotic distribution of G, y(f) is identical to that of

= ngSf {er(B) —21,)™" - pmif(z)} dz,

where ¢, = p/n, m%(z) = mpa, (z) (note that we denote m9(z) as m
subsection).

0

p(2) in other sections except this
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5.2 Some important lemmas

Before delving into the proof of the CLT for LSS, it is crucial to introduce three pivotal lemmas,
representing novel contributions to this paper, that unveil concentration phenomena. Lemma 5.3
is crafted to estimate essential parameters, facilitating the derivation of estimates of any order.
Concerning v, and v;,, the terms h;/p and h,/p emerge as non-negligible due to the multiplication
by p in the CLT. To address these parameters, we establish that the probability of the event
B} (&) decays polynomially to 0 and leverage Taylor expansion on the event B,(¢) = {w : [w; — p| <
&W; = Z?:l w;;/p} to handle the issue of dependence. The proof of the CLT for LSS relies on two
pivotal steps: the moment inequality for random quadratic forms and the precise estimation of the
expectation of the product of two random quadratic forms. Lemma 5.4 establishes the former step,
essential for converting them into the corresponding traces, while Lemma 5.5 establishes the latter
step, enabling the application of CLT for martingale differences. Both Lemma 5.4 and Lemma 5.5
heavily hinge on the estimation of parameters v;, v4, and v;; in Lemma 5.3. The proof of Lemmas
5.3 — 5.5 are postponed to the supplementary material.

Lemma 5.3. Suppose that w = (wl,...,wp), has i.i.d. entries with Bw, = p, B(w; — p)*> = 02, and

IE|w1 —y|4 <oo, letw=p! Z?:l wj, A= o?/y?, then
2
v2::lE(g—1) :/\+h—1+0(p_1),
w P
2 2
| - I !
w w p
4 4
m:zlE(@—l) :IE(E—I) +0(1),

w I

where
3 3

Ewj 2 Ewj 3 2
h1:—2—3+3/\ +51+2, h2:—8)\—3+10/\ +22A°+ 8.
14 14

Lemma 5.4. Suppose that w = (wl,...,wp), has i.i.d. entries with Bw; = y, E(w; — p)? = 02, for any
p x p matrix A and q > 2, then there is a positive constant K, depending on q such that

E

r'Ar - QtrA‘q
n
_ 4 1 14/2 , _
< Kq{n q[{IE lwi - | tr(AA )} + Elw; — u/*tr(AA )‘7/2] + nqu)(B;(e))nAnq +n79)|A9||K?! }
where ¥ = n™V?(wy/w - L...,wy/w—1), hy is defined in Lemma 5.3, By(¢) = {w : [w-u| < e,w =

Zle w;/p}, and
P(BS(¢)) < Ce ™ (k0 p ka2 4 pka g [y — M), (13)

in which €,k,qy, C > 0 are constants. Furthermore, iflE|w1 —;4|4 < oo, [w; —pl < Sp\n forallj=1,...,p,
and ||A| is bounded, then, for any q > 2,

v q -
IE|r’Ar - —2trAI < an_lé,%q ‘
n
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Lemma 5.5. Suppose that w = (wl,...,wp)’ has i.i.d. entries with Ew, = p, B(w; —p)> = 0%, A and B

are p X p matrices , 1fIE|w1 —;,t|4 < oo, ||Al| and ||B|| are bounded, then
IE(r’Ar - 2trA)(r’Br - 2trB)
n n

2
Vi — 1/2

V4 — 3V12 V12 ,
T2 ZAiiBii + ?{tr(AB )+ tr(AB)} ¥
i=1

-1
2 trAtrB +o(n ).

p
5.3 CLT for LSS of the centralized sample covariance matrix Bg

5.3.1 Step 1: Truncation

We begin the proof of Proposition 5.1 with the replacement of the entries of W, with truncated
variables. We can choose a positive sequence of {9,} such that

6n -0, 6n”l/4 — 09, 51_141sz111 I{|w11_l/‘|25n\/ﬁ} — 0.

Let §2 = %(3(\,1 - IES(\,l)’(s(\n - IES(\H), where the (i, j)-th entry of 5(\,1 is normalized using truncated
variables w;; = Wijjw, ~pi<s, v} a8 described in (1). We then have

H)(Bg iﬁg) < ]P(UiSn,jSp“wij —]/ll 2> 5,1%}) <np- IP(lw,-]- - ]4| > 57[\/;)

<Kot wlt = o(1)
{lwij—pl=0,Vn}

Let GY(x) be GY(x) with BY replaced by B, then IP(G(x) = GS(x)) < P(B) = BY) = o(1). In view of
the above, we obtain

ij(x)dGS(x) - fﬁ(x)d@<x>+op<1>.

To simplify notations, we below still use w;; instead of #;;, and assume that

|wi]-—,u|<5n\/5, IE'LUZ']' :]/l>0, Var(wij)zaz, 1E|wl-]-—y|4<oo. (14)

5.3.2 Step 2: Finite dimensional convergence of Ml(,l)(z) in distribution

Lemma 5.6. Under Assumptions 2.1 and 2.2, as p — oo, for any set of r points {zy,2,,...,2,}|JC, the ran-
dom vector (Ml(,l)(zl ),...,M;,I)(zr)) converges weakly to a r-dimensional centered Gaussian distribution

with covariance function (12).

We now proceed to the proof of this lemma. By the fact that a random vector is multivariate
normally distributed if and only if every linear combination of its components is normally dis-
tributed, we need only show that, for any positive integer r and any complex sequence {a]-}]’-zl,

the sum Z;zl aer(,l)(z]-) converges weakly to a Gaussian random variable. To this end, we first

approximate Ml(,l)(z) by a sum of martingale difference, which is given in (17). Then, we apply
the martingale CLT (Theorem 35.12 in Billingsley [1995]) to obtain the asymptotic distribution of
Ml(,l)(z). Details of these two steps are provided in the following two parts.

Part 1: Martingale difference decomposition of M;,I)(z).
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First, we introduce some notations. In the following proof, we assume that v = Imz > vy > 0.
Moreover, for j =1,2,...,n, let

L (wj Yip 0 )
I']':ﬁ w—j— ,...,w—j—l y D(Z)ZBP_ZIP’ D]'(Z):D(Z)—I‘jl']-,
1 - 1 1
iz, AZ)= , b zZ) = ,
iz 1+r]’.D171(z)r]- Fit2) 1+ n‘lvztrDjfl(z) () 1+n 1y, EBtrD7(2)
- Vo, - famm vy, d
€j(z) = r;.Dj 1(z)rj - 7trD]- L(2), &i(z) = r;D; 2(:/:)r]- - ztrDjz(z) = &g]'(z).
By Lemma 5.4, we have, for any q > 2,
K K
Ele;(2)lf < — —lazq Yand Elg@I < —nle (15)
v? vl
It is easy to see that
D™'(z)-Dj'(2) = -D;j (2)r;r'D;  (2);(2), (16)

where we use the formula that AIl - Agl = A‘1 (A, — Ay )A‘1 holds for any two invertible matrices
A; and A;. Note that |;(z)], |E]-(z)| and |b,(z)| are bounded by & B LetE; j(+) denote conditional ex-
pectation with respect to the o-field generated by {ry,r,,...,r } where j=1,2,...,n. By convention,
we use [E = [E to denote expectation. By using (16), we write

n

=) t{(Bj-E;)D(2)} == ) (E;~E;_1)B;(2)r;D;>(2)r;.
j=1

=

From the identity ;(z) = Ej(z)—ﬁj(z)ﬁj(z)ej(z) = Ej(z)—ﬁjz( )ej(z )+/5] (z)Bj(z)e ( ) and the definition

of £(z), we obtain that
(E;-E;_ )ﬂj(z)r'.sz(z)r‘
= (B~ E;1)|{B,(2) -} (2Jej(2)+ B (s (20 @) g5(2) + 26D (2 |
= @)+ B0 - (8 B[ @) (2161 2) - B ()2 D 2

where

Yi(2)i= ~Bi{F; (2(2) - F; (2)ej(2) 2 4eD32(2) |,

and the second equality follows from (E; - ]E]-_l)ﬁj(z)trDTZ(z) = 0. By using (15), we have

Y (B~ Ej1)f; (2)¢(2)8(2)

here we use the the martingale difference property of (E; — lEj_l)Bj (2)€j(2)€;(2). Thus, j:1(1Ej -

<4ZIE|/3] (2| = o(1),

E *1)312(2)5]'(2)5]'(2) 5 0. By the same argument, we have
Z(IE]' —IEj—l)E;(Z)/J’j(z)r}sz(z)rjsj (z) = 0.
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The estimates above imply that

Mpz)=) 1,

j(2)—IEj_1Yj(2)} +0p(1), (17)

j=1

where {Y;(z) - E;_, Y]-(z)};’:1 is a sequence of martingale difference.
Part 2: Application of martingales CLT to (17).

To prove finite-dimensional convergence of MI(,I)(Z), z € C, we need only to consider the limit of
the following martingale difference decomposition:

Z“M ZZ“: zi) ~Ej1Yj(z )}+0p(1), (18)

j=1i=1

where Im(z;) # 0, and {«;};_, are constants. We apply the martingale CLT [Billingsley, 1995,
Theorem 35.12] to this martingale difference decomposition (18). To this end, we need to check

two conditions:
2

Yj(2) =B Vil Lygr, o (vy(a+ By vyz)ize) = O (19)

ZIEJ 1[ (21~ Bp 1Y)l Yi(z2) - By Yz} | © (12) (20)

First, we verify (19). By Lemma 5.4, we obtain
E|Yj(2)|* < KElej(2)|* = o(p™),
which, together with Jensen’s inequality, implies that
EIE;_1 Yj(2)|* < TB(E;1[Y;(2)1") = BIY;(2)1* = o(p™").
It follows from the above two equations that

’ 4

Z%’Yj(zi)

i=1

+—2 — 0.

n r 4
E ZO(Z'IE]‘_I Y](Zl)
= i=1

Then, we verify (20). Since Y;(z) = —Ej%{ﬁj(z)ej(z)}, we have

K n
LHS of (19) < ;IE
]:

02
LHS of (20) = - —{1(z1,22) - Valen )}, (21)

1 (21,22) ZIE”[ i{F (200 B )22}

2(21,2) XIE] 1{B;(z1)ej(20) ;1 (B (22)¢(22).

Thus, it is enough to consider the limits of V;(z,2;),i = 1,2, which are provided in the following
lemma.
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Lemma 5.7. Under Assumptions 2.1 and 2.2, we have

9? P 9? P
_— 12 — .
8218223}1(21'22) —(12), azl8zzy2(zl'22) —0
The proof of Lemma 5.7 is postponed to the supplementary material. This lemma and Equation
(21) complete the proof of (20).

5.3.3 Step 3: Tightness of Ml(,l)(z)

To prove tightness of MI(,I)(Z), it is sufficient to prove the moment condition of Billingsley [1968],

ie.,
1 1
EIMY (2)) - MM (25)2
sup

n;z1,2,€C, |Zl - 22|2

is finite. Its proof exactly follows Bai and Silverstein [2004], and is postponed to the supplementary
material.

