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Abstract

Determining the number of factors in high-dimensional factor modeling is essential but
challenging, especially when the data are heavy-tailed. In this paper, we introduce a new
estimator based on the spectral properties of Spearman sample correlation matrix under the
high-dimensional setting, where both dimension and sample size tend to infinity proportionally.
Our estimator is robust against heavy tails in either the common factors or idiosyncratic errors.
The consistency of our estimator is established under mild conditions. Numerical experiments
demonstrate the superiority of our estimator compared to existing methods.

Contents

1 Introduction 2

2 Main results 6
2.1 Spearman correlation matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Phase transition theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Estimation of the number of factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Simulation studies 12

4 Real data analysis 14

5 Discussions 17

A Auxiliary lemmas 18

∗Department of Statistics and Actuarial Science, The University of Hong Kong, qiujx@connect.hku.hk
†Department of Statistics and Data Science, Southern University of Science and Technology, liz9@sustech.edu.cn
‡School of Data Science, The Chinese University of Hong Kong (Shenzhen), jeffyao@cuhk.edu.cn

1



B Proofs of lemmas 21
B.1 Proof of Lemma 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

B.2 Proof of Lemma 2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

B.3 Proof of Lemma A.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

B.4 Proof of Lemma A.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

B.5 Proof of Lemma A.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

B.5.1 Proofs of (41) and (42) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

B.6 Proof of Lemma A.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

C Proofs of Theorems 2.5 and 2.8 33
C.1 Proof of Theorem 2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

C.2 Proof of Theorem 2.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1 Introduction

Factor models are helpful tools for understanding the common dependence among high-dimensional

outputs. They are widely used in data analysis in various areas like finance, genomics, and eco-

nomics. Estimating the total number of factors is one of the most fundamental challenges when

applying factor models in practice. This paper focuses on the following factor model:

yi = Bfi +Ψ ei , i ∈ [n] := {1,2, . . . ,n}, (1)

where {yi}ni=1 are the p-dimensional observation vectors, {fi}ni=1 the K-dimensional latent common

factor vectors, {ei}ni=1 the p-dimensional idiosyncratic error vectors, B the p × K factor loading

matrix, and Ψ a p × p diagonal matrix. The objective of this paper is to estimate the number of

common factors when the observed data are heavy-tailed.

There is a large literature on this estimation problem which can generally be categorized into

two types of approaches. The first type is based on information criteria. The seminal work Bai and

Ng (2002) proposed several information criteria, which were formulated in many different forms,

through modifications of the Akaike information criterion (AIC) and the Bayesian information

criterion (BIC). Hallin and Liška (2007) proposed an information criterion that utilized spectral

density matrix estimation. Alessi et al. (2010) modified Bai and Ng (2002)’s criteria by tuning the

penalty function to enhance their performance. Kong (2017) employed similar ideas and put forth

a local principal component analysis (PCA) approach to study a continuous-time factor model

with time-varying factor loadings using high-frequency data. Li et al. (2017a) used information

criteria akin to those proposed by Bai and Ng (2002) to factor models when the number of

factors increases with the cross-section size and time period. The first type of approach usually

requires strong signals. The second type of approach is based on eigenvalue behavior of various

types of covariance/correlation matrices. As for sample covariance matrices, Nadakuditi and

Edelman (2008) proposed an estimator by exploiting the distribution properties of the moments of
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eigenvalues. Ahn and Horenstein (2013) proposed two estimators by utilizing the ratios of adjacent

eigenvalues, namely the eigenvalue ratio (ER) estimator and the growth ratio (GR) estimator.

Onatski (2010, 2012) proposed an alternative edge distribution (ED) estimator based on the

maximum differences between consecutive eigenvalues instead of their ratios. Owen and Wang

(2016) introduced an estimator that utilizes the bi-cross-validation (BCV) technique from Owen

and Perry (2009). This estimator is based on the theoretical results concerning the spiked sample

covariance matrix .For lagged sample autocovariance matrices, Lam and Yao (2012) developed a

ratio-based estimator for factor modeling of multivariate time series. This estimator was further

extended by Li et al. (2017b) to accommodate weak factors. As for correlation matrices, Fan et al.

(2020) proposed a tuning-free and scale-invariant adjusted correlation thresholding method. This

approach has been further extended to time series tensor factor model in Lam (2021) and Chen

and Lam (2024).

The aforementioned methods have been proved to be inadequate when dealing with heavy-

tailed data, and mostly would result in biased or inconsistent estimators. Heavy-tailed data are

common in various real-world applications. For instance, prices of stock returns often exhibit

heavy tails due to the occurrence of extreme events in the market. However, little literature has

focused on estimating number of factors in the context of heavy-tailed data. Assuming a jointly

elliptical distribution for both common factors and idiosyncratic errors (as discussed in Fan et al.

(2018)), Yu et al. (2019) proposed two estimators utilizing the sample multivariate Kendall’s tau

matrix. He et al. (2022b) further extended it to the matrix factor model. He et al. (2022a) recovered

factor loadings and scores by performing PCA to the multivariate Kendall’s tau matrix. It is worth

mentioning that Yu et al. (2019)’s method requires that ∥B⊺B/p −ΣB∥2→ 0, where ΣB is a K ×K
positive definite matrix with bounded and distinct eigenvalues (see their Assumptions 2.3). The

factor model is considered to have a strong factor structure (Bai and Ng, 2002) when both B⊺B/p
and

∑n
i=1 fif

⊺
i /n converge to positive definite matrices. In this paper, we consider the weak loading

scenario by assuming B⊺B = IK , which is a commonly used identifiability condition in the literature

on factor models (see, for example, Bai and Li (2012)). Moreover, we address a more challenging

scenario where both the factors and idiosyncratic errors may be heavy-tailed, potentially leading to

the non-existence of the limit of
∑n
i=1 fif

⊺
i /n. We propose an estimator based on Spearman correlation

matrix (Spearman, 1961) which shows significant improvements over existing methods. Here,

we use a toy example to demonstrate the robustness of Spearman correlation matrix. Data are

generated following factor model (1) with K = 3. The factors and idiosyncratic errors follow either

standard normal distribution or standard Cauchy distribution. As shown in Figure 1, when the

common factors and the idiosyncratic noise are light-tailed, all four sample covariance/correlation

matrices have three spiked eigenvalues, and all factors can be detected. When the data distribution

is heavy-tailed, only our method can clearly identify all three factors.

Spearman correlation matrix is defined as the Pearson correlation matrix of the ranks of the

data. It is a valuable tool when dealing with heavy-tailed data. However, the nonlinear structure

of rank-based correlation brings significant difficulties when analyzing its eigenvalue behavior.

We need to resort to tools in random matrix theory (RMT). Unfortunately, most existing work in
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(a) Sample covariance matrix (b) Sample covariance matrix

(c) Pearson correlation matrix (d) Pearson correlation matrix

(e) Multivariate Kendall’s tau matrix (f) Multivariate Kendall’s tau matrix

(g) Spearman correlation matrix (h) Spearman correlation matrix

Figure 1: Scatter plots of the first 30 eigenvalues of the sample covariance matrix (SCM), Pearson correlation matrix,
Spearman correlation matrix, and multivariate Kendall’s tau matrix. Data are generated following the factor model
(1) with K = 3. The factors and idiosyncratic errors are drawn independently from standard Normal distribution (Left
panel: Figures (a), (c), (e), (g)) or standard Cauchy distribution (Right panel: Figures (b), (d), (f), (h)). The symbol “♦”
represents the spiked eigenvalues. Further details regarding the matrices B and Ψ can be found in the case (C1) in
Section 3.
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RMT focuses on very restrictive settings when data has independent components. Bai and Zhou

(2008) showed that its limiting spectral distribution (LSD) is the well-known Marčenko-Pastur

law. Bao et al. (2015) established the central limiting theorem (CLT) for its linear spectral statistics

(LSS). Bao (2019) showed that the Tracy-Widom law holds for its largest eigenvalues. To the

best of our knowledge, the first investigation of Spearman sample correlation matrix for general

dependent data was conducted very recently by Wu and Wang (2022), which derived its LSD under

the non-paranormal distribution proposed by Liu et al. (2009). Many other spectral properties,

including the extreme eigenvalues, CLT for LSS, and spiked eigenvalues for dependent data, still

remain open. Our work is the first to investigate the eigenvalue behavior of Spearman sample

correlation matrix under spike models, and successfully applies the theories to identify the number

of factors in high-dimensional factor modeling for heavy-tailed data.

To summarize, the main contributions of this paper are two-fold. First, we propose a new

estimator based on Spearman sample correlation matrix for the number of common factors in the

high-dimensional factor model (1). This estimator is distribution-free and capable of estimating the

number of factors even when the data are heavy-tailed. Second, we provide a theoretical explanation

of phase-transition phenomenon for the top eigenvalues of Spearman sample correlation matrix

under spike model. From a technical point of view, we investigate this phase-transition theory

by establishing the universality of the asymptotic law of a low-dimensional random matrix (see

Lemma A.10 and Remark 2.6 for more details), and our method does not require the commonly

used independent component structure.

Before moving forward, let us introduce some notations that will be used throughout this

paper. We use [n] to denote the set {1,2, . . . ,n}. We adopt the convention of using regular letters

for scalars, and bold-face letters for vectors or matrices. For any matrix A, we denote its (i, j)-th

entry by Aij , its transpose by A⊺, its trace by tr(A), its j-th largest eigenvalue by λj(A) (when the

eigenvalues of A are real), its spectral norm by ∥A∥2 =
√
λ1(AA⊺), and its element-wise maximum

norm by ∥A∥max = max
i,j
|Aij |. We use diag(A) to denote the diagonal matrix of A (replacing all off-

diagonal entries with zero). For a sequence of random variables {Xn}∞n=1 and a corresponding set of

nonnegative real numbers {an}∞n=1, we write Xn =OP (an) if Xn/an =OP (1) (bounded in probability),

and we write Xn = oP (an) if Xn/an → 0 in probability. For any univariate function f , we denote

f (A) = [f (Aij)] as a matrix with f applied on each entry of A. Throughout this paper, C stands

for some positive constant whose value is not important and may change from line to line. The

notation “i1 , i2 , · · · , im” indicates that the m indices {iℓ}mℓ=1 are pairwise different. All limits are

for n→∞, unless explicitly stated otherwise.

The rest of this article is organized as follows. Section 2 proposes a new estimator of the number

of common factors in the factor model (1). The consistency of our estimator is proven based

on spectral properties of Spearman sample correlation matrix. Section 3 offers comprehensive

simulation experiments, comparing our estimator with others. In Section 4, we evaluate the

performance of the proposed estimator on a real dataset. A brief discussion is given in Section 5.

Auxiliary lemmas and technical proofs are relegated to the appendix.
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2 Main results

2.1 Spearman correlation matrix

For p-dimensional i.i.d. data sample {yi}ni=1, we denote the ranks of the data as follows:

Yn =


y⊺

1
...

y⊺
n

 =


y11 · · · y1p
...

. . .
...

yn1 · · · ynp

︸             ︷︷             ︸
raw data matrix

=⇒


r11 · · · r1p
...

. . .
...

rn1 · · · rnp

︸            ︷︷            ︸
ranks matrix

,

where rij =
∑n
ℓ=11{yℓj ⩽ yij} is the rank of yij among {yℓj}nℓ=1, and 1{·} denotes the indicator function.

Spearman correlation matrix of the raw data matrix Yn is the Pearson correlation matrix of the

ranks matrix. Define the normalized ranks matrix

R =

√
12

n2 − 1

(
rij −

n+ 1
2

)
n×p

, (2)

and let R⊺
i be the i-th row of the matrix R. The Spearman sample correlation matrix of Yn is

ρn =
1
n

R⊺R =
1
n

n∑
i=1

RiR
⊺
i . (3)

The empirical spectral distribution (ESD) of ρn is referred to as a random measure Fρn = p−1 ∑p
j=1 δλj (ρn),

where δλj (ρn) is the Dirac mass at the point λj(ρn). The limit of Fρn is called limiting spectral dis-

tribution (LSD). Under the assumption that the components of yi are i.i.d., Bai and Zhou (2008)

proved that the LSD of ρn is the well-known Marčenko-Pastur distribution. Recently, Wu and

Wang (2022) extended this result to the non-paranormal distribution. In this study, we further

extend their findings to encompass the scale mixture of normal distributions (see Definition 2.1),

as stated in Lemma A.9.

Throughout this paper, we assume that both common factors and idiosyncratic errors follow

continuous distributions. Therefore, with probability one, there are no ties among {yij , i ∈ [n]} for

each j. For any j ∈ [p] and i, ℓ ∈ [n] with i , ℓ, we have 1{yℓj ⩽ yij} = 1
2 + 1

2sign(yij − yℓj), where

sign(·) denotes the sign function. Hence, we have

rij −
n+ 1

2
= 1 +

1
2

∑
i,ℓ

{
1 + sign(yij − yℓj )

}
− n+ 1

2
=

1
2

∑
i,ℓ

sign(yij − yℓj ). (4)

For two sample vectors yi and yℓ, we define the sign vector

Aiℓ = sign(yi − yℓ) =
(
sign(yi1 − yℓ1), . . . ,sign(yip − yℓp)

)⊺
.
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Then, from (2) and (4), we can rewrite the Spearman sample correlation matrix (3) as

ρn =
3

n(n2 − 1)

n∑
i=1

∑
ℓ1,ℓ2,i

Aiℓ1
A⊺
iℓ2
.

The application of sign transformations to the data introduces an intractable nonlinear correlation

structure. To address this challenge, we utilize Hoeffding’s decomposition (Hoeffding, 1948) to

handle the nonlinear correlation within Aiℓ. By employing this decomposition, we can identify the

dominant term of ρn. Let Ai := E(Aiℓ | yi), the Hoeffding’s decomposition of Aiℓ can be expressed

as follows:

Aiℓ = Ai −Aℓ + εiℓ, (5)

where εiℓ := Aiℓ −Ai + Aℓ. Note that EAiℓ = EAi = 0, and the covariance matrix of Ai is E(AiA
⊺
i ).

With Hoeffding’s decomposition defined in (5), we have

ρn =
3

n(n2 − 1)

 n∑
i=1

∑
ℓ1,ℓ2,i

(Ai −Aℓ1
)(Ai −Aℓ2

)⊺ +
n∑
i=1

∑
ℓ1,ℓ2,i

(Ai −Aℓ1
)ε⊺iℓ2

+
n∑
i=1

∑
ℓ1,ℓ2,i

εiℓ1
(Ai −Aℓ2

)⊺ +
n∑
i=1

∑
ℓ1,ℓ2,i

εiℓ1
ε⊺iℓ2

.
It will be shown that the cross-terms in the above identity are negligible (see Lemma 2.2 and its

proof in Section B.1). We can then focus on the first term,

3
n(n2 − 1)

n∑
i=1

∑
ℓ1,ℓ2,i

(Ai −Aℓ1
)(Ai −Aℓ2

)⊺

=
n− 2
n+ 1

· 3
n

n∑
i=1

{
1

(n− 1)(n− 2)

∑
ℓ1,ℓ2,i

(Ai −Aℓ1
)(Ai −Aℓ2

)⊺
}

+
3

n+ 1
τn, (6)

where τn := 1
n(n−1)

∑n
i=1

∑
ℓ,i(Ai −Aℓ)(Ai −Aℓ)

⊺ is the sample marginal Kendall’s tau correlation

matrix (Bandeira et al., 2017; Li et al., 2023). The second term, 3τn/(n+ 1), and the cross-terms in

(6) are negligible (see Lemma 2.2 and its proof in Section B.1). Hence, the leading order term of ρn
is

Wn =
3
n

n∑
i=1

AiA
⊺
i . (7)

Through direct calculations, it can be demonstrated that the difference between the expected values

of Wn and ρn is of the order OP (n−1). To be more precise, we have Eρn = n
n+1EWn + 3

n+1Eε12ε
⊺
12.

Under certain assumptions, we can show that the spectrum of ρn can be approximated by that

of Wn (see Lemma 2.2). This allows us to study the spectral properties of ρn via those of Wn.

Under the scale mixture of normals framework defined in Section 2.2, we find that the population

covariance matrix Σρ = EWn has a finite-rank perturbation structure with K spiked eigenvalues

(see Lemma 2.3). Thus naturally Wn has K relatively large eigenvalues too. Subsequently, we

can estimate the number of factors based on the top eigenvalues of Wn or ρn. By establishing the

phase-transition theory of spiked eigenvalues of Wn, the consistency of the new estimator follows.
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2.2 Phase transition theory

From the perspective of RMT, the spectrum of Wn relies on the structure of Σρ = EWn. Although

from factor model (1), it is clear that Σy := Cov(yi) = BB⊺ + Ψ has finite-rank-K perturbation

structure, the relationship between Σρ and Σy is unclear. The structure of Σρ changes for different

distributions of yi . Therefore, extra distribution assumption of yi is needed to maintain the finite-

rank perturbation structure of Σρ. Specifically, we assume that both the common factors and the

idiosyncratic errors follow a scale mixture of normal distributions, defined as follows:

Definition 2.1 (Scale mixture of normals, Andrews and Mallows (1974)). A p-dimensional random

vector X = (X1, . . . ,Xp)⊺ follows a scale mixture of normal distributions (SMN) if X has the stochastic

representation X d=
√
WZ, where W is a scalar-valued random variable with positive support, and Z

follows p-dimensional normal distributionNp(0,Σ) independent of W , Σ is a positive semi-definite

matrix. The notation “X d= Y ” means X and Y have the same distribution.

Our motivation for using this scale mixture of normals is two-fold. First, the scale mixture

of normals contains heavy-tailed distributions, such as Student’s t distribution. If W follows

the inverse Gamma distribution invGamma(ν/2,ν/2) with probability density function gW (w) =
(ν/2)ν/2

Γ (ν/2) w
−(ν/2+1) exp{−ν/(2w)}, then X follows the p-dimentional Student’s t distribution tν(0,Σ) with

location parameter 0, scale matrix Σ, and degrees of freedom ν, the probability density function of

which is fX(x) = Γ ((ν+p)/2)
Γ (ν/2)νp/2πp/2|Σ|1/2

(1 + 1
νx⊺Σ−1x)−(ν+p)/2. A number of well-known distributions can be

written as scale mixtures of normals. We refer the readers to Section 2 of Heinen and Valdesogo

(2020) for more examples. The second motivation is for technical advantage. From the fact that

X | (W = w) ∼ Np(0,wΣ), we can relate the Spearman sample correlation matrix of X to the scale

matrix Σ using Grothendieck’s identity (see Lemma A.5). Heinen and Valdesogo (2020) derived an

explicit expression for Spearman correlation of bivariate scale mixture of normals. We extend this

result to a more complicated bivariate population (see Lemma A.6) and utilize it to examine the

structure of Σρ (see Lemma 2.3). This direct connection to the scale matrix Σρ is a fundamental

step in the analysis of our proposed estimator.

Furthermore, we need the following assumptions:

Assumption (A1). As n→∞, p = p(n)→∞ and p/n = cn→ c ∈ (0,∞).

Assumption (A2). All pairs {(f⊺i ,e
⊺
i )⊺}ni=1 are i.i.d., and fi is independent of ei , and both of them follow

the scale mixture of normal distributions. Suppose that wf and we are two independent random variables

with positive support. The common factor fi has a stochastic representation fi
d=
√
w
f
i xi , where wfi is an

independent copy of wf , and xi follows K-dimensional standard normal distribution. The idiosyncratic

error ei has a stochastic representation ei
d= (

√
wei1zi1, . . . ,

√
weipzip)⊺, where {weij}

p
j=1 are i.i.d. copies of

we, and (zi1, . . . , zip)⊺ follows p-dimensional standard normal distribution.

Assumption (A3). The loading matrix B is normalized by the constraint B⊺B = IK . All the entries of B
are of order O(p−1/2).

Assumption (A4). The matrix Ψ is diagonal with entries of order O(1).
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Assumption (A1) is common in the RMT literature. Assumption (A2) pertains to the distribution

of the common factors and the idiosyncratic errors, and allows them to be heavy-tailed. This

assumption is crucial for examining the structure of the population covariance matrix Σρ. The

constraint B⊺B = IK in (A3) is a commonly used identifiability condition, see Bai and Li (2012). It

follows that by singular value decomposition, we can represent B as UV⊺, where U ∈ Rp×K and

V ∈ RK×K , and both have orthonormal columns. The column vectors of U and V are unit vectors in

Rp and RK , respectively. Thus, the condition Bij =O(p−1/2) in (A3), for any i ∈ [p] and j ∈ [K], is not

overly restrictive. This condition facilitates our technical proofs. Assumption (A4) is standard in

the factor models literature.

In what follows, we develop some important spectral properties of Spearman sample correlation

matrix. First, we show that the spectrum of ρn can be approximated by that of Wn, as stated in the

following lemma.

Lemma 2.2. Under Assumptions (A1) – (A4), for any j ∈ [p], |λj(ρn)−λj(Wn)| =OP (n−1/2) as n→∞.

The proof of this lemma is provided in the supplementary material. From this Lemma, we can

investigate the properties of ρn through its surrogate Wn. As Σρ represents the expectation of Wn,

examining the structure of Σρ provides us with valuable insights of Wn. The spike structure of Σρ
is illustrated in the following lemma.

Lemma 2.3 (Finite-rank perturbation). Under Assumptions (A1) – (A4), we have∥∥∥∥Σρ − {
diag

(
Ip −γΨ −1BB⊺

Ψ −1
)

+γΨ −1BB⊺
Ψ −1

}∥∥∥∥
2

= o(1) (8)

as n→∞, where γ := (6/π)E
[
wf /{(we1 +we2)(we3 +we4)}1/2

]
, and wej , j = 1,2,3,4, are independent copies

of we.

Remark 2.4. Note that both Σρ and its approximation in (8) are correlation-type matrices, and all the
diagonal entries equal to one. Consequently, the average of their eigenvalues are both one, and their bulk
eigenvalues are clustered around one.

The proof of this lemma is provided in the supplementary material. In this lemma, we derive a

“consistent” approximation of the population covariance matrix Σρ. From Weyl’s lemma (Lemma

A.1), the spectrum of the matrix Σρ can be approximated by that of a rank-K perturbation of a

diagonal matrix. Intuitively, Σρ would have at most K relatively larger eigenvalues. As for the

sample counterpart, at most K spiked sample eigenvalues of ρn would lay outside the support of

its LSD. Naturally, by counting the number of spiked eigenvalues of ρn, we can obtain a promising

estimator of total number of factors. However, a very important yet intuitive observation here is

that, for 1 ⩽ j ⩽ K , λj(ρn) is not always far away from the bulk eigenvalues {λj(ρn),K + 1 ⩽ j ⩽ p}.
It depends on whether the signal λj(Σρ) is strong enough. If λj(Σρ) is too weak, λj(ρn) would lie

on the boundary of the support of bulk eigenvalues. This phenomenon is commonly referred to as

the phase-transition phenomenon, which is described in the following theorem.

Theorem 2.5 (Phase transition). For the high-dimensional factor model (1), assume that Assumptions
(A1) – (A4) hold, and the ESD of Σρ tends to a proper probability measure H as n → ∞. Denote
ψ(α) = α + c

∫
tα
α−t dH(t), we have

9



(a) For 1 ⩽ j ⩽ K satisfying ψ′(λj(Σρ)) > 0, the j-th sample eigenvalue of ρn converges almost surely to
ψ
(
λj(Σρ)

)
, which is outside the support of the LSD of ρn.

(b) For 1 ⩽ j ⩽ K satisfying ψ′(λj(Σρ)) ⩽ 0, the j-th sample eigenvalue of ρn converges almost surely to
the right endpoint of the support of the LSD of ρn.

The proof of Theorem 2.5 can be found in Section C.

Remark 2.6. From Lemma 2.2, we can investigate the asymptotic behavior of spiked eigenvalues of ρn via
those of Wn. Although Wn = (3/n)

∑n
i=1 AiA

⊺
i is a Wishart-type random matrix, the nonlinear correlation

structure of Ai makes it difficult to directly apply the current phase-transition analysis techniques. The
reason is that the vectors {Ai}ni=1 do not follow the commonly used independent component structure

as in Bai and Yao (2008, 2012) and Jiang and Bai (2021a). Specifically, the vector Ai cannot be written
as Ai = Σ

1/2xi , where Σ is non-negative definite and all elements of xi ∈ Rp are i.i.d. with zero mean
and unit variance. To remove the independent component structure assumption, we first show that
replacing {

√
3Ai}ni=1 in Wn with i.i.d. Np(0,Σρ) random vectors does not change the asymptotic behavior

of spiked eigenvalues of Wn (see Lemma A.10 and Section C.1 for more details). The substitution of
{
√

3Ai}ni=1 with i.i.d. Np(0,Σρ) is feasible because each entry of Ai follows a Uniform(−1,1) distribution
and the universality phenomenon holds for light-tailed distributions. The universality phenomenon
reveals that as long as Ai has light-tailed entries, the first-order asymptotic behavior of the eigenvalues
of 3

n

∑n
i=1 AiA

⊺
i remains the same when replacing {

√
3Ai}ni=1 with Gaussian vectors. To guarantee the

feasibility of this replacement, we establish concentration properties related to certain quadratic forms
and their higher-order moments under the nonlinear correlation structure (see Lemma A.7). Then since
Gaussian random vectors naturally follows the independent component structure, we can directly apply
the phase transition theory in Bai and Yao (2008, 2012) and Jiang and Bai (2021a) to complete the proof
of Theorem 2.5.