5.3.4 Step 4: Convergence of Ml(jz)(z)

Recalling that M,(,z)(z) = p{Em,(z) - mY(z)} = n{Bm,(z) — m%(z)}. From the identity

P P P
1 cuh 1 Cn
_ - 1- E Tomo o [
IEmp(z) + 2z 1+ /\IEmp(Z) IEmp(Z){ ch,t2z mp(z) + 1+ /\IEmp(Z)}
we have
Ac Ap(2) |7
E ={- . - ‘
mp(Z) { zt 1+ /\IEmp(z) * IEmp(Z)}
where A,(2) == 35 @ +2cnEmy(2). From this equation and the identity mg =(-z+ 1;\;:”0 )7 we
get B B
c, A2m0(z)Em, (2) -
N YN VAN 1y (2)Em, 22
mp(z) mp(Z) ﬂp(z) p(Z)[ 1+ /\lEmp(Z)}{l + /\mg(z)} (22)

Note that IEmp(z) — m(z), mg(z) — m(z). It suffices to derive the limit of nA,(z), which is provided
in the following lemma.

Lemma 5.8. Under Assumptions 2.1 and 2.2, as n — oo, we have

m(2)z(A+ h)m(z)+ A} c2?m?(2){(@) + ap)m?(2) + 202w (2))
1+ Am(z) - 1+ Am(z)
A2l (2)
T Am@) [+ Am(@)P — A2 (2)]

nA,(z) — -

The proof of Lemma 5.8 is postponed to supplementary material. By (22) and Lemma 5.8, we

have Mé,z)(z) — (11) as n — oo. Combining two parts above yields Lemma 5.6.
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Supplementary Material for “On eigenvalues of sample covariance
matrices based on high-dimensional compositional data”

S1 Auxiliary lemmas

This section introduces several auxiliary lemmas used in the technical proofs of our theoreti-
cal results. Lemmas S1.1 — S1.4 are from existing literature, while Lemma S1.5 is our original
contribution, and its proof is provided in Section 52.12.

Lemma S1.1 (Weyl’s inequality, Corollary 7.3.5 of Horn and Johnson [2012]). Let A and B be two
p xn matrices and let r = min{p, n}. Let s1(A) >--- >s,(A) and s;(B) > --- > s,(B) be the nonincreasingly
ordered singular values of A and B, respectively. Then

max |s;(A) —s;(B)| < [|A B,

1<i<r
where ||A — B|| denotes the spectral norm of A —B.

Lemma S1.2 (Burkholder’s inequality, Burkholder [1973]). Let {Xy} be a complex martingale difference
sequence with respect to the increasing o-field {F}, and let IE denote conditional expectation with respect

to F. Then, for g > 1,
q
B[Y x| <Ky fB(Y meael)” B Y ).

Lemma S1.3 (Uniform law of large numbers, Lemma 2 of Bai and Yin [1993]). Let {Xl-j, i,j=1,2,...}
be a double array of i.i.d. random variables and let « > 1/2, p > 0 and M > 0 be constants. Then as

n— oo,
n
- X —c a.s. Cl
J‘?A%ﬁ " ;( ij )| -
if and only if the following hold:
E|X;1 |1 < 0 _ JEXy, l:fagl,
any number, if a > 1.

Lemma S1.4 (Martingale CLT, Theorem 35.12 of Billingsley [1995]). Suppose for each n, {Y,,1,Y,2,..., Yy, }
is a real martingale difference sequence with respect to the increasing o-field {F,;} having second moments.
If as n — oo,

ZIE .7-",1]1 —>02,

where o2 is positive constant, and for each & > 0,

XIE Ly, 12¢)) = 0,

then Y7, Y,y B N(0,62).

Lemma S1.5. Suppose that X, = \/Lﬁ(l, 1,...,1) is a p-dimensional normalized all-one vector, then for

the truncated random variable satisfying (14), we have ]E|XI;D_1 (z)xp + 1/2*> — 0.
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S2 Proofs

$2.1 Proof of Equation (6)

Recall that Y,, = pC,A,W,/VN, Y, = C,W,/(VNy), and B,y =Y,Y,. Let IUSP,N =Y,Y,. For any
positive constant ¢ small enough such that

m—e>AM1+Ve)?, a4+ 2e < A1 =Ve) Ipeeary, (S2.1)
we have
P(Amax(By,n) 2 771
H)(/\maX(Bp,N) > 11, Amax (Bpn) > 11 — 5) + H)(/\max(Bp,N) > 111, Amax(Bp N) <171 — 8)

< H)(Amax(ﬁp,N) =/ 5) + IP(l/xmax(Bp,N) - /\max(ﬁp,N)l 2 5)

and

=

(Amin(Bp,N) < ’72)
(/\min(Bp,N) <12 /\mina;p,N) St g) + IP(/\min(Bp,N) < ﬂZrAmin(Bp,N) >+ ‘S)

(/\min(]vsp,N) < "2 + é‘) + 1P(|/\min(Bp,N) - /\min(ﬁp,N” = ’5)-

P
P

IA

To prove Equation (6), it suffices to give the following three estimations:

P max L (B,) - 4Byl 2 € = o(n™), 52.2)
II)(/\max(];p,N) 21— 5) = O(n—f), (52.3)
P(Amin (By,x) < 112+ ) = o(n™). (S2.4)

The proof of these estimates are provided as follows:
Proof of (52.2): By Lemma S1.1, we have

max |4;(B,,n) = Ai(Bp )l < IIBpn =By NIl < IV, = Yoll? + 211Y, = YV,

1<i<p

Note that |[Y,, — Y,|| < |lppA, - In||||Wn/(y\/N)||. We get from Theorem 2.9 in Benaych-Georges and
Nadakuditi [2012] that ||W,,/( y\/ﬁ )|| is bounded almost surely. In view of the above inequalities
and (52.3) (will be proved below), it suffices to show that, for any £ > 0 and ¢ > 0, P(||[puA, - L,|| >
¢) = o(n~!), which is guaranteed by

ZP_ w; /
IP( max %]p - 1‘ > e) = O(n_g). (52.5)

1<i<n

This inequality follows from Equation (B.115) in Gao et al. [2017], and thus we complete the proof
of (S2.2).

Proof of (52.3): Let B, = (Y5)'Ys5, where Y5, = %E;N”. From Bai and Silverstein [2004], we have

P(Amax (B ) 2 11 =€) = o(n ™), (52.6)
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IP(/\min(B;’N) <+ e) =o(n™). (52.7)
By the identity Y, = C, Y3, we have
B,n =By - %(Y;)’lnl;Y;. (S2.8)
This, together with Cauchy interlacing theorem, implies that
A1(Bj ) = A (Byn) = Aa(By ) = Aa(Byn) = -2 A, (B) ) = A, (B, ). (52.9)
For the largest eigenvalue, we have

/\max(B;N) =A (Bp N) >A (Ep N) /\max(ﬁp,N)l

which, together with (52.6), implies (52.3).
Proof of (52.4): When p > n, the smallest eigenvalue of ﬁP,N is its (n—1)-th largest eigenvalue. By
using (52.9), we have

/\min(ﬁp,N) = An—l(ﬁp,N) > /\n(B;,N) = Amin(B;,N):

which, together with (52.7), implies (52.4). When p < 1, the smallest eigenvalue of EP,N is its p-th
largest eigenvalue, and all eigenvalues of ﬁp,N and B;’N are interlaced each other as in (52.9). From
(52.8), we have

Z?:l wi]-/n B

(B;N)—tr pN NZA] w A]'J’l: ‘u

Hence, there exists some constant C such that Amin(ﬁp'N) = /\min(B;]N) - %ﬁ Z] 1 Azn, and thus

Pr /\mm pN <172+€)

p p
Cn y Cn
:Pr(/\mm pN ) <1 +g, ;ﬁ A]z,n < 5) +Pr(/\mm(Bp N) St ;N ZAJZ,n 2 8)
=1 j=1
Pr(/\mm pN <112+2€)+Pr(max |A]n| >£/C) (52.10)
1<j<p

From (S2.1) and Bai and Silverstein [2004], the first term in (S2.10) is of order 0( %) for any £ > 0.
Similar to (52.5), for any £ > 0 and ¢ > 0, we have P(max;<j<,[A;, A2 =€) = o(n~t). Therefore, we
conclude that (52.4) still holds true when p < n.

S2.2 Proof of Lemma 5.2

The proof of this lemma is quite similar to Sections 5.3.1, 5.3.2, and 5.5 of Zheng et al. [2015], it is

then omitted. For readers’ convenience, we present the outline of the proof for this Lemma. In this
w,p

situation, Bg = %Y;Yn =) i nr, 1= %(ﬂ -1,.. -1) = \/ﬁ(yil,...,yip)’. As for moments of

wi
”wl']' q
(5 1) o
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vij, by (13), for any q > 0, we have

q wij !
IEyij:IE %—1 IBP(E) +1E

< KlE(wl] —]/l)q.




Therefore, in the following proof, the requirement of truncation of y;; reduces to truncation of w;;.
First, we get that

tr(B, N —zIp)_1 —pm?\,(z)
= tr{A™(2)} - pm))(2) + p{m}(z) - m} (2 >}+tr{A*2(Z)A}
+tr[A HAA™! )}2]+tr[{A( ~ A HAAT! ]

where A(z) = Bp —zl,and A = Bg — B, n. Moreover, after truncation and normalization, for every
zeCt={z: Imz>0}

m(z) +zm (z)

plmy(z)=m () = (1 + zm() ===+ 0p(1),  tr{A(2)A)} = 0p(1), (52.11)
tr{A~2(z)AA (2)A} = {m(z) + zm (z )}{1+zm(z)}+0p(1), (52.12)

1] {1+2m(2))*{m ()+Zm,(z)}+op(1)_ (S2.13)

[{AA (2)) e

Note that, we also need to check the tightness of tr(B, y — :z,Ip)‘1 - pm?\,(z). Since

tr(B, N —zI,)"" —pm}(2)
=tr(B, N —2I,) "' —tr{A™! (2)} + tr{AT (2)} - pm(2) + p{m))(z) - MY (2)),

and the tightness of tr{A~!(z)} — pmY(z) is proved in Step 2 of Section 5.3, it suffices to prove
tightness of tr(B, y — zIp)_1 —tr{A~!(z)}. It can be obtained from similar arguments in Section 5.3.2
of Zheng et al. [2015] and we omit the details. Finally, the proof is completed.

$2.3 Proof of Lemma 5.3
Note that, by Taylor expansion, there exist C; > 0 such that, for any -1/2 <x <1/2,

1

—(1 )2 =1-2x+3x>+a(x), |a(x) < Cyx°.
x

Hence, there exist C; > 0 such that, for any 0 < ¢ <1/2, on the event B,(¢) = {w: [w—p[ < e,w =
Z;'?:l w]/p};

I S 1_2(W—y)+3<W—u>2M(w—n)]l

ﬁ_yz(?n)z iz p p?

where |a((w - p)/p)| < C; €3. Hence, we have

w% w% 2wf(ﬁ— H) Sw%(ﬁ— u)? wf w—p
15,0 =172 s I Ig, )+ —a
I3 I3 I3 14
This, together with the fact Ip () = 1 - Ipg (), implies that

)IBP(S). (52.14)

w_f B w_f _ wa(w—y) 3w%(@—y)2
—2 2 = 3 4
v B S , (52.15)
wy 2wi(w-p) 3Swi(w- p)? w)
N\ 2~ 3 + Z IBC()+61+—IBC()
s H M w’
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2
where |a| < C; %53. Taking expectation for (52.15) yields that

w?  wi  2EBwi(w-p) 3Bwi(w-p)?
— - =- +
4

—1 1= . —Eb+Ea+ Ec. (S2.16)
w Iz Iz K

where b := {w?/p? - 2w (W - p)/p® + 3w?(w - y)z/y‘L}IB;(E) and ¢ := (w%/ﬁz)IB;(e). Note that
[Ec| < p°IP(Bj(¢)). (S2.17)

Next, we bound [Eb. In save of notation, we denote by

)= wi gy e 2wi(w - p) - 3wi(w - p)?
2 E A
It is obvious that
}IE(yllB;(g)) < Cz'IwaIBg(g) < CPV2(BS(e)). (52.18)
Note that
lef(w - 1) _ llef(wl - 1) (52.19)
p pw '
Ewl(w-p)? 1 Ewi(wi-p)? p-1EwiE(w, —p)? 5220
4 2 4 2 4 (82.20)
M p H p H
By (52.19), we get
|1E(}’213;(a)) = —3|1Ew%(w1 — 1B
< _3('IEW%IB;(£) + 'IEW%IB;(S) )
C 1/2
< P25 e + | B 2 (Ewilso) )
< %{1131/2(13;(5)) +11>1/4(B;,(e))}. (S2.21)
By (52.20), we get
-1
|lE(y3IBIc,(£)) < W|Ew%(w1 - ]4) IB,C,(E) + 22—’”4 {]Ew%IB;(S)}{]E(wl —y)zIB;(e)}
Cs | Caf1/2)ne 1/2 pe
< — 4+ —{P4(B(¢g)) - IP“(B(¢))
2 p { P P }
1 1
<C {— + 2IP(BS (g))}. (52.22)
Hp2 p 7
By (52.18) — (52.22), we have
IEb| < C5{IPU2(B;(5)) ; %11)1/4(3;(5)) ; 1%} (52.23)
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By using (13) and ]E|w1 - y|4 < oo and I@I < \/nd,, we have [Ea—Eb + Ec = o(p~!). From (52.16),

(52.17) and (52.23), we get

w_f lef _ 2Ewi(w-p) 3Ewi(w-p)?

“L_pL + +o(p™).
72 12 13 ul
Plugging (52.19) — (52.20) into (52.24), we get
2 2
wi LW -1
— —E—=—+o0(p7)

which implies the first equation in Lemma 5.3.
Similar to the previous calculation, we obtain

pAH g AR g
wy, Wy [ Wy (%)

(wy, ws, )_4——(——1)(——1)

falwy,wa, p AT U

’ (ﬂ - 1)2(& - 1)2{ (w?;ly/ljzm * w211;};l/_yl }

wy Z(ﬂ_ )2 w3/ p? 2w,/
+( 1) ! (wz///t—l)2+w2/]4—1 ’

Similar to (52.14) — (52.24), we get

(CRER)

= IE(ﬂ - 1)2(ﬂ - 1)2 +]E(§ - 1)f1(w1,w2:l1) +IE(% - 1)2f2(w1,w2,y) +o(p™")

g 14
= T1 + T2 + T3 + 0(p_1 )
Similar to (52.19) and (52.20), we obtain
1 _(w w
T, = ;E(f + 72 - 2)f1(w1,w2,;4)

and

2 wq

g

2
1 wi )\ - ?
Ty = p ZIE(FI - 1) fa(wy, wo, p) + pPTlE(— - 1) Efy (w1, wy, p).
i=1

Thus, by (52.26) — (52.28), we get

4 p

30

IE(& - 1)2(2 - 1)2 = IE(ﬂ - 1)2(% - 1)2 + lIE(% + % - 2)f1(w1;w2»ﬂ)

(S2.24)

(52.25)

(S2.26)

(S2.27)

(S2.28)



A _
+;1Ef2(w1rw2,ﬂ)+0(l7 1)
2 2
:IE(E—I) (ﬁ—l) +lh2+o(p‘1). (52.29)
U " p

which is the second equation in Lemma 5.3.
Similarly, we get

IE(%—l) :E(ﬂ—1)4+0(1),

which is the third equation in Lemma 5.3.

S2.4 Proof of Lemma 5.4

First, we prove the estimation of IP(B}(¢)). By Markov’s inequality and Burkhdlder inequality, we
get

IP(Bp(¢)) = P([w - pl > €)
kol LV
<& ql]E‘— (w; -
i
Squlg—kql kql{ (ZIE] 1w —pl ) HEZh”j_ylk’“}
j=1

kql/2 P
=g (Y ) oY -
j=1 1

j=

'k’?l

= Kyq, e *1pFn {(paz)k’“/ 2+ pElw; - I’“’l}
Hikq

= Ky, 0" e ’%(p kai/2 4 = k‘““IEI—| l) (52.30)

Next, we prove the estimation of the ¢g-th moment of r’Ar — 22trA. For any q > 2,
q A |2 A q
E|r'Ar - QtrA| <K, (IEIr’Ar - —trA| + IE|—trA - 2trA| )
n n n n
By Lemma 5.3, we have

A V) 1 _ q
E ;trA—;trA < Kop |||y (52.31)

Now, we consider IE|r’Ar - %trA|q. There exists a positive constant K; such that

A

A q q A
r'Ar— ZtrA| < Kq{IE|(r’Ar - ;trA)IB;(E)

(r’Ar - ;trA)IBp(E)

q}. (52.32)

Estimating E|(r’Ar — n‘l)\trA)IB;(€>|q: Since |r’Ar - %trA| <|r|l[|A]| + CJ|Al| < C - p||A]|, we have

1E1(r Ar- itrA)IBc .

< CpYllAll7IP(By (&) (52.33)
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Estimating [E|(r’Ar —n~! )\trA)IBp(E)W: Write

A
r'Ar - ;trA = trA =: vy + vy, (S2.34)

2 (w-—wl,)Aw-wl 2wt —
o {( p)az( p)—trA}—}—G/w A

nw?

where 1,= (1,1,...,1) € RP. For 0 < ¢ < 1/2, there exists a positive constant Kq such that

A q
]E|(I‘,AI' - ;trA)IBp(E) < Kq(]Elvlpr(s)lq + lEl‘UZIBP(S)lq)'

On the event By(¢), we have —¢e Sw—p <¢,and

trA 1

ElvoIp ()7 = 0% .

1 1 1
IE' — - —)I
(wz ;42 B,(¢)

(w—p)(w+p) I
wzyz Bp(g)

< K||A||TE[w — p|?

< K||A||q(p_‘7/2 +p—q+1lﬁ‘?'q), (52.35)

q
< o?4||A||7E

where the last inequality follows from the same argument in the proof of (52.30). By using
w-wl,=w-—pul, - (wl, —pul,), we get

(w-wl,) (w-wl)) q
E|v;Ip (g)lq < KTl_qIE’ A —trA g ()
p o o p
w—ul,)) (w-ul q
SKn_qIE‘{( 2N ”p)—trA}IB ©
o o P
wl,—ul,) (w-ul 9
+Kn_qIE{( p= M), L yp)}IB(s)
o o 4
w—-ul,)) (wl,-ul 9
+Kn-ﬂE{( ””)A( b “’”)}IB ©
o o 4
wl,—ul,) (wl,—-ul 9
+Kn‘71E{( P ””)A( b MP)}IB(S)
o o P
=: KTl_q(Vll + V12 + V13 + V14). (8236)

By Lemma 2.2 in Bai and Silverstein [2004], we have

—yl4 q/2 —u12q
Vi s1<q[{JE|w1(7 a | tr(AA’)} +1E|“’10 # | tr(AA’)q/z]. (52.37)

From (w—pu)1, = 11,1/ (w-pl,)and p’llEtr(lpll’)A) = p’ZIEtr(lplé,Alpll’,) <||A|l, we get

p—p PP
q}

q

L(w—ply) (W= ply)
VIQZE‘{E—G L 1A——— g ()

—ul,) —ul
< Kq{]g’u(llpléA)M —tr(llplg,A)
p o p

q
+E

1
tr| =1 1'A)
(p p-p
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1,y - g
qu{lE'M(ll 1'A)M—tr(11p1;A)
p p

o pep o
SKq[{

+||A||"}

1 a/2 -pn2a (1 a/2
( 1,1,AA'1,1/ )} +113|w1 s t( 1,1,AA'1,1/ ) ]+Kq|IAIIq
o p

p2 prp 2°P7p
<V (S2.38)
Similarly, we get
Vis< Vi,  Via<Vi. (S2.39)
By (52.36) — (52.39), we get
2
Efoy I, o7 < Kyn q[{na| ‘”| tr(AA )} |w1 ”| Tir(AA )q/?-] (52.40)

From (52.32) — (S2.35) and (S2.40), we have

r'Ar—&trA'q
<1<{ —q[{IE| ”| tr(AA )} ‘wl I/qut AA )W]
+IAI (/2 4 prat | ) 4 quAuqH)(B;(e))}

q/2 2
<1<( —q[{nal ”l tr(AA )} |w1 ”| tr(AA )4/2] nq||A||q1P(B;(s))).
By this inequality, (52.31) and (52.44), we get

E 1 < Kq(”_q[{lE'g'LLtr(AA’)} |w1 y|2q (AA )q/Z]

v
r'Ar— 22trA
n

+ 7| AlI"P(By(e)) + n‘qIIAIIqh”})-

. . S 4 -
Finally, we prove the last inequality in Lemma 5.4. If [E |w1 - y| < o0, ||A|l £ K and |¥| <+/néb,,
then, for any g > 2,

— 4 q/2
n*q[{m|u| tr(AA’)} '“” ”' tr(AA )W] <K lon™
o

and
n9|AlTh] < Kynton

Taking e =n"%,0<a <1/2, and kq; > S—ga yields that

n9||AJI1P(B () < Kyn' 57",

From (52.30), we write

w
P(By(¢)) < qulakqle_kql pkn/2 4 pka+lp ik

kq
- ) =: Kyp, 01(Py + Py).
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Since P, < e ki p~kai+l(y1/25 ykai—4 < 5lfqu_4£‘kql nka1/2-1 < P, we obtain that

IP(BS(¢)) < 2Kyp, "1 P (S2.41)
Take e =n"* (0 <a <1/2) and kq; > % into (52.41), we have
2q- 4

n1P(By(e)) < Kynn~ (z-a)kq, <Kyn 42 <K, nlo,

Combining all these estimates, we obtain the last inequality in the Lemma.