To summarize, we first establish in Lemma 2.2 that |λj(ρn)−λj(Wn)| = oP (1), and subsequently

turn to analyze the eigenvalues of Wn. Secondly, we prove that Σρ = EWn exhibits a rank-K

perturbation structure as in Lemma 2.3. Thirdly, we confirm the phase-transition phenomenon

for λj(Wn), where 1 ⩽ j ⩽ K . Therefore, the corresponding result of λj(ρn) follows naturally, as

demonstrated in Theorem 2.5.

2.3 Estimation of the number of factors

With the phase-transition theory in Theorem 2.5, we now propose our new estimator of number

of factors. As stated in Theorem 2.5, if ψ′(λj(Σρ)) ⩽ 0 for some j ∈ [K], the corresponding sample

eigenvalue λj(ρn) will converge to the right endpoint of the support of the LSD of ρn, which is also

the limit of the largest noise eigenvalue λK+1(ρn). Hence, such weak factors will be merged into

the noise component, making their signal undetectable. By taking this into account, we define the

number of significant factors as

K0 = #
{
j ∈ [K] : ψ′(λj(Σρ)) > 0

}
, (9)

where the notation #S denotes the cardinality number of the set S . By Theorem 2.5, the leading K0

eigenvalues of ρn will lay outside the support of its LSD .
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The LSD of ρn, denoted by Fc,H , is the generalized Marčenko-Pastur law as stated in Lemma

A.9. Let supp(Fc,H ) denote the support of Fc,H . The Stieltjes transform of Fc,H is defined as

m(x) =
∫

1
t−x dFc,H (t) for x ∈ R \ supp(Fc,H ). Its first-order derivative m′(x) is also only defined

outside supp(Fc,H ), and can be extended as a function mapping the entire real line R to R∪{+∞} as

follows:

m′(x) =


∫

1
(t−x)2 dFc,H (t), if x ∈ R \ supp(Fc,H ),

+∞, if x ∈ supp(Fc,H ).
(10)

This implies that m′(λj(ρn)) takes either finite or infinite values, depending on whether λj(ρn) is

a spiked eigenvalue or a bulk eigenvalue. Based on this observation, we utilize the derivative of

Stieltjes transform defined in (10) to identify all the spiked eigenvalues and estimate total number

of significant factors. Let Kmax be a predetermined upper bound on the true number of significant

factors, K0. As the LSD H of Σρ is unknown, we cannot obtain the explicit expression of m′(x).

Therefore, we utilize

m̂′n,j(x) =
1

p − j

p∑
ℓ=j+1

1
{x −λℓ(ρn)}2

(11)

to estimate m′(x) for 1 ⩽ j ⩽ Kmax. Intuitively, if λj(ρn) lies within the bulk spectrum of ρn,

we would expect m̂′n,j(λj(ρn)) to be very large. On the contrary, if λj(ρn) is a spiked eigenvalue,

m̂′n,j(λj(ρn)) should be relatively small. This phenomenon bears similarities to the behavior of m′(x)

described in the equation (10). Actually, it will be shown that

m̂′n,j
(
λj(ρn)

)
=

O(1), for 1 ⩽ j ⩽ K0,

O(p), for K0 + 1 ⩽ j ⩽ Kmax,

as n→∞ (see the proof of Theorem 2.8 in Section C.2). Hence, a natural estimator of the number

of significant factors is

K̂SR = argmax
1⩽j⩽Kmax

m̂′n,j+1(λj+1(ρn))

m̂′n,j(λj(ρn))
, (12)

where the “S” in subscript stands for Stieltjes transform, and the “R” stands for Ratio.

Remark 2.7. Here, we explain our preference for choosing m̂′n,j(·) over directly employing eigen-ratio

type estimators. Under our current framework, both eigenvalues λj(ρn) and the ratios
λj+1(ρn)
λj (ρn) are of

constant order for all 1 ⩽ j ⩽ Kmax. The ratios of eigenvalues exhibit the following behavior:

λj+1(ρn)

λj(ρn)

< 1, 1 ⩽ j ⩽ K,

= 1− εp, K + 1 ⩽ j ⩽ Kmax,

where εp = oP (1) and εp > 0. When factor signals are weak, the values of λj+1(ρn)/λj(ρn) may be close to
1 for both j = K and j = K+1, making it difficult to distinguish between them. This can lead to inaccurate
estimation. Performing the derivative of Stieltjes transform m̂′n,j(·) on the corresponding eigenvalues
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λj(ρn) significantly amplifies the ratio at j = K . As shown in Section 6.3, we found out that

m̂′n,j+1(λj+1(ρn))

m̂′n,j(λj(ρn))


=OP (1), 1 ⩽ j ⩽ K − 1,

→∞, j = K,

= 1 + oP (1), K + 1 ⩽ j ⩽ Kmax.

As a result, the sequence of ratios {m̂′n,j+1(λj+1(ρn))/m̂′n,j(λj(ρn))} blows up at j = K . Therefore, estimat-
ing K using m̂′n,j(λj(ρn)) is more efficient compared to using ratios of λj(ρn). Based on this observation,
we propose the SR estimator.

The consistency of this estimator is established in the following theorem, and its proof is

postponed to Section C.

Theorem 2.8 (Consistency of K̂SR). For the high-dimensional factor model (1), assume that Assumptions
(A1) – (A4) hold. Let K0 be the number of significant factors defined in (9) and K̂SR be the proposed
estimator defined in (11) – (12). Then, we have

lim
n→∞

P(K̂SR = K0) = 1.

3 Simulation studies

In this section, we conduct some simulations to examine the finite sample performance of the

proposed estimator. We compare with several estimators in the current literature, including

the NE estimator (Nadakuditi and Edelman, 2008); the ED estimator (Onatski, 2010, 2012); the

BCV estimator (Owen and Wang, 2016); the MKTCR estimator (Yu et al., 2019), as well as the ACT

estimator (Fan et al., 2020). The MKTCR estimator is designed to handle heavy-tailed data and can

only detect strong factors. Conversely, other estimators are also capable of identifying weak factors.

Specifically, these competing estimators are defined as follows:

1. NE estimator: Let {yi}ni=1 be an i.i.d. sample from the factor model (1). The sample covariance

matrix of {yi}ni=1 is defined as Sn = n−1 ∑n
i=1(yi −y)(yi −y)⊺, where y = n−1 ∑n

i=1 yi is the sample

mean. Based on the eigenvalues of Sn, Nadakuditi and Edelman (2008) introduced the NE

estimator as follows:

K̂NE = argmin
0⩽j<min(p,n)

{
1
4

(
n
p

)2

t2j + 2(j + 1)
}
,

where tj = p
[
(p − j){

∑p
i=j+1λi(Sn)}−2 ∑p

i=j+1λ
2
i (Sn)− 1− p/n

]
− p/n.

2. ED estimator: Based on the eigenvalues of Sn, Onatski (2010, 2012) proposed an eigenvalue

difference criterion, defined as

K̂ED = max{1 ⩽ j ⩽ Kmax,λj(Sn)−λj+1(Sn) ⩾ δ},

where δ is a predetermined threshold calculated using a calibration method described in

Onatski (2010, Section IV).
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3. BCV estimator: Owen and Wang (2016) introduced an algorithm to determine the number

of factors based on Sn and the bi-cross-validation (BCV) technique from Owen and Perry

(2009). This method involves randomly holding out some rows and some columns of the

observed data, fitting a factor model to the held-in data, and comparing held-out data to

corresponding fitted values. We utilize Owen and Wang’s R package “esaBcv” to implement

the BCV method in our simulation studies.

4. MKTCR estimators: The sample multivariate Kendall’s tau matrix is defined as

Kn =
2

n(n− 1)

∑
1⩽i<ℓ⩽n

(yi − yℓ)(yi − yℓ)
⊺

∥yi − yℓ∥2
.

Based on the eigenvalues of Kn, Yu et al. (2019) constructed the MKTCR estimator as follows:

K̂MKTCR = argmax
1⩽j⩽Kmax

ln{1 +λj(Kn)/Vj−1}
ln{1 +λj+1(Kn)/Vj}

,

where Vj =
∑min(p,n)
i=j+1 λi(Kn), j ∈ {0,1, . . . ,min(p,n)− 1}.

5. ACT estimator: The sample Pearson correlation matrix of {yi}ni=1 is defined as

Pn =
[
diag(Sn)

]−1/2
Sn

[
diag(Sn)

]−1/2
.

Based on the spectral properties of Pn, Fan et al. (2020) proposed an estimator to estimate the

factor number as follows:

K̂ACT = max
{
1 ⩽ j ⩽ Kmax : α̂j(Pn) > 1 +

√
p/(n− 1)

}
,

where {α̂j(Pn)}pj=1 are bias correction of sample eigenvalues of Pn, defined as α̂j(Pn) =

−1/mn,j(λj(Pn)) with mn,j(x) = −(1− cj )/x+ cjmn,j(x), cj = (p − j)/(n− 1), and

mn,j(x) =
1

p − j

 p∑
ℓ=j+1

1
λℓ(Pn)− x

+
1

{3λj(Pn) +λj+1(Pn)}/4− x

.
Our simulation studies consider various combinations of dimension and sample size, namely

(p,n) = (50,100), (100,200), (150,300), and (200,400), which all have the ratio p/n = 1/2. We take

the true number of common factors K = 3 and set the possible maximum value of the number of

common factors Kmax = 10. Recalling our distribution assumption (A2) for both common factors

fi and idiosyncratic errors ei , we generate fi and ei by fi = (wfi )1/2xi and eij = (weij)
1/2zij , where eij

denotes the j-th component of ei , {xi}ni=1
i.i.d.∼NK (0,IK ), and {zij , i ∈ [n], j ∈ [p]} i.i.d.∼N (0,1). We

employ four different scenarios to generate sample data for wfi and weij :

1. (Normal population, see Table 1) Let wfi = weij = 1 for all i ∈ [n] and j ∈ [p];

2. (Uniform and Chi-squared population, see Table 1) Let {wfi }
n
i=1

i.i.d.∼ Uniform(0,1) and {weij , i ∈
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Figure 2: Correct identification rate of six estimators. Entries of common factors and idiosyncratic errors are generated
from the standard normal distribution.

[n], j ∈ [p]} i.i.d.∼ χ2(1);

3. (Student’s t(2) population, see Table 2) Let {wfi }
n
i=1

i.i.d.∼ invGamma(1,1) and {weij , i ∈ [n], j ∈

[p]} i.i.d.∼ invGamma(1,1), where invGamma(α,β) denotes the inverse Gamma distribution

with shape parameter α and scale parameter β. In this scenario, both fi and eij follow

(multivariate) Student’s t(2) distributions;

4. (Cauchy population, see Table 2) Let {wfi }
n
i=1

i.i.d.∼ invGamma(1/2,1/2) and {weij , i ∈ [n], j ∈

[p]} i.i.d.∼ invGamma(1/2,1/2). In this scenario, both fi and eij follow (multivariate) Cauchy

distribution.

Furthermore, we consider three cases for the loading matrix B = (Bij )p×K and the matrix Ψ as

follows. (C1) is from (Harding, 2013; Fan et al., 2020). (C2) and (C3) are both from Onatski (2012).

(C1) For any j ∈ [K], let Bij =
√

5j/p for i ∈ [K], and let Bij = aij
√

5j/(p − j) for i ∈ {K + 1, . . . ,p},
where aij = −1 if i = rj or aij = 1 if i , rj, r ∈ N+. Let Ψ = Ip.

(C2) For any i ∈ [p] and j ∈ [K], let
√
pBij /

√
10j i.i.d.∼N (0,1). Let Ψ = Ip.

(C3) For any i ∈ [p] and j ∈ [K], let
√
pBij /

√
10j i.i.d.∼N (0,1). Let Ψ = T1/2, where T is a Toeplitz

matrix with its (i, j)-th entry equal to 0.45|i−j |.