S2.5 Proof of Lemma 5.5

First, we denote R; = \/Lﬁ(ﬁ - 1) and derive some identities that will be used in the proof. It is

w
obvious that Z?Zl Rj=0and Zﬁ;l R]z +2j,+j, Rj R}, = 0. Since {wj}?:1 are i.i.d., taking expectation
on the above two identities yields that, forany 1 <i = j <p,
. 2_"2 Ri=—_ 2 4_ Y4 2p2 _ V12
ER; =0, [ER;= o ER;R; = np-1) ER; = "l ER{R; = o (S2.42)
Recall that r = (Ry,...,R;)". From (52.42), we have
E(rr') = P2 (1 ! 1,1 ) (S2.43)
n(p-1\7 p '

It is obvious that

IE(r’Ar - 2trA)(r’Br - 2trB)
n n
trB trA v2 (52.44)
v v v 3,
= IE(r'Arr'Br) - L]E(r’Ar - —ztrA) _RT IE(r’Br - —2trB) - —%trAtrB.
n n n n n

We first estimate each terms in the RHS of the identity above, and finally prove the equation given
in Lemma 5.5. The details are provided in the following three steps.
Step 1: Estimate the first term. It follows from (52.42) and the identity Z?Zl R;j =0 that

IER3R2__ [R3(ZR Rl)] (p L (S2.45)

ER?R,R; = —IE[RZRZ(ZR “Ry - Rz)]

= _Tz]E(RfRZ) - EE(Rng)

(52.45) V4 V12
= - - , (S2.46)
n?(p-1)(p-2) n?(p-2)

P
1
ER,R,R3R, = EIE[RlRZ&(ZRj “R,-R,- R3)]
j=1

3
= —EE(R%RZI%)
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(52.46) 31y . 3v12
n2(p-1)(p-2)(p-3) n*p-2)(p-3)

To calculate E (r’Arr’Br), we expand it as

E(r’Arr’Br) = (ZR AR ZRkBkgRg) Z E(R;R; Ry ReA;Be):

i,jkl
To calculate (52.48), we split it into the following 11 cases:
1. i=j=k=¢€ Y ;(R)A;Bi;
2. i=jk=0i=k Y ik (R?R?)A;Biss

izk
3. i=j,k#6Yike(R2RkRy)A;iBiss
k=(
4.1 i];k ¢, ZZ]k(R R R )AZ]Bkk’
i#]

5. z¢],k¢€z—k]—€zl](RR)A iBj

li]

l]l

6. izjk=li=0j=kYij(RIR})A;;B

li]

ij ]l’
7. 1% ],k * 5,1 = k,g * ],Z i,j,0 (RZZR]RZ)A,]BM,
i#j#l

8. ixj,k=( (= ],1¢kz,]k(RR Ri)AijByj;

i=jzk

9. z:t],kifk—],lisz]Z(RR Re)AijBje;

i#j#l
10. i ij,k zli=0k= ],Z i,k (RI-ZR]‘Rk)Ai]‘BkZ‘;
i#jzk

11. 1 ij,k i&g * j,i * k,z ijk,C (RiR]'RkRg)AijBkg.
izjzk-l

(S2.47)

(S2.48)

For ease of presentation, we still keep v4 in the expectations although we have obtained its value.

The expectations of all cases are listed as follows.

V4
E ZR;LAiiBii = ZAiiBii-
1 1

Case 1: From (52.42), we have

Case 2: From (52.42), we have
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Case 3: Note that

IEZRQRkRgAHBkg = ER?R,R; Z A:;Bys +ER RQ(ZA”BZZ + ZA”B;“] (S2.49)
ik, i,k ik
k=C izk=l éiz k#i
Now, we estimate the magnitude of the summation terms on the RHS of (52.49). Recall that
for any p x p matrix, we have Etr(M) < pE[M|| and max,<;<, M;; <|[M||. By using these facts
and the Holder’s inequality, we obtain that

\XA,,BM| E|(trA)1,B1,| < pE(IAll-[1,B1,)) < p>E(JAll- [BI) = O(p%),  (52.50)

ik,
JEZAﬁBa» = EtrAtrB < p’E(||Al|- [B]) = O(p?), (52.51)
IEZAUBH < pIE||diag(A)diag(B)|| < pE([|A]- IB])) = O(p). (52.52)

Let 1;, be the p-dimensional vector with all components being 0 except for the i-th component
being 1, then we have

IE'ZA”BM IE|ZA” (1,)B1 ’<IE(ZA )l/Z{Z )'Blp1;,131;',}1/2:0(p3/2). (52.53)

From (52.50) — (52.52), we have

E Z Azszf - (ZAUBM ZAHBIZ ZAzszz ZAzzB€€+ZZA11B11) )

ik, ik,
izk=l

(S2.54)

It follows from (S2.45), (S2.46), (52.49), (S2.53), and (S2.54), that

E) (REReR)AiBe = =525 ) Aubie+o(n™),
ikl ikl
k= izk=l

Case 4: Similarly to Case 3, one can conclude that

IEZRR R2A; By = ZAl]Bkk+o -1,
i,j,k i,j,k
i#] i#j=k
Case 5:
E) RRIA;B;; = E(RIR3) ZAIJB {tr(AB’)—ZAl-Z-BZ-i}.
— n -
i i i
i#] i#]
Case 6:
v
E) RIRZA;Bj; = E(R}R}) ZA,] e %{tr(AB) - ZAHB,,-}.
ij i
i#] z:t]
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Case 7: By (52.46), we have

E ) RIRjRA;Big=O(n>)x ) AjijBy. (S2.55)
i,j,0 i,j,0
=]l i=j=l

Not}elz that, ll’jA’Blp < pllAl]-|IB|| = O(p), tr(A’B) < p||A]|-|IB|| = O(p), and by (52.52) and (S2.53),
we have

IEZAiiBie = IEZAiiBié_IEZAiiBii =0(p¥?), (S2.56)
1=l i i
thus,

E Z AjjBic = IE{l;'yA/Blp ~tr(A’B) - ZAiiBM - ZAijBii} = 0(p™?). (52.57)

i,j,l izl i#]

izjzl
It follows from (S2.55) and (S2.57) that
E Z R2R;R;A;iBj¢ = o(n").
i,j,l
i#j=l
Case 8: Similarly to Case 7, we have
E Z RiR?RiA;iBy; = o(n™").
i,j,k
[ESED
Case 9: Similarly to Case 7, we have
E Z Rl’R]ZRgAi]'B]'g = 0(1’1_1).
ij,l
i#j=l
Case 10: Similarly to Case 7, we have
E Z (R2R;R¢)A;;By; = o(n™").
i,j,k
i#j=k
Case 11: By (52.47), we have
E Z R;R;RyReA;iByy = O(n~*) x Z AijBre.
ikl ikl
i=jzk=l i#jzk#l
Note that, by (52.57) we have
E Z A;jBye = E(1,A1, — trA)(1,B1, - trB) ~ E Z A;jBi—E Z AijBy —IEZAijBij

i,j,k,¢ i,j,¢ i,j,k i,j
izjzk=l izj=l i=jzk i#]
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Thus,
E Z R;R;RR;A; By = o(n™").
i,j,kC
i#jzk#l

Combining (52.48) and Cases 1 — 11 gives us

-3
E(r’Arr'Br) =412 ZA”BU + ~2{trAtB + tr(AB) + tr(AB)}
( Z A:iBrg + Z Al]Bkk] +o(nY). (S2.58)
ikl i,j,k
l¢k¢€ 1¢]¢k

Step 2: Estimate the second and third terms. From (52.43) and (52.56), we have

trB trB v2trB
valt IE(r’Ar— QtrA) _ 2t {IEtr(Arr’)— 2trA} 2 Z L
n n n

n “n2(p-1)
(ZBkkAké + ZBMAM + Z BnAM]
Kl
k¢€ k¢€ 1;k¢€
2
V) -1
-2 N BuAy+o(nh). (52.59)
n?(p-1) lkzg "
izk=l
Similarly, we obtain
2
VvotrA (, ) ) V5 -1
E(r'Br- =trB|=—+——"— A;:Byrp+ . S2.60
—E(rBr-—tur nz(p_l)ikzguke o(n™) (52.60)
irkzl

Step 3: From (52.44) and (52.58) — (52.60), we have
IE(r’Ar - 2tm)(r’Br - ﬁtrB)
n n

p
-3
_V4 V12 ZAHBH ¥ mltrAtrB +tr(AB’) + tr(AB)}
i=1

[ZAHBW XA,]Bkk]+ - [Z BiiAkc+ ZA”BM]

i,k i,j,k i,k ik,€
1¢k¢€ izjzk 1¢k¢€ 1¢k¢€

2
v
- —ztrAtrB +o(n!)

-3 Viy— V2
uZA,,B,,+ “2{tr(AB’) + tr(AB)} + Unz 2 trAtrB
i=1
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V12 -1
( E AjiBre + E A;iiBir | +o(n™)
ikl i,j,k
i#zk=l zq:];:k

-3 -
=2 o VUE AyiBi+ — 2 {er(AB) + tr(AB)} + —” trAtrB + o(n™),
n 1’l

i=1

“w_»

where in the last we use Lemma 5.3 and Equation (52.54).

$2.6 Proof of Lemma 5.7
$2.6.1 Limit of 9%))(z1,2,)/(dz,92,)

Since ]E|E]~(z) - bp(z)|2 < Klz|*/(nv), it is enough to prove that

82?222[ p(22 ZIEJ 1{ (Zz)}] 5 (12).

By Lemma 5.5, we have

2
LHS of (S2.61) =

where

=

14
(Zl)b ZZ IE][D (Zl ]nIE [D (22 ]w
]: i=1

2 n
Via(21,22) = 32by(21)by(22) ) tr{E;D;! (21)E; D} (z2)},
j=1

vs—3v
V1(z1,22) = ub

n?

2
Vi — VZ

=

Vis(z1,22) = bp(21)bp(z2) ) _tr{E;D7! (z1)} tr{E; D7 (o).

j=1

n2

We claim that the following statements hold true as p — oo (to be proven later):

*V11(21,2) P caym’
02102, {1+ Am(zy)
*V12(21,2) P 2m/(z))m(z
dz,0z; {m(z)) -m(z)}? (21 -2)%
9*V13(21,2) I caym’
02,0z, {1+ Am(zy)

By (52.61) — (52.65), we obtain the limit of %;Zzyl(zl,zz).
Now, we provide the proofs of (52.63) — (52.65) as follows:
Proof of (52.63): It is enough to find the limit of

n p
% ZZIEJ'[D?(ZI)]iiIEJ'[DJTl(ZZ)]ii'

i=1 i=1

39

d
azl 822 {yll(zll 22) + y]2(21,zz) =+ yl3(21;22)} —+ OP(l),

(S2.61)

(S2.62)

(S2.63)

(S2.64)

(S2.65)



By similar calculation of Gao et al. [2017], we get the following lemma and its proof is postponed
to Section 52.7.

Lemma S2.1. Under Assumptions 2.1 and 2.2, for any 1 < j < n, we have

ZIE][D 21] ][D Zz] —>m(21) (22)-

By E|2trD!(z) - ZEtrD ! (2)|7 < Kyn N 1, the formula (2.2) of Silverstein [1995], m ,(2) =
}1:1 B;(z), and Lemma 5.4, we have

wp@>—mﬁuzns1§%,Eﬁﬂz)z—zmn@«n,wp@>+zm2<NSjg% (52.66)
Thus, by (52.66), Lemmas 5.3 and S2.1, we have
caym(zy)m(z,)

Vi1(z1,22) i cayz1zom(zy)m(zy)m(zy)m(z;) =

{1+ Am(z1)H{1 + Am(z2)}’

where the equality above follows from m(z) = —z ' {1+Am(z)}~!. Thus, the i.p. limit of %{;zzyl 1(z1,27)
isin (52.63).

Proof of (S2.64): By similar calculation of Bai and Silverstein [2004], we get the following lemma
and its proof is postponed to Section S2.8.

Lemma S2.2. Under Assumptions 2.1 and 2.2, for any 1 < j < n, we have

- 5
]—CnV2 mo(zl )mO(Zz)

D71 -1 _ =P p
tﬁ@“%(“”Df””Hl (14 2 yom (21 + 2 vomd)(25))
_ ney 1 "
212 {1+ vy (21 + 2 vom(z,)) +Op(n).

By using (52.66) and this lemma, },(z1,2;) can be written as

ap(21,22)V12 2
P -1/2
Vi2(z1,29) = 3 Z =) +O0p(n'?),
nv; =T 1-5rap(z1,22)

2
V) cnm}?(zl)mg(Zz)

where a,(21,22) = G T )

. By Lemma 5.3, the limit of a,(z1,2;) is a(zy,25) =
cA2m(zy)m(z,)

ESTTEETENIL and thus the in probability (i.p.) limit of ﬁyw(zl,@) is (S2.64).

Proof of (52.65): We have E %trIEijfl(zl)ll—,tr]E]-D]TI(zz) - mg(zl)mg(zz) =0(1). By Lemma 5.3, we

get lim, ., p(vi2— v%) = a,. This, together with (52.66), implies that

carm(zy)m(z;)
{1+ Am(z))H{1 + Am(zp)}

p
W13(21,22) —

Thus, the i.p. limit of =%~ az az Vi3(z1,27) is (52.65).
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$2.6.2 Limit of 0°Y,(z1,2,)/(dz102)
For any p x p matrix A, we have

lIA]|
Im(z)

|r{D~(2)- D} (2)}A| <

By Lemma S1.2 and (52.67), we have

K
ql

n4'2y

q
E’%trD_l (2) - %IEtrD_l(z)l <

which implies that

The above inequalities will be used in the following proof.

(S2.67)

(S2.68)

(52.69)

Denoting Y, j(z1,25) := ]E]-_l{ﬁj(zl)e]-(zl)}IE]-_l{Ej(ZQ)ej(zz)}. To prove the second part of the

lemma, it is enough to show that, foreach 1 <j <mn,
V2,i(21,22) = bp(21)bp (22 B 1 (20 By 1 8(22)} = op(n7),
and
by(21)by(22{Bj_1£j(z0)HE _1€j(22)} = 0p(n™").

Proof of (52.70): We write

LHS of (52.70) = E;_, [{Ej(zl)— bp(zl)}ej(zl)]naj_l{Bj(zz)gj(zz)}
+ 1 (B2 )e 21 By | (B (22) - Byl e 22)]
= AV (21, 2) + AVY (21, 22).
Note that, for any q1,¢, > 1 with 1/q; + 1/g; = 1, we have

qz)l/qz

0 )vm (mlmj_lﬁj(@)ej(zz)

E|AYL (z1,22)] < (E[Bj (5 (21) - byl e z1)

92 )l/qZ

< (BB~ bozles|") " (B[R 2 )

From Lemma 5.4 and (52.69), for any 1 < ¢; <2 and ¢, > 2, we have
B N = 2\q1/2 L, \EL
IE’{ﬁj(Zl) - bp(zn}s]-(zn' < (1E|/5]-(zl) —by(zy)| " ) (IE|gj(Zl)|q1 = )

_q 24 4g,-4
<Kn zn 2 §,"

_1 <494
:nlénql ,

and 121
- q z|1?2 1 2g,-4
1E|ﬁj(22)€]'(22)| : SKFTI 1611‘12 .
0
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Thus,
491-4 | 294

1E|Ayéy1j)(zl,22)| <Kn's," % =on).

Similarly, we can obtain IE|Ay§?j)(zl,z2)| = o(n~1). Thus, we complete the proof of (S2.70).
Proof of (52.71): By (52.43), we get

_ %) _
E;_1€j(z) =Ej_ {r;-D]- 1(:/:)r]- - 7trD]-1(z)}

_ %) _
= tr{E;_; D} (2)Ex;r}} - ~2j_trD; (z2)

__Pv 1 | V) 4
= n(p ~ 1)tr{IE]-_1D]- (Z)(Ip — l_jlplp)} — IIEj—ltrDj (Z)
_ V) -1 ’ -1

By Lemma 2.3 in Bai and Silverstein [2004] and our Lemma S1.5, we have

]l)trDjfl(z) 5 m(z), %1;D]T1(z)1p L —%.
By (52.68) and the identity mp(z) = —% Z?:l Bj(z), we have
by (2) + Em,, ()] < Kn~V2,
This, together with Lemma 5.4, yields that
|by(2) +2m(2)] < Kn™2, (S2.72)

Equation (52.71) follows from the above estimates.

$2.7 Proof of Lemma S2.1
By Lemma 51.2, the inequality |B;;(z)| < 2l and Lemma 5.4, we get

v_

E|(15){D7!(z1) - EDy ! (2015

n 2
~E|) (B~ B)(15){Di'(z) - Dy
=1
n
l 1 2
< KZIE’(IEj—lEj_l)ﬁlj(zl /Dy (1) Dy} r]’
_ 2
<KZIE|/31] 21Dy 115(15) Dy |
< Kn_l, (S2.73)

where 1;, is the p-dimensional vector with all components being 0 except for the i-th component
being 1. Hence, we have

nzzZIE][D (z1)-ED;! ()] IE;[ D} 22]‘

j=1i=1
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21)0 ZIE' (1,)'{D7" (z1) - ED} (21)}11‘<K” )

and thus
1 &
= Ej[D;!(z1) - ED}! (21)] E;[D; (,)].. = Op(n™"?).
j=11i=1
Similarly, we have
IERLRY
— ZIE] !(2)~ED;(2,)]. E[D}" (21)].. = Op(n™2).
n
j=1i=1

With the above two inequalities, it remains to find the limit of
1 &
-1 -1
5 ;E[D (1)) E[D; ! (z2)].. (S2.74)
1=

It is easy to see that the sum of expectations in (S2.74) is exactly the same for any j. Moreover, we
have

P
1 -1 -1 p
EZ{IE[D] (Zl)]”IE[D] (22)11'1' - m(zl)m(ZZ)-
1=
This completes the proof of Lemma S2.1.

S2.8 Proof of Lemma S2.2

Let

1 1
D.:(z) =D(z)-r;v,—r:t,, bi(z)= , (z)= —————,
ii(2) (2) i =, I 12 1 +n 1y, BtrD7)(2) Pijz) 1+rz’.Di—j1(z)ri

We have the equality

-1 - n-1
Vzbl(zl)lpzzfil‘f— ” v2b1(z1)1p.

i#]

n
D]'(Zl) +lep -

Multiplying by Q,(z;) := {z;1, - %vzbl (zl)lp}‘1 on the LHS and D;l (z1) on the RHS, and using
IQDJTI(Zl) = Bij(z1 )f,{ijl(Zl): we get
D (21) = ~Qy(21) + b1 (21)A(z1) + B(z1) + C(21), (82.75)

where

1) = iQp(zl)(rir; - %Ip )Di_jl(zl ),
i#]

n

B(z1)= ) {Bij(z1) = b1(z1)}Qp(z1)rix{D;} (1),

i#]
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n

Clz1) = ~2b1(21)Qp(z1) )_{Dj}'(z1)-Dj' (@)}

i#]
_ /b 1+p/
For any t € R, |1 - tb;(2)/z|' < Illf{z/lb(f()l)} < +IZO(WO)}. Thus,
1+ p/(nvg)
Q1) < ) =,

(52.76)

For any random matrix M, denote its nonrandom bound on the spectrum norm of M by ||[M]||. Since

the same argument in (52.68) holds for DI%, and from (52.76), Lemma 5.4, we get

|z11%{1 + p/(nvo)} 1/
5 nl/2,

0

E|trB(z,)M]| < K|[[M]]|

From (52.67), we have

|21 {1 + p/(nvo)}
vy '

|trC(zl)M| <liMml|

From (52.76) and Lemma 5.4, we get, for M nonrandom,

EltrA(z))M] < K||M||L£””°)n1/2.

Note that
tr[IEj{A(zl)}Djfl(zz)]
=tr ZQp(zl )(rir; —n Vol )]E]'{Dl-_]-1 (z1 )}Di_jl (22)
i<j

+tr ) Qpz1)(xix) = vl JE{ D! (21)}(D; ! (22) - Dy} (22)
i<j
+ tI'IE]'{ ZQP(ZI )(l'irl’- — n_lszP)Di—jl (z1 )}D]_l (22),
i>j

thus, by using a decomposition similar to (16), we can write

tf[lEj{A(ﬁ )}Dfl (Zz)] = A1(21,22) + Ax(21,22) + A3(21,22) + R(z1, 22),

where

A(zu22) == ) Bij(z D (21))D] (20)rir D (22)Qp (21 ),

i<j

As(z1,2) = —-2tr ) Qy(21)E;{D;} (z2)}{D;" (22) - D (z2),

i<j
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(S2.78)

(52.79)

(S2.80)

(S2.81)



Aslzz) =tr ) Qy(z)(rit) - 21, B, (D (21)|D (),

i<j

R(Zl,Zz) :trIEj{ZQp(zl)(rir:‘_f’l_IVZIp)D] (zl)}D]Tl(Zz), (8282)

i>]

and 1, is a p-dimensional vector with all elements being 1. It is easy to see that R(zy,25) = Op(1). We
get from (52.67) and (S2.76) that |A,(zy,2,)| < %. Similar to (S2.79), we have [E|A3(z1,2;)| <
0

%nl/z. It remains to derive the limit of A;(z;,2;). By using Lemma 5.4 and similar argument

0
in (52.114), we have, fori < j,

|22/ (D (2)JD7} (22t D (22)Qy (211
2
- 22 ()| By{D )}D;) (22)|5{D7 (22)Qp (21
< |y (z2)e/E;{D;} (2)}D7} (2211 D} (22)Qy (1),
2
- %ﬂﬁ(.@)tr[mj{v;;(zl>}D;}<zZ>]tr{D;;<zZ>Qp<zl>}i
2
+ | 22 {Bij(22) - by <z2>}tr[1Ej{sz< )}D;ﬁ<zZ>]tr{D;;<zZ>Qp<zl>}|
< EJfyjz2) /{7 (20))D5 (s - 20|y {D7 (207 (22) D7 (221 (210
+ 22,5z By (D )17} (22)] [ 11D )@y 21 ) - 2t{D; (2210, (21 |
2
+E| 3 {ij(z2) - by ) By (D )JD7 (22) (D7 (22)Qp 21|
<Kn™V2, (S2.83)
By (52.67), we have
Bl B (D7} (21)]D5 (22)[r{D7 (2210 21)
_tr[IEj{D] Yz)|D5 (2 )]tr{D H2)Q,(20)}| < Kn. (52.84)
It follows from (S52.83) and (S2.84) that
IE|A1(zl,zz) + j;—zlvg'bl(zz)tr[lEj{Dj1(21)}D] (z )]tr{D (zz)Qp(zl)}| < Kn'2, (52.85)
By using (52.75) - (52.80), we have
[, {D} (20D (22)] = o] By Qp<zl> {HAGE)ID] (22)| + Op(n'”)

{Qp(21)D7" (z2)} + by (21)trE {A(21)|D; (z2) + Op(n'/?)
{Qp }+b1( 1)A1(z1,25) + Op(n'/?).

= —tr

—tr
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This, together with (52.85), implies that

tr[IEj{D;l(zl)}D;l(zz)][1 " jn—zlvgbl(zl)bl(zz)tr{D;l(zz)Qp(zl)}]
= ~tr{Qp(21)D; ! (z2)} + Op(n'"?).
By using (52.75) — (52.79) and (52.67), we have
D7 D] 2] 1= L5 w21 (201 (22 )r{ @y (22)Qp )|
= tr{Q,(22)Qp(21)} + Op(n'"?). (52.86)
From (52.67), we have |by () — b,(2)| = O(n™"). This, together with (52.72) and (52.86), implies that

j-1 2.0

_ _ Ercyvim)(zy)m)(2;)
tr[IEj{Djl(Zl)}D]- 1(22)][1 - = . no £ ,:1 0 ]
{1+ 5 vamy (2 {1 + - vomp(20)}
_ e : L +Op(n'/?),

2122 {1+ 22 vom) (z)H{1 + 2 vam)(2,))
This completes the proof of Lemma 52.2.
$2.9 Proof of Lemma 5.8
Let (Sp(z) =1+ /\IEmp(z)Ip, then

nA P + pzEm,(2) = (B (2)Py (2)} + E{B1 (2)P(2)}, (52.87)

P T4 AEm, (2)
where

Py(z) = ;D7 (2)Q; (2)r, - Atr{Q,' (2)ED; (2)},

Py(z) = Atr{Q, ! (2)EDT (2)} - Atr{Q,! (2)ED ™ (2)}.
Since f1 = b, - bf,yl + /51171%)/12, where y1 = y1(z2) := riDIl(z)rl —n! vzlEtrDil(z), we have

E{B1(2)P; (2)} = b, (2)BPy (2) - by (2)E{y1 (2) Py (2)} + by (2)E{B1 (2) 77 (2) Py (2). (S2.88)

The estimates for EP;(z), E{y;(z)P;(2)}, lE{ﬁl(z)ylz(z)Pl(z)}, and [E{B(z)P,(z)} are provided in the
following lemma, and its proof is postponed to Section S2.10.