The simulation results are reported in Tables 1 - 2 and Figures 2 - 5. In the case of light-tailed

data (see Tables 1 and Figures 2 - 3), our SR estimator performs comparably to other estimators.

However, when handling heavy-tailed data (see Tables 2 and Figures 4 - 5), the NE, ED, and BCV

estimators, which are based on sample covariance matrices, prove ineffective, whereas our SR

estimator outperforms the MKTCR and ACT estimators.

4 Real data analysis

In this section, we analyze the monthly macroeconomic dataset (FRED-MD, McCracken and

Ng (2016)) from March 1959 to January 2023. The data can be downloaded from the website

http://research.stlouisfed.org/econ/mccracken/fred-md/, and includes the monthly series
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Table 1: Percentages (%) of estimated number of common factors in 1000 simulations. Entries of common factors and
idiosyncratic errors are generated from light-tailed distributions. The results are reported in the form a(b|c), in which
a,b,c are the percentages of true estimates, overestimates, and underestimates, respectively. The notation “ave(K̂)”
denotes mean estimators for the case (p,n) = (200,400).

Case p NE ED BCV MKTCR ACT SR

Normal population

(C1)

50 97.7(2.3|0) 98.9(1.1|0) 97.5(0.5|2) 86.1(0|13.9) 100(0|0) 96.5(1|2.5)
100 97.2(2.8|0) 99(1|0) 100(0|0) 84.4(0|15.6) 100(0|0) 99.6(0.1|0.3)
150 96.7(3.3|0) 99.5(0.5|0) 100(0|0) 80.2(0|19.8) 100(0|0) 99.8(0.2|0)
200 96.3(3.7|0) 99.6(0.4|0) 100(0|0) 78.3(0|21.7) 99.9(0.1|0) 99.8(0.2|0)

ave(K̂) 3.038 3.004 3 2.783 3.001 3.002

(C2)

50 97.1(2.9|0) 98.8(1.2|0) 99.1(0.8|0.1) 91.7(0|8.3) 100(0|0) 92(0.9|7.1)
100 97.9(2.1|0) 99.3(0.7|0) 100(0|0) 98(0|2) 100(0|0) 99.9(0.1|0)
150 96.7(3.3|0) 99.6(0.4|0) 100(0|0) 100(0|0) 100(0|0) 100(0|0)
200 97.1(2.9|0) 99.6(0.4|0) 100(0|0) 100(0|0) 100(0|0) 100(0|0)

ave(K̂) 3.03 3.007 3 3 3 3

(C3)

50 0(100|0) 97(3|0) 80.3(19.7|0) 99.6(0|0.4) 99.9(0.1|0) 95(1.7|3.3)
100 0(100|0) 99(1|0) 82.9(17.1|0) 100(0|0) 72.2(27.8|0) 99.7(0.3|0)
150 0(100|0) 99.4(0.6|0) 82.3(17.7|0) 100(0|0) 39.9(60.1|0) 100(0|0)
200 0(100|0) 99.3(0.7|0) 77.7(22.3|0) 100(0|0) 4.4(95.6|0) 100(0|0)

ave(K̂) 55.225 3.008 3.28 3 5.448 3

Uniform and Chi-squared population

(C1)

50 37.4(62.3|0.3) 58.7(2.7|38.6) 23.2(0.4|76.4) 22.4(0|77.6) 89.5(0|10.5) 86.7(2|11.3)
100 26.7(73.3|0) 91(1.1|7.9) 34.4(0|65.6) 12.9(0|87.1) 99.8(0.1|0.1) 98.1(0.6|1.3)
150 22.7(77.2|0.1) 97.7(0.3|2) 36.4(0.1|63.5) 5.1(0|94.9) 99.6(0.4|0) 99.6(0.3|0.1)
200 23.3(76.7|0) 99.1(0.8|0.1) 35.6(0|64.4) 3.4(0|96.6) 99.4(0.6|0) 99.7(0.3|0)

ave(K̂) 4.204 3.009 2.356 1.919 3.006 3.004

(C2)

50 34.6(65.3|0.1) 91.5(2.4|6.1) 63.6(1.7|34.7) 27.2(0|72.8) 96.7(0|3.3) 85.3(1.6|13.1)
100 23.9(76.1|0) 98.7(1.3|0) 99.8(0.2|0) 99.3(0|0.7) 100(0|0) 100(0|0)
150 22.1(77.9|0) 99.3(0.7|0) 100(0|0) 82.8(0|17.2) 99.8(0.2|0) 100(0|0)
200 16.6(83.4|0) 99(1|0) 100(0|0) 98.5(0|1.5) 100(0|0) 100(0|0)

ave(K̂) 4.343 3.01 3 2.985 3 3

(C3)

50 0(100|0) 96.5(2.6|0.9) 58.3(41.6|0.1) 57.7(0|42.3) 94.8(5.2|0) 69.8(7.9|22.3)
100 0(100|0) 98.2(1.8|0) 79.7(20.3|0) 99.9(0|0.1) 27.7(72.3|0) 99(1|0)
150 0(100|0) 99.3(0.7|0) 82(18|0) 97.9(0|2.1) 5.3(94.7|0) 99.7(0.3|0)
200 0(100|0) 99.2(0.8|0) 84(16|0) 100(0|0) 0.1(99.9|0) 99.9(0.1|0)

ave(K̂) 56.198 3.01 3.193 3 7.554 3.001

Figure 3: Correct identification rate of six estimators. Entries of common factors are generated from a scale mixture

of normals with {wfi }
n
i=1

i.i.d.∼ Uniform(0,1), and entries of idiosyncratic errors are generated from a scale mixture of

normals with {weij , i ∈ [n], j ∈ [p]} i.i.d.∼ χ2(1).
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Table 2: Percentages (%) of estimated number of common factors in 1000 simulations. Entries of common factors and
idiosyncratic errors are generated from heavy-tailed distributions. The results are reported in the form a(b|c), in which
a,b,c are the percentages of true estimates, overestimates, and underestimates, respectively. The notation “ave(K̂)”
denotes mean estimators for the case (p,n) = (200,400).

Case p NE ED BCV MKTCR ACT SR

t(2) population

(C1)

50 0(100|0) 16.9(29.4|53.7) 26.6(6.3|67.1) 22.6(0.2|77.2) 83.3(0.3|16.4) 92.2(1.1|6.7)
100 0(100|0) 16.1(33.6|50.3) 31.3(4|64.7) 15.2(0|84.8) 93.5(4.3|2.2) 99.4(0|0.6)
150 0(100|0) 13.8(33.2|53) 34(4.2|61.8) 12.9(0|87.1) 91.9(7.4|0.7) 99.9(0|0.1)
200 0(100|0) 14.1(38|47.9) 37.9(2.9|59.2) 11(0|89) 87.6(11.6|0.8) 99.8(0.2|0)

ave(K̂) 37.884 3.316 2.228 1.941 3.12 3.002

(C2)

50 0(100|0) 24.1(44.2|31.7) 47.6(10.6|41.8) 26.1(0.2|73.7) 90.4(0.3|9.3) 91.2(0.7|8.1)
100 0(100|0) 19.1(44.9|36) 59.3(8.3|32.4) 31.2(0|68.8) 96(2.9|1.1) 99.9(0.1|0)
150 0(100|0) 14.4(49.7|35.9) 80(4|16) 77.5(0|22.5) 93.3(6.6|0.1) 100(0|0)
200 0(100|0) 14.6(53.1|32.3) 85(2.1|12.9) 94.8(0|5.2) 89.4(10.5|0.1) 100(0|0)

ave(K̂) 38.064 4.501 2.836 2.944 3.109 3

(C3)

50 0(100|0) 28.8(50.1|21.1) 36.8(49.5|13.7) 38.4(0.1|61.5) 67.5(28.8|3.7) 71.1(9.6|19.3)
100 0(100|0) 19.9(57.1|23) 47.5(43.6|8.9) 57.8(0|42.2) 18(81.4|0.6) 90.1(7.2|2.7)
150 0(100|0) 14.8(64.5|20.7) 66.8(28.6|4.6) 92.6(0|7.4) 6.3(93.5|0.2) 99.7(0.3|0)
200 0(100|0) 13.1(66.3|20.6) 72.2(24.8|3) 99.3(0|0.7) 2.6(97.3|0.1) 100(0|0)

ave(K̂) 70.59 4.911 3.47 2.993 7.959 3

Cauchy population

(C1)

50 0(100|0) 11.2(77.6|11.2) 0.8(0.3|98.9) 7.7(5.9|86.4) 24.9(2.1|73) 89.8(0.2|10)
100 0(100|0) 7.2(85|7.8) 0.1(0.1|99.8) 6.8(5|88.2) 38(12.4|49.6) 98.4(0.3|1.3)
150 0(100|0) 8(84.4|7.6) 0.1(0|99.9) 6.3(4.2|89.5) 36.7(28.4|34.9) 98.6(1.3|0.1)
200 0(100|0) 7.5(86.5|6) 0.2(0.1|99.7) 4.9(4.8|90.3) 35.7(41.7|22.6) 98.6(1.4|0)

ave(K̂) 118.068 8.138 0.038 1.507 3.439 3.015

(C2)

50 0(100|0) 12.4(76.9|10.7) 1(0.7|98.3) 6.8(2.6|90.6) 29.1(2.3|68.6) 91.3(0.8|7.9)
100 0(100|0) 8.5(83.3|8.2) 0.1(0.1|99.8) 6.3(3.2|90.5) 49.9(17|33.1) 100(0|0)
150 0(100|0) 8(86.8|5.2) 0.4(0|99.6) 6.2(2.1|91.7) 46.7(35.6|17.7) 100(0|0)
200 0(100|0) 5.6(88|6.4) 0.1(0.2|99.7) 6.4(2.8|90.8) 37(49.5|13.5) 100(0|0)

ave(K̂) 118.511 8.236 0.069 1.486 3.596 3

(C3)

50 0(100|0) 12.6(77.5|9.9) 2.5(10.1|87.4) 5.6(3.8|90.6) 13.9(74.6|11.5) 10.4(33.5|56.1)
100 0(100|0) 10.2(81|8.8) 1.9(4.7|93.4) 5.6(1.4|93) 3.3(93.4|3.3) 38.3(36|25.7)
150 0(100|0) 8.8(83.5|7.7) 1.1(4.8|94.1) 3.7(1.3|95) 0.8(97.3|1.9) 89.5(10.3|0.2)
200 0(100|0) 5.7(87.2|7.1) 1.5(3.5|95) 4.6(1.2|94.2) 0.8(98.5|0.7) 92.8(7.1|0.1)

ave(K̂) 126.004 7.919 0.421 1.416 16.854 3.464

Figure 4: Correct identification rate of six estimators. Entries of common factors and idiosyncratic errors are generated
from Student’s t(2) distribution.
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Figure 5: Correct identification rate of six estimators. Entries of common factors and idiosyncratic errors are generated
from the standard Cauchy distribution.

of 128 macroeconomic variables. Following McCracken and Ng (2016), the series with missing

values are removed and the remaining dataset is transformed to a stationary form. After this

preprocessing procedure, the data dimension is p = 105 and the sample size is n = 767. McCracken

and Ng (2016)’s recommendation to remove outliers has not been implemented in our data analysis,

as we believe that data with heavy-tailed distributions will inevitably contain extreme observations

that cannot be circumvented. Since our estimator is tailored to heavy-tailed observations, we

directly use it to identify number of factors.

The dataset reveals that more than 67% of the macroeconomic variables exhibit a sample

kurtosis that exceeds 9, which is the theoretical kurtosis of the Student’s t(5) distribution. This

indicates that the dataset is probably heavy-tailed. Compared to the other estimators, MKTCR, ACT,

and SR have slightly higher accuracy under heavy-tailed conditions, so we employ these three

methods for estimation. The results are as follows: K̂ACT = 13, K̂MKTCR = 1, and K̂SR = 7. As shown in

the simulation studies in Section 3, ACT has similar performance with our estimator when data is

light-tailed, while it tends to overestimate when data is heavy-tailed. Same story happens for this

real dataset. Both our SR estimator and Yu et al. (2019)’s MKTCR estimator are based on eigenvalues

of certain type of sample correlation matrices as plotted in Figure 6. From Figure 6(a), it is evident

that the multivariate Kendall’s tau matrix exhibits one “strong” spike and several “weak” spikes.

However, the MKTCR estimator only detects the strong spike while ignore the weaker spikes. It

potentially underestimate the total number of factors, similarly as shown in the simulation studies

in Section 3. On the other hand, Figure 6(b) illustrates that our SR estimator has successfully

detected all seven spikes of Spearman sample correlation matrix. Therefore, K̂SR = 7 is a more

persuasive estimation for this dataset.

5 Discussions

In summary, we propose a novel estimator to identify number of common factors in high-dimensional

factor models when data is heavy-tailed. We demonstrate that, under certain assumptions, the num-

ber of spiked eigenvalues of Spearman sample correlation matrix is consistent with total number

of significant factors. Our estimator is constructed based on this observation, and its consistency is

proved under mild assumptions. From the perspective of RMT, we investigate the eigenstructure

of Spearman sample correlation matrix under spike models and establish the phase-transition
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(a) Multivariate Kendall’s tau matrix (b) Spearman correlation matrix

Figure 6: Scatter plots of all the eigenvalues of multivariate Kendall’s tau matrix and Spearman correlation matrix
generated from the real dataset. The MKTCR estimator only detects one “strong” spiked eigenvalue of the multivariate
Kendall’s tau matrix, and neglects several “weak” spikes. Our SR estimator detects all seven spikes of Spearman
correlation matrix.

theory of its spiked eigenvalues. Simulation results demonstrate that our proposed estimator

outperforms competing methods in various scenarios, especially with heavy-tailed observations.

However, our SR estimator does not perform well when the sample size is not large enough, such as

(p,n) = (50,100). The possible reason is that the estimation of m′(x) is inaccurate when the sample

size is small. A more accurate estimator for m′(x) would improve the accuracy of our SR estimator.

Furthermore, it is worth extending our method for factor modeling in high-dimensional time series

(Lam and Yao, 2012; Li et al., 2017b) and tensor data (Lam, 2021; Chen and Lam, 2024). These

extensions are beyond the scope of the current paper, and we leave them to future work.

A Auxiliary lemmas

This section introduces several auxiliary lemmas used in the technical proofs of our theoretical

results. Lemmas A.1 – A.5 are from existing literature, while Lemmas A.6 and A.7 are our original

contributions. We provide the proofs of these two new lemmas in Sections B.3 and B.4, respectively.

Lemma A.1 (Weyl’s inequality, Corollary 6.3.4 in Horn and Johnson (2012) ). Let A and B be two
n × n normal matrices, and let λ1(A) ⩾ · · · ⩾ λn(A) and λ1(B) ⩾ · · · ⩾ λn(B) be the nonincreasingly
ordered eigenvalues of A and B, respectively. Then

max
1⩽i⩽n

|λi(A)−λi(B)|⩽ ∥A−B∥2,

where ∥A−B∥2 denotes the spectral norm of A−B.

Lemma A.2 (Lemma 7 in El Karoui (2009)). Suppose that the random vector r ∈ Rp has the property

18



that for any convex 1-Lipschitz (with respect to the Euclidean norm) function F from Rp to R, we have

P
(
|F(r)−mF | > t

)
⩽ C exp

{
−c(p)t2

}
,

where mF denotes a median of F, and C and c(p) are independent of F, and C is independent of p. We
allow c(p) to be a constant or to go to zero with p like p−α, 0 ⩽ α < 1. Suppose, further, that E(r) = 0,
E(rr⊺) = Σ, with ∥Σ∥2 ⩽ log(p). If M is a complex deterministic matrix such that ∥M∥2 ⩽ ξ, where ξ is
independent of p, then p−1r⊺Mr is strongly concentrated around its mean, p−1tr(MΣ). In particular, if,
for ε > 0, tp(ε) = (logp)1+ε/

√
pc(p), then

log
{
P
(∣∣∣∣∣1p r⊺Mr− 1

p
tr(MΣ)

∣∣∣∣∣ > tp(ε)
)}
≍ −(logp)1+2ε.

Lemma A.3 (Corollary 4.10 in Ledoux (2001)). For every product probability P on [0,1]n, every convex
1-Lipschitz function F on Rn, and every r ⩾ 0, we have

P
(
|F −mF |⩾ r

)
⩽ 4e−r

2/4,

where mF is a median of F for P.

Lemma A.4 ((3.3.41) in Horn and Johnson (1991)). For any n×n Hermitian A = (Aij ) with eigenvalues
λ1, . . . ,λn, and convex f , we have

n∑
i=1

f (Aii) ⩽
n∑
i=1

f (λi).

Lemma A.5 (Grothendieck’s identity, Lemma 3.6.6 in Vershynin (2018), Lemma 4.1 in Li et al.

(2023)). Consider a bivariate normal vector:Z1

Z2

 ∼N2

0

0

 ,σ2
1 γ

γ σ2
2

 ,
we have

E[sign(Z1)sign(Z2)] =
2
π

arcsin
( γ

σ1σ2

)
.

Lemma A.6 is utilized to analyze the structure of Σρ, as stated in Lemma 2.3.

Lemma A.6. Consider a bivariate random vector:

Q :=

Q1

Q2

 d=

√WXX1 +
√
WY1

Y1√
WXX2 +

√
WY2

Y2

 , (13)

where WX , WY1
, and WY2

are three independent scalar-valued random variables with positive support,
and (X1,X2,Y1,Y2)⊺ ∼N4(0,Ω0) with

Ω0 =

ΣX O

O ΣY

 , ΣX =

σ2
X1

γ

γ σ2
X2

 , ΣY =

σ2
Y1

0

0 σ2
Y2

 .
Suppose that Q̃1 and Q̃2 (they are independent) are independent copies of Q1 and Q2, respectively, then,
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we have
E[sign(Q1 − Q̃1)sign(Q2 − Q̃2)] =

2
π
E
{
arcsin(r)

}
,

where
r =

γWX√
(WX + W̃X1

)σ2
X1

+ (WY1
+ W̃Y1

)σ2
Y1

√
(WX + W̃X2

)σ2
X2

+ (WY2
+ W̃Y2

)σ2
Y2

,

and (W̃X1
, W̃Y1

) and (W̃X2
, W̃Y2

) are independent copies of (WX ,WY1
) and (WX ,WY2

), respectively.

Lemma A.7 is used in the proof of Lemma A.10.

Lemma A.7. Let X = (x1, . . . ,xn)⊺ and Y = (y1, . . . ,yn)⊺ be two n × p independent random matri-
ces satisfying the same assumptions as those in Lemma A.10. For any i ∈ [n], we denote Xi =

(x1, . . . ,xi ,yi+1, . . . ,yn)⊺, Xi0 = (x1, . . . ,xi−1,yi+1, . . . ,yn)⊺, and

βi = 1− 1
n

x⊺i Γ
1/2(λI−n−1Γ

1/2X⊺
i0Xi0Γ

1/2)−1Γ
1/2xi , (14)

βi0 = 1− 1
n

tr
{
Γ (λI−n−1Γ

1/2X⊺
i0Xi0Γ

1/2)−1
}
, (15)

with Γ = U2D2U⊺
2 defined before the equation (48) in the main text. Then, for any K ×K symmetric

matrix W, it holds that, as n→∞,

βi0→−
1

λm(λ)
, εi := βi − βi0→ 0, (16)

Eε2
i = o(1), Eε4

i = o(n−1), (17)

E{tr(Wτi)}2 =O(1), E{tr(Wτi0)}2 =O(1), (18)

where m(·) denotes the Stieltjes transform of the LSD of the matrix n−1Xi0Γ X⊺
i0, and τi0 and τi are

defined in (43) and (44), respectively.

Remark A.8. The conclusions (16) – (18) presented in Lemma A.7 are identical to those in Lemma C.3
and Lemma D.1 of Jiang and Bai (2021b). However, the proof provided by Jiang and Bai (2021b) is
not applicable for our scenario as we do not assume that X (or Y) possesses i.i.d. entries, as stated in
Assumption (B1). Specifically, we need to establish the concentration properties of certain quadratic
forms without the i.i.d. assumption. We address this challenge in Section B.4 by leveraging concentration
inequalities from Ledoux (2001) and El Karoui (2009). See the proof in Section B.4 for more details.

Lemma A.9 provides the LSD of ρn and Wn, extending the result of Wu and Wang (2022). Their

result is restricted to the non-paranormal distribution, and our study considers the case where the

data follows a scale mixture of normal distributions, as indicated in Assumption (A2).

Lemma A.9 (Limiting spectral distribution). For the high-dimensional factor model (1), assume that
Assumptions (A1) – (A4) hold, and the ESD of Σρ = EWn tends to a proper probability measure H as
n→∞. Then, with probability one, both Fρn and FWn tend to a non-random probability distribution
Fc,H , the Stieltjes transform m =m(z) (z ∈ C+) of which is the unique solution to the equation

m =
∫

1
t(1− c − czm)− z

dH(t). (19)

20



The following Lemma A.10 concerns the limiting behavior of ΩK (·, ·) defined in (48), which

plays a crucial role in the proof of Theorem 2.5.

Lemma A.10. Let X = (Xij)n×p = (x1, . . . ,xn)⊺ be an n × p random matrix. Assume that X satisfies
Assumption (A1) and the following assumptions:

(B1) The vectors {xℓ}nℓ=1 are i.i.d., but the entries of each xℓ are not necessarily i.i.d.

(B2) (Moment condition) For any i, j, s, t ∈ [p] with i , j , s , t, we have

EX1i = 0, EX2
1i = 1, EX1iX1j = 0, EX4

1i =O(1),

EX2
1iX1jX1s =O(p−1), EX1iX1jX1sX1t =O(p−2).

(B3) (Weak dependency) For any p × p symmetric matrix T with bounded spectral norm, we have
Var(x⊺1Tx1) = o(p2) as p→∞.

(B4) (Concentration) For any convex 1-Lipschitz (with respect to the Euclidean norm) function F from
Rp to R, let mF denote a median of F,

P
(
|F(x1)−mF | > t

)
⩽ C exp

{
−c(p)t2

}
,

where C and c(p) are independent of F, and C is independent of p. We allow c(p) to be a constant
or to go to zero with p like p−α, 0 ⩽ α < 1.

Moreover, let Y = (Yij )n×p = (y1, . . . ,yn)⊺ be a random matrix independent of X, satisfying Assumptions
(A1) and (B1) – (B4) with Xij and xℓ replaced by Yij and yℓ, respectively. Then, ΩK (λ,X) and ΩK (λ,Y)

have the same limiting distribution, where ΩK (·, ·) is defined in (48).

Remark A.11. Assumption (B4) is from El Karoui (2009). In (El Karoui, 2009, p. 2386), the author
gave some examples of distributions satisfying Assumption (B4), such as:

• Gaussian random vectors with covariance matrix Σp and c(p) = 1/∥Σp∥2 (according to Theorem
2.7 in Ledoux (2001)).

• Random vectors with entries bounded by 1/
√
c(p) (according to Lemma A.3).

B Proofs of lemmas

B.1 Proof of Lemma 2.2

Let ∆n denote the difference between ρn and Wn, that is,

∆n := ρn −Wn =
1
n

n∑
i=1

RiR
⊺
i −

3
n

n∑
i=1

AiA
⊺
i , (20)

where R⊺
i is the i-th row of R defined in (2) and Ai := E{sign(yi − yℓ) | yi}. From Lemma A.1, it is

sufficient to show that ∥
√
n∆n∥2 =OP (1). To this end, we show that

√
n∆n is a Wigner-type matrix
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by the following moment estimations:

E{(
√
n∆n)jℓ} =O(n−1/2), Var{(

√
n∆n)jℓ} =O(1), (21)

Corr
(
(
√
n∆n)jℓ, (

√
n∆n)jℓ′

)
=O(n−1/2), j , ℓ , ℓ′ , (22)

Corr
(
(
√
n∆n)jj , (

√
n∆n)ℓr

)
=O(n−1/2), ℓ , r. (23)

Let yij be the j-th component of yi . For each j ∈ [p], we define the empirical cumulative
distribution function (ECDF) as

F̂j(y) =
1
n

n∑
ℓ=1

1{yℓj ⩽ y}, (24)

and let rij = nF̂j(yij ) be the rank of yij among {yℓj}nℓ=1, where and i ∈ [n] and j ∈ [p]. For notational

simplicity, we denote Fij = Fj(yij) and F̂ij = F̂j(yij), where Fj(·) is the CDF of y1j . Using these

notations, we write the (i, j)-th entry of the matrix R defined in (2) as

Rij =

√
12

n2 − 1

(
rij −

n+ 1
2

)
=

√
12n2

n2 − 1

(
F̂ij −

n+ 1
2n

)
, (25)

and write the j-th entry of the vector Ai as

Aij = E
{
sign

(
yij − yℓj

)
| yij

}
= 2Fij − 1. (26)

First, we prove (21). From (20) and (25) – (26), the j-th diagonal entries of ∆n can be written as

(∆n)jj = 1− (12/n)
∑n
i=1(Fij − 1/2)2. By using the fact that {Fij}ni=1

i.i.d.∼ Uniform(0,1) for fixed j, we

obtain

E{(∆n)jj} = 0, Var{(∆n)jj} =
4

5n
. (27)

Then, we consider the off-diagonal entries. From (20) and (25) – (26), the (j, ℓ)-th entry of ∆n, where

j , ℓ, can be written as

(∆n)jℓ

=
1
n

 n∑
i=1

(
12n2

n2 − 1

)(
F̂ij −

n+ 1
2n

)(
F̂iℓ −

n+ 1
2n

)
−

n∑
i=1

12
(
Fij −

1
2

)(
Fiℓ −

1
2

)
=

6
n

n∑
i=1


(

2n2

n2 − 1
F̂ij F̂iℓ − 2FijFiℓ

)
−
( n
n− 1

F̂ij −Fij
)
−
( n
n− 1

F̂iℓ −Fiℓ
)

+
1

n− 1


=:

6
n

n∑
i=1

(∆n)(i)
jℓ .