Lemma S2.3. Under Assumptions 2.1 and 2.2, we have

EP,(z) =

{IE)/I(Z)+ va—A EtrD;l(z)}, (S2.89)

n
1+ /UEmp(z) n

Efy1(2)P(2)}

_ nIE({riDIl(z)rl - %tﬂ);l(z)}[r;n;l (20, (2)r, - %tr{Dgl(z)a;,l (z)}])
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Etr{D;!(2)}Ey; (2) +o(1), (S2.90)

E{g1(2)y7(2)P1 (2)}
= E{nf1 (2772017 (20T, (2)r) | - E| g1 (27 22){AG; (2ID7 2|

+ Cov(ﬁl(z)yf(z), tr{/\agl(z)Dfl(z)})
- O(éi)l (52.91)

pvaAbs(2)
~ on(p-1)

E{B,(2)P5(2)}

Etr{Dgl(z)Glgl(z—)D;l(z)} oY), ($2.92)

From this lemma and (52.87), (52.88), we get

TIAP :]1+]2+]3+0(1), (8293)
where

_ nby(2) Vy—A i by (2)Atr{ED{ ! (2)}Ey; (2)

he=13 AEm, (2) {Eyl(z) t o EuD, (Z)} " 1+ AEm, ()
b2(z)v3 _ o =~
- nz(jp—_lz)lE[{trDll(z) - 1PD11(z)1p}tr{D11(z)Qp1(z)]],

I, = —nbg(z)m({rgngl(z)rl - %trngl(z)}[r;Dgl(z)agl (2)r, — %tr{Dgl(z)(S;l(z)]]),

B pby(2)Av,

3 Etr{D;!(2)Q," (2)D7" (2)}.

n(p-1)

The limits of J;, ], and J5 are provided in the following lemma, whose proof is postponed to Section
S2.11.

Lemma S2.4. Under Assumptions 2.1 and 2.2, as n — oo,

m(z){z(A + hy)m(z) + A}
1+ Am(z)
cz?m?(z){(ay + an)m?(z) + 2A%m’(2))
1+ Am(z) ’
cA?m?(2)
{1+ Am(2)}[{1 + Am(2)}? - cA2m?(2)]

Ji— -

Jo— -

Jz —

By this Lemma and (52.93), we get the limit of nA,.
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S2.10 Proof of Lemma S2.3

Proof of (52.89): this equation follows from the definition of y;(z).
Proof of (52.90): For E{y;(z)P;(z)}, we have

E{y1(2)Pi(2)}

= ”E({rinl(Z)rl - 24Dy (2)+ ~2trDy () - 2lEtrD;l(z)}
n n

x [riD;1<z>6,;l<z>r1 - 2u{D'(2)Q;' (2)f + %tr{Df(z)é,;l(z)}])
A
1+ )\IEmp(z)

= n]E({riDII(Z)l‘l - %terl(z)}[riDIl(2)6;1(2)r1 3 %tr{Dfl(z)Q’;l(z)}])
2
+ —n(pv—i 1)IE[{trDI1(Z) - I;Dfl(z)lp}tr{Dfl(z)Q?(z)}]
pv3
Talp-1)
v;
n(p-1)
A
" T N )

= nIE({riDIl(z)rl - %trDIl(z)}[riDIl(z)(j;l(z)rl - %tr{DIl(z)agl(z)}])

2
V3

+
n(p-1)
A
1+ AEm,(2)

Etr{D7" (2)}Ey;(2)

Cov(trDI1 (), tlf{Df1 (2)6;1 (Z)})

Cov(trD[1 (2), I;JDIl (2)6’;1 (z)lp)

Etr(D; (2)}Ey,(2)

IE[{trDI1 (2) - 1;,DI1 (z)lp}tr{DI1 (z)(S;,1 (z)}]
Etr{D7' (2)}Ey1(2) + O(n™"),

which is the second equation in Lemma S2.3. Below are some interpretations of the above equalities:

1. The second equality uses the following derivation: By (52.43), we get
nlE[{riDIl (z)r] — %trDI1 (z)} . %tr{DIl (z)é;l (z)}]
+ nIE[{%trDIl (2) - “2EuDy! (z)} 1D (2)Q;! (z)rl]
- t(IE( NE| D (2)te{D 7 (2)Q5 ) (2) % D1 (2)te{D ()0
= vate(E(r 1 E|DY (2)tr{D 7 (G, (2))| ) - 22| rD7 (21D (21, 2

+ vztr[lE{Dfl (2)6;1 (z)trD7! (z)}IE(rlri )] - vzlE{trDI1 (z)}tr[lE{DI1 (2)6;1 (z)}lE(rl I )]

2 —~
- n(;i 1)]E[{terl (2) - I;Dfl (Z)lp}tr{DI1 (Z)Q,_,1 (z)}]
2
* n(l;v_zl)cov(trDIl(Z),tr{DIl(z)agl(z)})
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2

R 1)Cov(trDII(z), I;Dfl(z)agl(z)lp).

2. The last equality is due to

%Cov(trDIl(z), tr{Dfl(z)(j;l(z)}) = 0™,

Tl(p ~ 1)COV(tI'D11 (z)’ ]_I’nyl (2)6;1 (Z)lp) — O(Tl_l).

The equation (52.94) follows from the inequality

E|trD}! (z)M - EtrD! ()M]” < KM,

(S2.96)

where M is any deterministic p x p matrix. The proof of (52.96) is similar to Equation (4.7) of
Bai and Silverstein [2004]. The equation (52.95) follows from (S2.96) and Lemma S1.5.

Proof of (52.91): For IE{ﬁl(z)ylz(z)Pl (z)}, we have

E{p1 ()] ()P <>]
= E{nf (2D (2, (@ | - B{y (2@ B[ A (@, (D7 2)]
= E{nf1 (272D (2T, (2)r: | - IE[ﬁl 2722 {10, (D7 (2))]
+Cov(B1(2)y1 (2), tr{AQp (2)D7(2)}).
From Lemma 5.4 and equation (S2.96), we have
B{nf1 (212 DT (I, (2 | - B[ (27220 (AT, (DT 2]

1/2

Sn{IEb/f(z)ﬁl( ) }1/2[1E' 1D1 )Qp (z )r1——tr{Qp (z )Dl | ]

Kn(n—léill)l/Z -1/2 _ — Ké%’

IA

and
Cov (ﬁl (2)7i(z), tr {/\6;1 (z)D7! (Z)})
<(Bip: 1Y) (2@ (Bl (10, a7 () - I‘Etr{)\ﬁpl(z)Dl1(z)}|2)l/2
< Kn_1/452.

These estimates yield the third equatlon in the lemma
Proof of (S2.92): From (52.43), DII( )-D71(z) = Bi(z z)D7 Lz z)rir; D7 (z2), B1(2) = by(2)-by(2)

and EB(z) = by(z) + o(n~12), we have

E{p1(2)P>(2)}
- AE(pi (2))| ;' (2)E(D7! () - D (2]
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= AE(B: (V| {8,(2) - by ()1 (271 ()} DT ()0 (2ID7 e |

= b, (2)E(p: (2)}| E{r] DT (2)Q, (2)D7 " (2)r1 } - E{B1 (2)7 (z)riD?<z>6;1<z>D;1<z>r1}]
= /\bg(z)IE{rinl (z)é;l(z)Dil(z)rl} +0(n~12)

_ /\b;(z)tr[IE{D[l(z)é;l(z)DIl(z)}IE(rlri)] Lo 12

AB(2)pvs
~ n(p-1)
_AB(p)
~ n(p-1)

tr[E{DIl(z)agl (z)DIl(z)}(Ip - Iljlpl;,)] +O0(n~12)
Etr{D;'(2)Q, (2)D7" (2)} + O(n™172),

which is the last equation. Below are some interpretations of the above equalities:

1. The fourth equality follows from

E{ﬁl(z)yl(z)rin(Z)agl(z)Djl(z)rl} — 0(n12),
which can proved by using Lemma 5.4.

2. The last equality follows from

Abj(2)v, = B , -
ﬁmtr{Dl1(Z)Qp1(Z)D11(Z)1p1p} =0(n™).

This can be proved by using Lemma 5.3 and Lemma S1.5.

$2.11 Proof of Lemma S2.4
Step 1: Consider J;. By Lemma 2.3 in Bai and Silverstein [2004], we have

1 _ P
}—)trDjl(z) = m(z).

By this estimate, Equation (52.43) and Lemma S1.5, we get
1
nEy(z) = ;—1/211Etr{(1p - I—)lpl;,)Dfl(z)} - VZIEterl(z)
VY ’ -1 V) -1
= _ﬁmtr{IPDl (z)lp} + ﬁIEtrDl (2)
— Mm(z)+1/z}.
By Lemma S1.5, we have

b2(z)v2 Q
- nf;(az_)vf)IE[{ter (2)-1,D7' (2)1,}tr{D}' (2)Q; (z)}]

(@) {mz(z) . M}

1+ Am(z) z
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By Lemma 5.3, Equation (52.66) and the above estimates, we have

zm(z)

A m(z){z(A + hy)m(z) + A}
1+ Am(z) '

{(A+ hym(z) + Z} R W P

h—--

Step 2: Consider J,. By Lemma 5.5, we have

Jo =Jo1+2]20 + 23 +0(1),

where
(v —3v12)b2(2)
=2 oo o7 035 ], )
Jo2 = —VU?(Z)IEU{DlZ(Z)épl(z)};

(vi2—v3)by(2)

]E[trDI1 (2) tr{DI1 (2)6;,1 (z)}].

Joz=-

since 1Y7_ E([D7!(2)]. [D71(2)Q; (2)],.) - Lk ), we have

—cay 2 m?(z)m’(2)

Jo1 — 1+ Am(z)
Note that Il—)]Eterz(z) — m’(z), thus we get
cA?z22m’(z)m?(z
e (2)m2(2)
1+ Am(z)
By Lemma 5.3, we get
cayz?m?(z)m*(z
P ETE)
1+ Am(z)

From these estimates, we have

cz2?m?(2){(ay + ay)m?(z) + 2A%m’(z))
1+ Am(z)

J»—-

Step 3: Consider /5. To calculate the limit of J3, we can expand DIl(z) like (S2.75) and find the
limit of /5 using the method similarly to Bai and Silverstein [2004]. The limit of J5 is

cA2m?(z)
{1+ Am(2)}[{1 + Am(2)}? - cA2m?(z)]

S2.12 Proof of Lemma S1.5
By Lemma 5.4, we obtain, for any 2 < g€ IN7,
IE|r;D]71(z)x x’DTl(z)rj|q

SKq(IE|r;D]f1 2)x,%,D; () - 2ur(D7 (2 px;,D;l(z)}r
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V2 -1 -1 |7
+|71Etr{Dj (z)xpxij (z)}' )

<Ky(n25, " +071) = O(n™?), (52.97)

where %tr{DTl(z)x X; DTl(z)} =1L1'D2(2)1

_ -1 .
] PP np P =0O(n™"). Write

p

x;,D_l(z)xp - xl’,IED_l(z)x

n

Zx;,[(nsj ~E; ){[D"(z)-D;" (z)}]xp

=1

= - Z(IE]- ~Ej1)Bj(2)r}D; (2)x,%, D (2)r;.
j=1

By Lemma 51.2, (52.97), and |B;(z)| < |z|/vo, we have
IE|x;7D_1(z)x |2

p —x;,lED_1 (2)x,

n
<K ZlEl(IEj ~E;j_1)Bj(2)r}D; (2)x,%, D (2)r;

j=1
n
<K Z‘IE|[3]~(z)r;D]71(z)xpx;D;l(z)r]'l2
=1
<Knl.