From the fact that {Fij}ni=1
i.i.d.∼ Uniform(0,1) for fixed j and the definition (24) of ECDF, we obtain

EFij =
1
2
, EF2

ij =
1
3
, EF̂ij =

1
n

n∑
ℓ=1

E1{yℓj ⩽ yij} =
n+ 1
2n

,
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and

EF̂ij F̂iℓ =
(n− 1)(n− 2)

n2 EFijFiℓ +
n− 1
n2 E1{ysj ⩽ yij}1{ysℓ ⩽ yiℓ}+

1
n
, (s , i).

These identities imply that

E
{
(∆n)(1)

jℓ

}
= − 6

n+ 1
EF1jF1ℓ +

2
n+ 1

E1{y2j ⩽ y1j}1{y2ℓ ⩽ y1ℓ}+
1

n+ 1
=O(n−1).

As {(∆n)(i)
jℓ }

n
i=1 are i.i.d. for fixed j and ℓ, we have

E
{
(∆n)jℓ

}
= 6E

{
(∆n)(1)

jℓ

}
=O(n−1). (28)

Moreover, a similar calculation gives

Var
{
(∆n)(1)

jℓ

}
=

n3

(n2 − 1)2E
[

1
3

+ 4F1jF1ℓ

(
3F1j + 3F1ℓ − 4F1jF1ℓ

)
− 10F1jF1ℓ

− 4
(
F1j +F1ℓ − 2F1jF1ℓ −

1
2

)
1{y2j ⩽ y1j}1{y2ℓ ⩽ y1ℓ}

]
+O(n−2)

=O(n−1).

Thus, we have

Var
{
(∆n)jℓ

}
=

36
n

Var
{
(∆n)(1)

jℓ

}
=O(n−2). (29)

This, together with (27) and (28), implies (21).

Now, we prove (22). For any j, ℓ,ℓ′ ∈ [p] with j , ℓ , ℓ′, direct calculation gives us

Cov
(
(∆n)jℓ, (∆n)jℓ′

)
=

36n2

(n2 − 1)2E
{
−16F2

1jF1ℓF1ℓ′ + 8F2
1jF1ℓ + 4F2

1j1{y2ℓ ⩽ y1ℓ}1{y2ℓ′ ⩽ y1ℓ′ }

+ 12F1jF1ℓF1ℓ′ + 4F1j1{y2j ⩽ y1j}
[
F1ℓ1{y2ℓ′ ⩽ y1ℓ′ }+F1ℓ′1{y2ℓ ⩽ y1ℓ}

]
− 3F1j

(
F1ℓ +F1ℓ′

)
− 2F1j1{y2j ⩽ y1j}

[
1{y2ℓ ⩽ y1ℓ}+1{y2ℓ′ ⩽ y1ℓ′ }

]
− 4F1j1{y2ℓ ⩽ y1ℓ}1{y2ℓ′ ⩽ y1ℓ′ } −F1ℓF1ℓ′

− 21{y2j ⩽ y1j}
[
F1ℓ1{y2ℓ′ ⩽ y1ℓ′ }+F1ℓ′1{y2ℓ ⩽ y1ℓ}

]
+1{y2j ⩽ y1j}1{y2ℓ ⩽ y1ℓ}+1{y2j ⩽ y1j}1{y2ℓ′ ⩽ y1ℓ′ }

+1{y2ℓ ⩽ y1ℓ}1{y2ℓ′ ⩽ y1ℓ′ }+
1
6

}
+O(n−3). (30)

From Assumptions (A1), (A3), and (A4), the constant term in the curly brackets of (30) is of order

O(n−1/2), then we have Cov
(
(∆n)jℓ, (∆n)jℓ′

)
=O(n−5/2). This, together with (29), implies that

Corr
(
(∆n)jℓ, (∆n)jℓ′

)
=

Cov
(
(∆n)jℓ, (∆n)jℓ′

)√
Var

{
(∆n)jℓ

}
·Var

{
(∆n)jℓ′

} =O(n−1/2),
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and thus (22) holds true.

Finally, we prove (23). For any j, ℓ, r ∈ [p] with ℓ , r, by using similar argument above, we have

Cov
(
(∆n)jj , (∆n)ℓr

)
=

72
n

1
n+ 1

{(
2E

[
F1j1{y2ℓ ⩽ y1ℓ}1{y2r ⩽ y1r}

]
− 6EF1jF1ℓF1r + 2E(F1jF1ℓ +F1jF1r )−

1
2

)
−
(
2E

[
F2

1j1{y2ℓ ⩽ y1ℓ}1{y2r ⩽ y1r}
]
− 6EF2

1jF1ℓF1r + 2E(F2
1jF1ℓ +F2

1jF1r )−
1
3

)
− 1

6

[
−6EF1ℓF1r + 2E1{y2ℓ ⩽ y1ℓ}1{y2r ⩽ y1r}+ 1

]}
=O(n−5/2).

This, together with (27) and (29), implies (23) and completes the proof.

B.2 Proof of Lemma 2.3

Recall that Aiℓ = sign(yi − yℓ) and Ai = E(Aiℓ | yi) for any i, ℓ ∈ [n] with i , ℓ. By using the law of

iterated expectations repeatedly, we obtain

Σρ = 3E(A1A⊺
1) = 3E

{
E(A12 | y1)A⊺

1

}
= 3E(A12A⊺

1)

= 3E
{
A12E(A⊺

13 | y1,y2)
}

= 3E
{
E(A12A⊺

13 | y1,y2)
}

= 3E(A12A⊺
13) = 3E

{
sign(y1 − y2)sign(y1 − y3)⊺

}
.

Let b⊺
i denote the i-th row of B, and Ψii denote the i-th diagonal element of Ψ . From Assumption

(A2) and Definition 2.1, the i-th component of y1 = Bf1 + Ψ e1 has a stochastic representation

(below, we omit “1” in subscripts to simplify notations)

yi
d=
√
wf b⊺

i x +
√
weiΨiizi , i ∈ [p], (31)

where x ∼NK (0,IK ), {zi}
p
i=1

i.i.d.∼N (0,1), and they are independent. For any i ∈ [p], let

ṽi :=

√
wf bi√

(wf + w̃f )b⊺
i bi + (wei + w̃ei )Ψ

2
ii

, v̂i :=

√
wf bi√

(wf + ŵf )b⊺
i bi + (wei + ŵei )Ψ

2
ii

,

where (w̃f , w̃ei ) and (ŵf , ŵei ) are two independent copies of (wf ,wei ). It follows from Lemma A.6

that, the (i, j)-th element of Σρ can be written as

(Σρ)ij =

(6/π)E{arcsin(ṽ⊺
i v̂j )}, i , j,

1, i = j.
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By using Taylor’s expansion, we derive that (Σρ)ij = 6
πE(ṽ⊺

i v̂j ) +O(p−2) for i , j. By definitions of ṽi
and v̂j and Assumption (A3), we have

E(ṽ⊺
i v̂j )

= E


√
wf√

(wf + w̃f )b⊺
i bi + (wei + w̃ei )Ψ

2
ii

·
√
wf√

(wf + ŵf )b⊺
j bj + (wej + ŵej )Ψ

2
jj

b⊺
i bj

= E


 √

wf√
(wei + w̃ei )Ψ

2
ii

+ o(1)

 √
wf√

(wej + ŵej )Ψ
2
jj

+ o(1)


b⊺

i bj

= E

 wf√
wei + w̃ei

√
wej + ŵej

 b⊺
i bj

ΨiiΨjj
+ o(p−1).

By using the above estimations, we obtain

Σρ = diag(Ip −γΨ −1BB⊺
Ψ −1) +γΨ −1BB⊺

Ψ −1 + En, (32)

where En := Σρ −diag(Ip −γΨ −1BB⊺
Ψ −1)−γΨ −1BB⊺

Ψ −1 with ∥En∥max = o(p−1) and

γ :=
6
π
E
[
wf /{(wei + w̃ei )(w

e
j + ŵej )}

1/2
]
. (33)

By the basic norm inequality ∥A∥2 ⩽ p∥A∥max for any p × p matrix A, we have

∥En∥2 ⩽ p · o(p−1) = o(1). (34)

Since (w̃ei , ŵ
e
j ) is an independent copy of (wei ,w

e
j ) for i , j and random variables {wei }

p
i=1 are i.i.d., we

can replace wei ,w
e
j , w̃

e
i , ŵ

e
j in (33) by we1,w

e
2,w

e
3,w

e
4, respectively. This, together with (32) and (34),

completes the proof of Lemma 2.3.

B.3 Proof of Lemma A.6

From the definition of Q in (13), we obtain Q|(WX ,WY1
,WY2

) ∼N2(0,Σ), where

Σ =

WXσ
2
X1

+WY1
σ2
Y1

γWX

γWX WXσ
2
X2

+WY2
σ2
Y2

 .
For Q̃1 and Q̃2, they have the following stochastic representations:

Q̃1
d=
√
W̃X1

X̃1 +
√
W̃Y1

Ỹ1, Q̃2
d=
√
W̃X2

X̃2 +
√
W̃Y2

Ỹ2,

where (W̃X1
, W̃Y1

), (W̃X2
, W̃Y2

), (X̃1, Ỹ1), and (X̃2, Ỹ2) are independent copies of (WX ,WY1
), (WX ,WY2

),

(X1,Y1), and (X2,Y2), respectively. Note that X̃1 and X̃2 are independent. Two random vectors Q
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and Q̃ = (Q̃1, Q̃2)⊺ are independent, and Q̃|(W̃X1
, W̃X2

, W̃Y1
, W̃Y2

) ∼N2(0, Σ̃), where

Σ̃ =

W̃X1
σ2
X1

+ W̃Y1
σ2
Y1

0

0 W̃X2
σ2
X2

+ W̃Y2
σ2
Y2

 .
Comnbining Q and Q̃ into a vector Q :=

(
Q

Q̃

)
, then we have Q|W ∼ N4(0,Ω), where W :=

(WX ,WY1
,WY2

, W̃X1
, W̃X2

, W̃Y1
, W̃Y2

), and Ω =
(
Σ O
O Σ̃

)
. From(

Q1−Q̃1

Q2−Q̃2

)
= (I2,−I2)Q =: B0Q,

we obtain
(
Q1−Q̃1

Q2−Q̃2

) ∣∣∣∣W ∼N2(0,B0ΩB⊺
0), where

B0ΩB⊺
0 =

(WX + W̃X1
)σ2
X1

+ (WY1
+ W̃Y1

)σ2
Y1

γWX

γWX (WX + W̃X2
)σ2
X2

+ (WY2
+ W̃Y2

)σ2
Y2

 .
Given W, the Pearson correlation coefficient between Q1 − Q̃1 and Q2 − Q̃2 is

r =
γWX√

(WX + W̃X1
)σ2
X1

+ (WY1
+ W̃Y1

)σ2
Y1

√
(WX + W̃X2

)σ2
X2

+ (WY2
+ W̃Y2

)σ2
Y2

.

By Lemma A.5, we conclude that

E{sign(Q1 − Q̃1)sign(Q2 − Q̃2)} = E
[
E
{
sign(Q1 − Q̃1)sign(Q2 − Q̃2)

∣∣∣∣W}]
=

2
π
E
{
arcsin(r)

}
.

This completes the proof of Lemma A.6.