Thus, we have
IElxl',D_l(z)xp —x;]IED_l(z)xp|2 — 0. (S2.98)
Recalling that ap(z) =1+ )\IEmp(z)Ip. Using the identities mp(z) = —niz Z}Ll Bj(z) and r;.D‘1 (z) =
ﬁj(z)r;D]ﬂ(z), we obtain

Il
|

|
=)
—
—
N
~—
Rl
< |

—_
—
N
—
=1
.,

=
~L
=)
—

—
—
N
~
+

Taking expectation of the above identity yields that
~ -1
{-2Q,(2)} -ED(2)

== gm{ﬁl(z)agl(z)rlriDjfl(z)}+ —Am{il(z)}~1

Q,' (z2)ED'(2).
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Multiplying by —x,, on the left and x;, on the right, we have

1

’ -1
x,ED™ (2)x, + —z{l " /UEmp(z)}

= 01(2) + 02(2) + 03(2),
where
01(2) = ZE{Bi ()01 (2)),
o1(a) =%, 3, ()1 Di (2, - 2,0, (207 (2,
)= S| (2, (D7 (2)- D7 @)y |
3(2) = S| 1 (2@, (D (2) - ED () |
Recalling the notations defined above and the following equalities:

01(2) = ZE{, (2)o11(2)} - ZE{B1(2)B, (2)er (2)ona ()], (52.99)
Bi(2)=by(z)- %b,,@)ﬁl (2)tr{D!(2) - EDy ' (2). (S2.100)

From (52.99) — (52.100), Lemma 5.3 and Lemma 5.4, it is easy to see that

_ nEpyy(2) 1
01(z) = " 1+c/\m(z)+0(1) . (52.101)
From (52.43) and Lemma 5.3, we have
Epy4(z) = -;3{{ ED; (2)x, + o(1)} (52.102)
1 Am(z)+1n P71 P ' '

Therefore, by (52.101) — (52.102), and Lemma 5.3 we have

01(2) = %X;EDII(Z)XP +o(1).

Similarly to Bai et al. [2007], one may have p,(z) = 0(1) and p3(z) = o(1). Hence, we obtain

xl’leD_l(z)xp 1 ~
1+ Am(z) i z{1 +EAm(z)} o(1),

which implies that

_ 1
x,ED 1(Z)xp -

This, together with (52.98), completes the proof of Lemma S1.5.

$2.13 Proof of Corollary 2.6

First, we provide some expressions as follows. The proof of these equations are routine and thus
omitted.

(52.103)



dz =

m =

dm _
dz

(1+ Am)? —cA?m?

dm, $2.104
(L4 Am? ( )
—m
_ 2.1
-1-Am+cAm (52.105)
21 2
m (1 +Am) (52.106)

{(1+Am)? = cA2m?) (=1 = Am + cAm)?’

These formula will be used in the following calculations.

S§2.13.1 Calculation of expectation

The contours C is closed and taken in the positive direction in the complex plane, enclosing the

support of F&H. Let C be m(C).

For f; =x,

EX, =

2’ (2){1 + Am(z))

cA?
2mi 9% [{1+ /\m(z)}2 —cA2m?(z)]?

1 (z) {hym(z) + Am(z) + A/z}H{1 + Am(z2)} J
" omi (1+ Am(2)) - cA2m2(z) ‘
¢ £ 2@+ ax)n?(@) + 222 @)1+ Am(z)]
" omi {1+ Am(z))2 — c\2m2(2) “
=:11(f1)+1(f1) + Is(fr).

For I;(f1), by using (52.103) and (52.104), we get

cA? zm?(z){1 + Am(z)}
hi=54 98 [T+ Am(z)2 = c2n2 (D

B cA?

m3(1+ Am)

1 2 42,2
(-1 =Am+cAm){(1 + Am) c/\m}dm

T 2mi
1

¢ {1+ Am)
cA?(1+ Am—cAm)

2_6/\2m2}2 ﬂ3(1 +/\ﬂ)3 —

2n1

The poles of I;(f;) are —A~1, —

L(f)=

, by using (52.103) —

For the second integral I,(f;)

1 22m?(2){1 + Am(z)}{hym(z) + Am(z) + A/z)

¢ (1+Am)?{cA2m? —

1+(

(1+Am)2} =

7, we have by the residue theorem

A A
A1 +¢) —51+\/' -Z(1-+eo)*=0.

2
(52.105), we have,

dz

L(fi) =

2mi C
1

}
m*(1+Am) 1

{1+ Am(2)})? - cA?m?(2)

2mi

1L (A2m—hy)(=1-Am+cAm)

¢ (1+Am)2—cA?m? c
(L= Am et cAm)? (1 + Am)? — cA2m?)

m(1+ Am)
‘{<h1+A>m+<h1+A—hlc>m}

dm

m*(1+ Am)* -

dm.

271

m(1+Am)3
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The pole of I,(f;) is —A~!, we have by the residue theorem
L(fi)=Mm
For I3(f1), by using (52.103) — (52.106), we get

¢ [ 2md(2){(a; +ar)m*(z) + 2A7m’(2)}{1 + Am(2))

d
()= 2mi Jp {1+ Am(z2)}? —cA2m?(z) z
1 -m 2 2A2m%(1 + Am)?
= - ((Xl + 0(2) +
27 Jo -1-Am+cAm {(1+Am)? —cA2m?}(=1 —= Am + cAm)?
em’(L+Am) (=1 =Am+eAm){(1+Am)> —el®m?)
(1+Am)? —cA?m? m3(1+ Am)> .
-1- 20(—1 -
_ _ng clag +az)(-1—Am+cAm) dm+ 2A0%c(-1 = Am+cAm) dm
27 Jo (1+Am)4 = (1+Am)2{(1 + Am)? —cA?m?}
The poles of I5(f;) are —%, —ﬁ, we have by the residue theorem

I3(fi) = —2M1+c)+ A(1 + V)2 + A(1 = +c)? = 0.
Thus, we get
IEXx = hl'

For f, = x?, we have

cA? 22’ (2){1 + Am(2))
B = 2 ) T A e T
1 2w (z) (hym(z) + Am(z) + Az} {1 + Am(2)) ds
271 Jo {1+ Am(2)}? - cA?m?(z)
o L2t (@) (g + ag)mP(z) + 202m (2)}{1 + Am(2)) 4z
27 Jp {1+ Am(z2)}? - cA2m?(z)
1 cA?(—cAm+ Am +1)?

Y m(1+Am)3{(1+ Am)2 —cA?m?} —

1 (A2m—=hy)(=1-Am+cAm)?
_%960 m2(1+ Am)* dm
1 clay + az)(=1 = Am+cAm)? 20%¢(-1 = Am+cAm)?
_%960{ mTAms O e m(( +Am)2—6/\2m2}}dm
=:11(f2) + Ir(f2) + I3(f2).

For the first integral I;(f,), the poles of are —A~!, — we have by the residue theorem,

1
(1£ve)A’
Li(f2) = —cA%.
For the second integral I,(f,), the poles is —A~!, we have by the residue theorem,

Iz(fz) = /\(/\ + 2Ch1 + 2h1 )
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For the third integral I3(f,), the poles are —A~!, — we have by the residue theorem,

I;(f,) = clag + ay) + 2 %c.
Thus,
EX,2 = (c+1)A% +2(c+ 1) Ay + c(aq + ay).
For f3 = x3, we have

cA? 22m’ (2){1 + Am(z))
2mi 950 [{1+ Am(2)} - cA2m2(2)]?
1 24m?(2) {hym(z) + Am(z) + Mz} {1 + Am(z))
27t Jo {1+ Am(2)}? —cA2m?(z)
c [ 2m(@){(a + ax)m?(2) + 2A2m’ (2)}{1 + Am(z)}
B 5986 {1+ Am(z)}> - cA2m?(2)
1 cA?(-1-Am+cAm)3
" 27 o (14 Am) (L + Am)? - e}
ng (A2m—hy)(=1 = Am+cAm)®

EX,s =

dz

dz

T 2mi 3 (1 + Am)> o
1 c(ay +ay)(=1 = Am+cAm)3 20%¢(-1 - Am+cAm)3 A
2mi m2(1+ Am)S TR A (1 + Am)? — 22} [
=:1I1(f3) + La(f3) + I3(f3)-

For the first integral I;(f3), the poles are —A~1, — 7, we have by the residue theorem

1+\f
Ii(f3) = =3c(1+c)A>.
For the second integral I,(f3), the poles is —1~!, we have by the residue theorem

L(f3) = A2{(2+ 3¢)A + 3(1 + 3¢ + c)hy ).

For the third integral I3(f3), the poles are —A~1, — 1+\f o we have by the residue theorem

I3(f3) = 3c(1 + c)May + ay) + 6¢(1 +c)A°.
Thus,
EXs = (3c?+6c+2)A3 +3(c? +3c+1)A%hy + 3c(c+ DA aq + ay).
S$2.13.2 Calculation of variance
We claim that

COV(er1 , XxVZ )

- 1 153 k+k
1—c\ath 2ri—1—k; —€\(2ry =1 -k, + €
ri+r; E § § 1 1 2 2
29 ( )( )( ) €( rn-1 )( -1 ) (52:107)

ky=0k,=0 (=1
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/\ (a1+a2 )(Ac) r1+rZZZ( )( )( _C)k1+k2(2;’11_fl)(z:zz:fz)’ (52.108)

=0k,=0

where r;,r, € IN*. By using this result, we obtain the variances in Corollary 2.6. It suffices to
prove the above equation. The contours Cy,C; are closed and taken in the positive direction in the
complex plane, each enclosing the support of F&. Let C; be m(C;) for i = 1,2. From Theorem 2.5,
we have

Z Z
Cov(Xyn, Xym) _anm >dm, dm
OV( 1 2 27_(2 é}l é}z _ m, ntydnts

CY1+0(2 2122
dm,dm,,
42 96 9662 (14 Am)2(1+Amy)2 2

=:Covy, 1,1+ Covy, o

The proof of “Cov,, , 1 =(52.107)” is exactly analogous with Bai and Silverstein [2004], it is then
omitted. Now, we prove that “Cov, , > =(52.108)". Note that

4

Z 7" z 2z
1 2 1 2
dm,dm, = —— —dm —< _dm,.
9561 9652 1+ Amy)2(1+ Am,)2 1 2 9651 (14 Am,)? —1X9€c~2 (1+Am,)?2 2

By (52.103), we have

r
56 Z—ldm
e, (1+Amy)2 !