B.4 Proof of Lemma A.7

The convergence of βi0 can be proven by using the same argument in the proof of Lemma C.3 of

Jiang and Bai (2021b). The conclusion εi → 0 follows from (17). First, we prove that Eε2
i = o(1).

Since ∥Γ ∥2 is bounded and the variable λ (spiked eigenvalue) stays away from the bulk eigenvalues

of n−1Γ
1/2X⊺

i0Xi0Γ
1/2, the spectral norm of B := Γ

1/2(λI − n−1Γ
1/2X⊺

i0Xi0Γ
1/2)−1Γ

1/2 is bounded. By

Assumptions (A1) and (B3), we have

Eε2
i =

1
n2E

∣∣∣x⊺i Bxi − trB
∣∣∣2 = o(1).

Second, we prove Eε4
i = o(n−1). From Assumption (B4), we can apply Lemma A.2 to estimating

moments of εi . For δ > 0, let tn(δ) = (p/n)(logp)1+δ/
√
pc(p), where c(p) is defined in Assumption

(B4). Define an event

Fn(δ) = {xi : n−1(x⊺i Bxi − trB) < tn(δ)}.

From Lemma A.2 and the fact E(x1x⊺1) = Ip (see Assumption (B2)), we have P
(
F cn (δ)

)
= o(n−1). By
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the elementary inequality |a+ b|r ⩽ 2r−1(|a|r + |b|r ) for r > 1, we have

Eε4
i = E

∣∣∣εi1{Fn(δ)} + εi1{F c
n (δ)}

∣∣∣4 ⩽ 8
[
Eε4

i 1{Fn(δ)} +Eε4
i 1{F c

n (δ)}
]
. (35)

For the first term, we have

Eε4
i 1{Fn(δ)} =

∫ ∞
0

4t3P
(∣∣∣εi1{Fn(δ)}

∣∣∣ > t)dt ⩽
∫ tn(δ)

0
4t3 dt = o(n−1). (36)

For the second term, by the fact that |εi | = |n−1
(
x⊺i Bxi − trB

)
|⩽ C∥B∥2 (using Assumption (B2) and

the Courant–Fischer principle) and ∥B∥2 =O(1), we obtain

Eε4
i 1{F c

n (δ)} ⩽ C4∥B∥42P
(
F cn (δ)

)
= o(n−1).

This, together with (35) and (36), implies that Eε4
i = o(n−1).

Finally, we prove (18). The proofs of E{tr(Wτi)}2 = O(1) and E{tr(Wτi0)}2 = O(1) are similar,

and thus we only prove the first conclusion. Let

τi1 = n−1(x⊺i H2xi − trH2)IK ,

τi2 = U⊺
1(Ip + H1)(xix

⊺
i − Ip)(Ip + H1)⊺U1,

then we can write τi = τi1−τi2. To prove E{tr(Wτi)}2 =O(1), it suffices to show that E{tr(Wτi2)}2 =

O(1), since

E{tr(Wτi)}2 = E{trW(τi1 − τi2)}2 ⩽ 2E{tr(Wτi1)}2 + 2E{tr(Wτi2)}2,

and

E{tr(Wτi1)}2 = n−2E(x⊺i H2xi − trH2)2 · (trW)2 = o(1),

which follows from Assumption (B3) and the fact ∥H2∥2 =O(1). Let

∆ = (Ip + H⊺
1)U1WU⊺

1(Ip + H1),

then we have

E[tr(Wτi2)]2 = E|x⊺i ∆xi − tr∆|2 ⩽ 2E|x⊺i ∆xi |2 + 2E|tr∆|2.

Note that

tr(∆) = tr
{
WU⊺

1(Ip + H1)(Ip + H⊺
1)U1

}
⩽ K∥WU⊺

1(Ip + H1)(Ip + H⊺
1)U1∥2 =O(1),

and similarly, (tr∆)2 =O(1). Thus, we need only to show E|x⊺i ∆xi |2 =O(1). Let ∆kℓ denote the (k,ℓ)-

th entry of ∆. From Lemma A.4, we obtain
∑p
k=1∆

2
kk ⩽ tr(∆2) = O(1). By using Cauchy-Schwarz

inequality, we obtain ∑
k,ℓ

∆kk∆ℓℓ ⩽
(∑
k

∆kk

)(∑
ℓ

∆ℓℓ

)
= (tr∆)2 =O(1),
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∑
k,ℓ,s

∆kℓ∆ks ≍
∑
k,ℓ,s

∆kk∆ℓs ⩽
(∑
k

∆kk

)
·
(∑
ℓ,s

∆ℓs

)
⩽ (tr∆) · p(tr∆2)1/2 =O(p),

∑
k,ℓ,s,t

∆kℓ∆st ⩽
(∑
k,ℓ

∆kℓ

)(∑
s,t

∆st

)
⩽ p2tr(∆2) =O(p2).

It follows from the above inequalities and Assumption (B2) that

E|x⊺i ∆xi |2 =
p∑
k=1

E∆2
kk ·EX

4
ik +

∑
k,ℓ

E(∆kk∆ℓℓ + 2∆2
kℓ) ·EX

2
ikX

2
iℓ

+
∑
k,ℓ,s

E(2∆kk∆ℓs + 4∆kℓ∆ks) ·EX2
ikXiℓXis

+
∑

k,ℓ,s,t

E∆kℓ∆st ·EXikXiℓXisXit

=O(1).

This completes the proof of Lemma A.7.

B.5 Proof of Lemma A.9

From Lemma 2.2, ρn and Wn share the same LSD, thus we only need to derive the LSD of Wn. Since

the vectors {Ai}ni=1 are i.i.d., by Theorem 1.1 of Bai and Zhou (2008), we can prove Lemma A.9 by

verifying that the elements of A1 are weakly dependent in the following sense: for any non-random

p × p matrix D with bounded spectral norm,

Var(A⊺
1DA1) = o(p2). (37)

From the Corollary 1.1 in Bai and Zhou (2008), (37) holds true if

∑
Λ

{
E
(
A1iA1j − σij

)(
A1i′A1j ′ − σi′j ′

)}2
= o(p2), (38)

max
i,j

E
∣∣∣A1iA1j − σij

∣∣∣2 = o(p), (39)

where A1i is the i-th component of A1, σij := EA1iA1j , and

Λ = {(i, j, i′ , j ′) : i, j, i′ , j ′ ∈ [p]} \ {(i, j, i′ , j ′) : i = i′ , j = j ′ or i = j ′ , j = i′}.

Now, we prove (38) and (39). From (26), we have A1i ∼ Uniform(−1,1) for any i ∈ [p], and thus

EA4
1i =

1
5
, σii = EA2

1i =
1
3
. (40)

Two moment conditions (38) and (39) follow from (40) and the following estimations:

σij =O(p−1), EA1iA1jA1i′A1j ′ =O(p−2), EA2
1iA1i′A1j ′ =O(p−1), (41)

EA3
1iA1j =O(p−1), E

(
A2

1i − σii
)(
A2

1j − σjj
)

=O(p−2), (42)
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where i, j, i′ , j ′ ∈ [p] and i , j , i′ , j ′. Proofs of (41) and (42) are provided in Section B.5.1. From

(40) – (42), we obtain

max
i,j

E
∣∣∣A1iA1j − σij

∣∣∣2 =O(1),

and ∑
Λ

{
E
(
A1iA1j − σij

)(
A1i′A1j ′ − σi′j ′

)}2

=
∑

i,j,i′,j ′

(
EA1iA1jA1i′A1j ′ − σijσi′j ′

)2
+ 2

∑
i,i′,j ′

(
EA2

1iA1i′A1j ′ − σiiσi′j ′
)2

+ 2
∑
i,j,j ′

(
EA2

1iA1jA1j ′ − σijσij ′
)2

+ 2
∑
i,j

(
EA3

1iA1j − σijσii
)2

+
∑
i,j

(
EA2

1iA
2
1j − σiiσjj

)2
+
∑
i

(
EA4

1i − σ
2
ii

)2

=O(p4) ·O(p−4) +O(p3) ·O(p−2) +O(p3) ·O(p−2) +O(p2) ·O(p−2)

+O(p2) ·O(p−4) +O(p) ·O(1)

=O(p).

This implies (38) and (39), completing the proof of Lemma A.9.

B.5.1 Proofs of (41) and (42)

In this section, we provide the proofs of some moment estimations (41) and (42), which are used in

the proof of Lemma A.9.

From equations (26), (31), and Assumption (A3), we have

EA1i = 2EFi
(
b⊺
i f1 +Ψiie1i

)
− 1

= E {2Fi
(
Ψiie1i

)
− 1}+O(p−1/2) =: EÃ1i +O(p−1/2).

Since EA1i = 0, we obtain that EÃ1i =O(p−1/2). By using the same argument, we obtain

E Ã2
1i = EA2

1i +O(p−1), E Ã3
1i =O(p−1/2).

Since Ã1i and Ã1j are independent for i , j, we have

σij = EA1iA1j = E Ã1i ·E Ã1j +O(p−1) =O(p−1).

By using the above estimations, for i , j , i′ , j ′, we have

EA1iA1jA1i′A1j ′ = E Ã1i ·E Ã1j ·E Ã1i′ ·E Ã1j ′ +O(p−2) =O(p−2),

EA2
1iA1i′A1j ′ = E

[
A2

1i

{
Ã1i′ +O(p−1/2)

}{
Ã1j ′ +O(p−1/2)

}]
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= EA2
1i ·EÃ1i′ ·EÃ1j ′ +O(p−1) =O(p−1),

EA3
1iA1j = E

[{
Ã1i +O(p−1/2)

}3{
Ã1j +O(p−1/2)

}]
= E

[{
Ã3

1i +O(p−1/2) · Ã2
1i +O(p−1) · Ã1i +O(p−3/2)

}{
Ã1j +O(p−1/2)

}]
=O(p−1),

E
(
A2

1i − σii
)(
A2

1j − σjj
)

= E
[{
Ã2

1i − σii +O(p−1/2) · Ã1i +O(p−1)
}{
Ã2

1j − σjj +O(p−1/2) · Ã1j +O(p−1)
}]

=O(p−2).

These equations complete the proofs of (41) and (42).

B.6 Proof of Lemma A.10

Throughout this proof, ΩK (λ,X) is simply denoted as ΩK (X) if no confusion. Recall that X =

(x1, . . . ,xn)⊺ and Y = (y1, . . . ,yn)⊺. We denote

Xi = (x1, . . . ,xi ,yi+1, . . . ,yn)⊺, Xi0 = (x1, . . . ,xi−1,yi+1, . . . ,yn)⊺,

with convention X = Xn and Y = X0. Using the Sherman-Morrison formula, we obtain

ΩK (Xi)−ΩK (Xi0)

=
1

βi
√
n

{
(1 +n−1x⊺i H2xi)IK −U⊺

1(Ip + H1)xix
⊺
i (Ip + H1)⊺U1

}
=

1
βi0
√
n

(τi0 + τi)−
εi

β2
i0
√
n

(τi0 + τi) +
ε2
i

β2
i0βi
√
n

(τi0 + τi),

where βi and βi0 are defined in (14) and (15), and

H1 = n−1X⊺
i0(λIn−1 −n−1Xi0Γ X⊺

i0)−1Xi0Γ ,

H2 = n−1Γ X⊺
i0(λIn−1 −n−1Xi0Γ X⊺

i0)−2Xi0Γ ,

τi0 = (1 +n−1trH2)IK −U⊺
1(Ip + H1)(Ip + H1)⊺U1, (43)

τi = n−1(x⊺i H2xi − trH2)IK −U⊺
1(Ip + H1)(xix

⊺
i − Ip)(Ip + H1)⊺U1. (44)

Similarly, we have

ΩK (Xi−1)−ΩK (Xi0)

=
1

βi0
√
n

(τi0 + τiy)−
εiy

β2
i0
√
n

(τi0 + τiy) +
ε2
iy

β2
i0βiy

√
n

(τi0 + τiy),
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where βiy ,τiy , and εiy are similarly defined as βi ,τi , and εi with xi replaced by yi .
Now, we begin to prove that ΩK (X) and ΩK (Y) have the same limiting distribution. To this end,

we show that the difference between the characteristic functions tends to zero, that is, for any K ×K
deterministic symmetric matrix W,

E
(
exp

[
i tr

{
WΩK (X)

}])
−E

(
exp

[
i tr

{
WΩK (Y)

}])
→ 0,

where i =
√
−1. Using the notations we introduced above, we can write

E
(
exp

[
i tr

{
WΩK (X)

}])
−E

(
exp

[
i tr

{
WΩK (Y)

}])
=

n∑
i=1

Eexp
(
i tr

[
W

{
ΩK (Xi0) +

τi0
βi0
√
n

}])Ei exp
(
i tr

[
W

{ τi
βi0
√
n
− (τi0 + τi)εi

β2
i0
√
n

}])

−Ei exp
(
i tr

[
W

{ τiy
βi0
√
n
−

(τi0 + τiy)εiy
β2
i0
√
n

}])
+

n∑
i=1

Eexp
(
i tr

[
W

{
ΩK (Xi0) +

τi0
βi0
√
n

}])
Ei exp

(
i tr

[
W

{ τi
βi0
√
n
− (τi0 + τi)εi

β2
i0
√
n

}])(
exp

[
i tr

{W(τi0 + τi)ε
2
i

β2
i0βi
√
n

}]
− 1

)

−Ei exp
(
i tr

[
W

{ τiy
βi0
√
n
−

(τi0 + τiy)εiy
β2
i0
√
n

}])(
exp

[
i tr

{W(τi0 + τiy)ε2
iy

β2
i0βiy

√
n

}]
− 1

),
where Ei(·) := E(· | Xi0) denotes the conditional expectation given Xi0. The second term on the RHS

of the above identity can be shown to be negligible by using the same argument as in (Jiang and

Bai, 2021b, p. 16) and our Lemma A.7. Hence, we have

E
(
exp

[
i tr

{
WΩK (X)

}])
−E

(
exp

[
i tr

{
WΩK (Y)

}])
=

n∑
i=1

Eexp
(
i tr

[
W

{
ΩK (Xi0) +

τi0
βi0
√
n

}])
·

Ei exp
(
i tr

[
W

{ τi
βi0
√
n
− (τi0 + τi)εi

β2
i0
√
n

}])

−Ei exp
(
i tr

[
W

{ τiy
βi0
√
n
−

(τi0 + τiy)εiy
β2
i0
√
n

}])+ o(1).