1 _cA N
(_m_ + T+Am, )
= dml
e, (1

+/\m1)

1 1—c\"t
— 8] -t _ (1 -2
(Ac) 9651(1+Am1+ . ) {1—=(1+Am)} (1 + Amy)~“dm,

r _ k o0 _1 )
=(Ac)“9€(f Z(;ﬁ)(%)l 1+ Am,) IZ(”” )1+/\m1)](1+/\m1)_2dm1
1y =0 j=0

r k o)
_ r 8 —C\! 1+] ky—ri+j-2
=(Ac) kg O(kl)( . ) 96 ( ) 1+ Am,) dm,,
1:

by substitution m;, = Am,, we get

é Z;l dml (/\C)rl ( ) 1- C Ky (1’1 +] - 1) ﬁl )kl_r1+]'_2 dﬁll
51(1+/\m1) A (31] o

where C; is the 7, contour. For this integral, the pole is —1, we have by residual theorem

51 . r k
Z, 27ti ] (1—6)1 2r1 -k
———dm, = —(Ac)" E :
9851 (1+ Amy)? =" (Ac) k—O(kl) c -1
1=

Similarly, we get

1 . 1 k
Zy 27t r\(1—c\2(2r,—k;
2 dm, = a0y (=) .
9852(1+Am2)2 = =5 (A0) ;(kz) c ( r—1
Using the two equations above, we derive (52.108).
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§$2.14 Tightness of Ml(jl)(z)

The tightness of Ml(jl)(z) is similar to that provided in Bai and Silverstein [2004]. It is sufficient to
prove the moment condition (12.51) of Billingsley [1968], i.e.

1 1
EIM (z) - MY (25)2

1;21,2,€C,, |21 — 2|2

(S2.109)

is finite.

Before proceeding, we provide some results needed in the proof later. First, moments of
ID~1(2)||, ||D]71(z)|| and ||Di_].1(z)|| are bounded in p and z € C,,. It is easy to see that it is true for z € C,,
and for z € Cp if x, < 0. For z € C, or, if x, > 0, z € C;, we have from Proposition 2.4 that

E|ID} " (2)II"

A

Ky + v_mP(HB(j)“ 2 1]y O /\min(B(j)) < 17€)

K +Kn"e "t <K

IA

’
i
is any number between x, and A(1 — +/c)? and if x; < 0, 17, can be any negative number. So for any

positive integer m,

for large ¢, where B(j) = B, —r;r}. Here 7, is any number between A(1 + Ve)? and x,; if x, > 0, 17,

max (1|3||D—l (z)||m,11~:||1)]f1 (.z)||m,11~:||1);j1 (z)||m) <K. (52.110)
By the argument above, we can extend Lemma 5.4 and get
9
|IE(a(v) [T(xiBiowr: - n_ltrB(g)(v)))| <Knls¥ (52.111)

(=1
where B/(v) is independent of r; and

max(|a(v)LI1B (v)]l) < K(l 1L sy, or Amin@)sw})'

with B being B(jy or B,. By (52.111), we have
Ele;(z)|" < K834, (S2.112)

Let y;(z) = r}DJTl(z)rj - n‘lvzlEtrDjfl(z). By Lemma S1.2, (52.111) and Holder’s inequality, with
similar derivation on page 580 of Bai and Silverstein [2004], we have

Ely;(z) - ¢j(2)" < nﬁ’ﬁz. (S2.113)
It follows from (S2.112) and (52.113) that
Ely;(2)" < Kpyn 187", m> 2. (S2.114)
Next, we prove that b,(z) is bounded. With (52.111), we have for any m > 1,
E|1 (2)" < K,y (S2.115)

Since by(z) = B1(z) + B1(2)by(2)y1(2), it is derived from (52.114) and (52.115) that |b,(z)] < K; +
K2|bp(z)|n‘1/2. Hence, we have
Ky

With (S2.111) - (52.116) and the same approach on Page 581 — 583 of Bai and Silverstein [2004],
we can obtain that (52.109) is finite.
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S2.15 Proof of Theorem 3.1

Proof. By direction calculations, we have

_ 1 n 2vy pv3
T = Etr(Bp’N) - pTltr(Bp’N) + pTl

Taking r; =1 and r, =2in (52.107) — (52.108), we obtain that
Viz = Cov(tr(B,n), tr(B) \)) = 2Ac(1+¢)(2A% + a1 + ).

From Theorem 2.5 and Corollary 2.6, we have the following joint CLT:

p[%tr(Bz e ,\2(1+cN) };Q]BN((O),(VZ Vlz))'

Ltr(B,n)— A - 0)"\Vi. »
Defining a function f(x,y) = x - vafy + Z 21, then we have

1 1
T = f(Etr(Bg,N),Etr(Bp,N)),
2p1/2 '
VA2 )+ B2 A+”2) (1,— )
f( p p p-1
Ha 2+ A7
p p-1

f(12(1+c) l;z A+’;1) Aoy + = pir.

By the Delta method, we obtain that p(T — pr) is asymptotically Gaussian with mean zero and
variance

20vo\(V, V, 1

o2 pv2 2 12 2

=lim«4|1, - 2 A1V, —4A Vi + V).
or P—“"’{( P—l)(Vlz Vl)( pl)} S

This completes the proof of the theorem. O

S2.16 Proof of Theorem 3.2
Proof. Defining

then we can write

p(T - pir) = p(T - fir) + —£— (A2 = 12). (S2.117)

Denoting w;; := w;j/p and wgk) = wgk’p) = %Z?:l Lij for k = 1,2. By the Lindeberg-Feller CLT, we

have )
w -A-1|D 0\ (Ewj, —(A+1)2 BEws, -A-1
ol AR )
1
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By Taylor’s theorem, we have the following approximation:

1 1
A= n_z ;/\l + Op(m),
where 5
A; = w§2) - 2wf-1) +1- 2(w§2) —wﬁl))(wgl) - 1)+ (3w§2) - ngl))(wf-l) - 1) .
Now, we derive the asymptotic distribution of i;. Defining a function f(x,p)=x -2y +1—-2(x—
Y)(y — 1)+ (3x - 2y)(y — 1), then we have
L= f(wwl), FA+LD) =2 VFA+1,1)=(1,-24-2).
Note that
(VF(L+1,1)) Ew}, —(1+1)? Ew},
' Ew;, —A-1
= Ew}, —4(A+ 1)Ew}, + (1 +1)%(41 +3)
=E(y —1)* =A%+ hy—2Ah;.

-1
1 )Vf(AJrl,l)

By the Delta method, we have

VB(Ai = A) 2 N (0, B(y; — 1) =A%+ 1, — 24, ) (52.118)
Since
e [N o
p(A=2)= ”2\/”_2;'\/1_)(/\1 A)+op(1), (S2.119)

it is necessary to expand the expectation of A; up to the order O(p~'). From direct calculations, we
obtain that

1
A Ew?, —A-1
Ewil)(wil)_l): A IEu?;z)(IDEI)—l): Wiy ,
p p
~(1){ ~(1 2 A _ _(2)/ ~(1) 2 AMA+1) _
Iwa (wf)—l) :;+O(p %), Ew )( f —1) :TJrO(P %),
and thus,
A —2Ew?, +3A2+ 51 +2 O hy 1
EA =+ ’ +op(p ):/\+?+op(p ). (52.120)

From (S2.118), (52.119), (S2.120) and the fact that {ii}?zzl are independent, we have

P(A=2) 2 N (b, (B~ 1)* = A% + by = 2A1y)).

Using the Delta method again, we have

2

np -(42-22) 2 N (261 Ay, 402G o By, — 1)* = A2 4+ by = 201y)).
-

This, together with (52.117), Theorem 3.1, and the fact that T and A are independent, completes
the proof of the theorem. O
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§3 Simulation of CLT for M,(z)

In this section, we compare the empirical mean and covariance of M(z) = tr(Bg - :zIp)‘1 — ptipe, (2)
with their theoretical limits as stated in Proposition 5.1. This proposition is a key step for the proof
of our main result, Theorem 2.5. Readers are referred to Section 5 for more details of M,(z). We
consider two types of data distribution of w;; as follows:

1. wj; follows the exponential distribution with rate parameter 5;
2. w;jj follows the Chi-square distribution with degree of freedom 1.

Empirical values of EM,(z) and Cov(M,(z;), M,(z;)) are calculated for various combinations of
(p,n) with p/n = 3/4 or p/n = 1. For each pair of (p,n), 2000 independent replications are used to
obtain the empirical values. Table S.5 reports the empirical mean of M, (z) with z = +3 + 2i for both
Exp(5) population and x?(1) population. The empirical results of Cov(M,(z1), Mp(22)) are reported
in Tanle S.6. As shown in Tables 5.5 - 5.6, the empirical values of EM,,(z) and Cov(M,(z), M,(z3))

closely match their respective theoretical limits under all scenarios.

Table S.5: Empirical mean of M, (z) with z = +3 + 2i.

Exp(5) x*(1)
p/n  n -3+2i 3+2i -3+2i 3+2i
100 0.0586+0.0857: -0.0373-0.249i 0.1405+0.1628i  -0.55-0.2732i
200 0.0582+0.0858i -0.0311-0.2526i 0.1459+0.1697i -0.5761-0.3089i
Emp  3/4 300 0.0567+0.0844i -0.0336-0.2566i 0.1465+0.1712i -0.5705-0.3212i
400 0.0596+0.0878i -0.0352-0.2528i 0.1463+0.172i -0.5631-0.3465i
Theo 0.0587+0.0872i  -0.029-0.2529i 0.15+0.1768i -0.5792-0.3764i
100 0.0547+0.0766:i -0.1069-0.26711 0.1366+0.1473i -0.5458-0.1545i
200 0.0572+40.0793i -0.1109-0.2757i 0.1395+0.1518i -0.5847-0.1787i
Emp 5/4 300 0.0587+0.0808i -0.1074-0.2752i 0.1382+0.1511i -0.5747-0.1934i
400 0.0559+0.0778i -0.0949-0.2733i 0.1434+0.1553; -0.5751-0.1933i
Theo 0.0578+0.0804: -0.0919-0.2764i 0.1432+0.1569: -0.6025-0.2149:
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Table S.6: Empirical covariance between M, (z) and M,(z5).

Exp(5)

x2(1)

p/n n (-3+2i,-1+1i)F (3+2i,5+11)

(-3+2i,-1+1i)

(3+2i,5+11i)

100 -0.0038+0.0147i
200 -0.0041+0.0163i
Emp 3/4 300 -0.0043+0.0171i
400  -0.0043+0.0168i

-0.04+0.00351
-0.0418+0.00221
-0.0446+0.0011:
-0.0465-0.0003:

0+0.0304:
0.0004+0.03261

0+0.03351
0.0002+0.03561

0.089+0.014i
0.117+0.0284i
0.1372+0.0294:
0.1273+40.0361

Theo -0.0044+0.0172i -0.0448-0.0002;

0.0006+0.0363:

0.1491+0.0524:

100 -0.0032+0.0197i
200 -0.0032+0.0196i
Emp 5/4 300 -0.0036+0.0212i
400 -0.0032+0.02i  -0.0594+0.0742i

-0.0483+0.0765i
-0.0545+0.07631
-0.0566+0.0708:

0.0025+0.0349i
0.0032+0.035:

0.0026+0.0336i

0.0038+0.03741

0.0931-0.0373i
0.0991-0.0406i
0.0955-0.02091:
0.1138-0.0297i

Theo -0.0034+0.0206: -0.0624+0.0743i

0.0035+0.0388i

0.1099-0.0323i

tThis row denotes different combinations of (zy, z,).
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