Moreover, by using the same argument, we obtain

E
(
exp

[
i tr

{
WΩK (X)

}])
−E

(
exp

[
i tr

{
WΩK (Y)

}])
=

n∑
i=1

Eexp
(
i tr

[
W

{
ΩK (Xi0) +

τi0
βi0
√
n

}])
·
Ei exp

[
i tr

{
W

( τi
βi0
√
n
− τi0εi
β2
i0
√
n

)}]

−Ei exp
[
i tr

{
W

( τiy
βi0
√
n
−
τi0εiy

β2
i0
√
n

)}]+ o(1).
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This, together with Taylor’s expansion, gives us

E
(
exp

[
i tr

{
WΩK (X)

}])
−E

(
exp

[
i tr

{
WΩK (Y)

}])
⩽

∣∣∣∣∣∣ n∑
i=1

Eexp
(
i tr

[
W

{
ΩK (Xi0) +

τi0
βi0
√
n

}])
×

C

Ei
(
1 + itr

{
W

( τi
βi0
√
n
− τi0εi
β2
i0
√
n

)}
− 1

2

[
tr
{

W
( τi
βi0
√
n
− τi0εi
β2
i0
√
n

)}]2
+ o(n−1)

)

−Ei
(
1 + itr

{
W

( τiy
βi0
√
n
−
τi0εiy

β2
i0
√
n

)}
− 1

2

[
tr
{

W
( τiy
βi0
√
n
−
τi0εiy

β2
i0
√
n

)}]2
+ o(n−1)

)
∣∣∣∣∣∣

= o(1),

where we use some facts as follows:

Eitr
{

W
( τi
βi0
√
n
− τi0εi
β2
i0
√
n

)}
= Eitr

{
W

( τiy
βi0
√
n
−
τi0εiy

β2
i0
√
n

)}
= 0,

Ei
[
tr
{

W
( τi
βi0
√
n
− τi0εi
β2
i0
√
n

)}]2
−Ei

[
tr
{

W
( τiy
βi0
√
n
−
τi0εiy

β2
i0
√
n

)}]2
= o(n−1). (45)

Finally, it remains to prove (45). Note that[
tr
{

W
( τi
βi0
√
n
− τi0εi
β2
i0
√
n

)}]2

=
1
n

[
1

β2
i0

{tr(Wτi)}2 −
2εi
β3
i0

tr(Wτi)tr(Wτi0) +
ε2
i

β4
i0

{tr(Wτi0)}2
]
,

and from Lemma A.7, we have

1

β3
i0

E
{
tr(Wτi)tr(Wτi0εi)

}
≍ Eεi = o(1),

1

β4
i0

E
[
{tr(Wτi0)}2ε2

i

]
≍ Eε2

i = o(1).

Since X and Y satisfy (B1) – (B4), by using above estimates and Lemma A.7, we obtain

Ei
[
tr
{

W
( τi
βi0
√
n
− τi0εi
β2
i0
√
n

)}]2
−Ei

[
tr
{

W
( τiy
βi0
√
n
−
τi0εiy

β2
i0
√
n

)}]2

=
1
n
Ei

(
1

β2
i0

[{
tr(Wτi)

}2
−
{
tr(Wτiy)

}2]
+ o(1)

)
= o(n−1),

which is (45), completing the proof of Lemma A.10.
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C Proofs of Theorems 2.5 and 2.8

C.1 Proof of Theorem 2.5

From Lemma 2.2, we investigate the phase-transition theory of spiked eigenvalues of ρn by those

of Wn = (3/n)
∑n
i=1 AiA

⊺
i . Recall that Σρ = EWn. Define the spectral decomposition of Σ1/2

ρ as

Σ
1/2
ρ = U

D1/2
1 0

0 D1/2
2

U⊺
,

where U is a p×p orthogonal matrix, D1 is the diagonal matrix consisting of the K spiked population

eigenvalues, and D2 is the diagonal matrix consisting of the remaining p−K non-spiked eigenvalues.

Let Ãi :=
√

3Σ−1/2
ρ Ai denote a transformed version of

√
3Ai . It is obvious that Ãi is isotropic, that

is, Cov(Ãi) = Ip. By using these notations and the spectral decomposition of Σ1/2
ρ , we can write the

characteristic equation as

0 = |λIp −Wn| =
∣∣∣∣∣∣λIp −U

D1/2
1

D1/2
2

U⊺W̃nU

D1/2
1

D1/2
2

U⊺

∣∣∣∣∣∣ , (46)

where W̃n := n−1A⊺A withA := (Ã1, . . . ,Ãn)⊺. Let Q = U⊺W̃nU and partition it as

Q =

Q11 Q12

Q21 Q22

 =

U⊺
1W̃nU1 U⊺

1W̃nU2

U⊺
2W̃nU1 U⊺

2W̃nU2

 ,
where U1 is the submatrix formed by the first K columns of U, and U2 is the remaining submatrix.

Plugging this identity into (46) yields that

0 =

∣∣∣∣∣∣λIp −
D1/2

1 Q11D1/2
1 D1/2

1 Q12D1/2
2

D1/2
2 Q21D1/2

1 D1/2
2 Q22D1/2

2

∣∣∣∣∣∣
=

∣∣∣∣λIp−K −D1/2
2 Q22D1/2

2

∣∣∣∣
×
∣∣∣∣λIK −D1/2

1 Q11D1/2
1 −D1/2

1 Q12D1/2
2 (λIp−K −D1/2

2 Q22D1/2
2 )−1D1/2

2 Q21D1/2
1

∣∣∣∣,
where the last equality follows from the formula det

(
A B
C D

)
= det(A−BD−1C) ·det(D). Since we only

consider the spiked eigenvalues, we have |λIp−K −D1/2
2 Q22D1/2

2 | , 0, and

0 =
∣∣∣∣λD−1

1 −Q11 −Q12D1/2
2 (λIp−K −D1/2

2 Q22D1/2
2 )−1D1/2

2 Q21

∣∣∣∣
=

∣∣∣∣λD−1
1 −

1
n

U⊺
1A

⊺
[
In +

1
n
AU2D1/2

2

(
λIp−K −

1
n

D1/2
2 U⊺

2A
⊺AU2D1/2

2

)−1
D1/2

2 U⊺
2A

⊺
]
AU1

∣∣∣∣
=

∣∣∣∣λD−1
1 −

λ
n

U⊺
1A

⊺
(
λIn −

1
n
AU2D2U⊺

2A
⊺
)−1
AU1

∣∣∣∣
=

∣∣∣∣λD−1
1 −

λ
n

tr
{(
λIn −

1
n
AΓA⊺

)−1}
IK +n−1/2ΩK (λ,A)

∣∣∣∣, (47)
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where Γ = U2D2U⊺
2 and

ΩK (λ,A) =
λ
√
n

[
tr
{(
λIn −

1
n
AΓA⊺

)−1}
IK −U⊺

1A
⊺
(
λIn −

1
n
AΓA⊺

)−1
AU1

]
. (48)

From Lemma A.10 and Remark A.11, if Ãi satisfies Assumptions (B1) – (B4), we can replace entries

ofA in (47) by the standard Gaussian entries without changing the phase-transition theory of the

spiked eigenvalues. Then, our Theorem 2.5 follows from Lemma 3.1 and Theorems 4.1 – 4.2 in Bai

and Yao (2012).

It remains to prove that random vector Ãi satisfies Assumptions (B1) – (B4), which shows that

our Lemma A.10 applies. It is obvious that Ãi satisfies Assumption (B1). By using Lemma 2.3,

we conclude that liminfp→∞λp(Σ1/2
ρ ) > 0, and thus Σ−1/2

ρ is bounded in spectral norm. Combining

this information and the fact that each component of the random vector Ai follows Uniform(−1,1)

distribution, we conclude that each component of the random vector Ãi has bounded fourth

moment. This, together with Lemma 2.3 and similar calculations in Section B.5.1, implies that Ãi

satisfies the moment condition (B2). From (37) and the fact that ∥Σ−1/2
ρ ∥2 =O(1), we have, for any

p×p symmetry matrix T with bounded spectral norm, Var(Ã⊺
i TÃi) = Var(3A⊺

i Σ
−1/2
ρ TΣ−1/2

ρ Ai) = o(p2).

Hence, Ãi satisfies Assumption (B3). By Assumptions (A3) and (A4), Lemma 2.3, and the fact that

each component of Ai follows Uniform(−1,1), we conclude that each component of Ãi is bounded,

and thus satisfies the concentration assumption (B4), according to Lemma A.3. Therefore, the

random vector Ãi satisfies Assumptions (B1) – (B4), which shows that our Lemma A.10 applies.

This completes the proof of Theorem 2.5.

C.2 Proof of Theorem 2.8

From Theorem 2.5, we have, with probability one,

m̂′n,j
(
λj(ρn)

)
=

1
p − j

p∑
ℓ=j+1

1{
λj(ρn)−λℓ(ρn)

}2
⩽

1{
λj(ρn)−λj+1(ρn)

}2 → {
ψ
(
λj(Σρ)

)
−ψ(λj+1

(
Σρ)

)}−2
≍ 1,

for any j ∈ [K0], where the function ψ(·) is defined in Theorem 2.5. Thus,

m̂′n,j+1

(
λj+1(ρn)

)
m̂′n,j

(
λj(ρn)

) ≍ 1, for j ∈ [K0 − 1]. (49)

The eigenvalues {λj(ρn),K0 + 1 ⩽ j ⩽ Kmax} are bulk eigenvalues, and then we have λj(ρn) −
λj+1(ρn) =O(p−1). Thus, for K0 + 1 ⩽ j ⩽ Kmax, we obtain

m̂′n,j
(
λj(ρn)

)
=

1
p − j

p∑
ℓ=j+1

1{
λj(ρn)−λℓ(ρn)

}2 ⩾
1

p − j
1{

λj(ρn)−λj+1(ρn)
}2 =O(p).
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Therefore,
m̂′n,K0+1

(
λK0+1(ρn)

)
m̂′n,K0

(
λK0

(ρn)
) →∞. (50)

Moreover, for K0 + 1 ⩽ j ⩽ Kmax, we have

m̂′n,j+1

(
λj+1(ρn)

)
m̂′n,j

(
λj(ρn)

) =
p − j

p − j − 1

∑p
ℓ=j+2

{
λj+1(ρn)−λℓ(ρn)

}−2

∑p
ℓ=j+1

{
λj(ρn)−λℓ(ρn)

}−2

≍
∑p
ℓ=j+2

{
λj+1(ρn)−λℓ(ρn)

}−2

∑p
ℓ=j+1

{
λj(ρn)−λℓ(ρn)

}−2 ≍ 1. (51)

Combining (49) – (51), we complete the proof of Theorem 2.8.
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