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Abstract

Determining the number of factors in high-dimensional factor modeling is essential but
challenging, especially when the data are heavy-tailed. In this paper, we introduce a new
estimator based on the spectral properties of Spearman sample correlation matrix under the
high-dimensional setting, where both dimension and sample size tend to infinity proportionally.
Our estimator is robust against heavy tails in either the common factors or idiosyncratic errors.
The consistency of our estimator is established under mild conditions. Numerical experiments
demonstrate the superiority of our estimator compared to existing methods.
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1 Introduction

Factor models are helpful tools for understanding the common dependence among high-dimensional
outputs. They are widely used in data analysis in various areas like finance, genomics, and eco-
nomics. Estimating the total number of factors is one of the most fundamental challenges when

applying factor models in practice. This paper focuses on the following factor model:
yi:Bfi+lIfei, ie[n] = {1,2,...,1’1}, (1)

where {y;}’; are the p-dimensional observation vectors, {f;}"_; the K-dimensional latent common
factor vectors, {e;} , the p-dimensional idiosyncratic error vectors, B the p x K factor loading
matrix, and W a p x p diagonal matrix. The objective of this paper is to estimate the number of
common factors when the observed data are heavy-tailed.

There is a large literature on this estimation problem which can generally be categorized into
two types of approaches. The first type is based on information criteria. The seminal work Bai and
Ng (2002) proposed several information criteria, which were formulated in many different forms,
through modifications of the Akaike information criterion (AIC) and the Bayesian information
criterion (BIC). Hallin and Liska (2007) proposed an information criterion that utilized spectral
density matrix estimation. Alessi et al. (2010) modified Bai and Ng (2002)’s criteria by tuning the
penalty function to enhance their performance. Kong (2017) employed similar ideas and put forth
a local principal component analysis (PCA) approach to study a continuous-time factor model
with time-varying factor loadings using high-frequency data. Li et al. (2017a) used information
criteria akin to those proposed by Bai and Ng (2002) to factor models when the number of
factors increases with the cross-section size and time period. The first type of approach usually
requires strong signals. The second type of approach is based on eigenvalue behavior of various
types of covariance/correlation matrices. As for sample covariance matrices, Nadakuditi and

Edelman (2008) proposed an estimator by exploiting the distribution properties of the moments of



eigenvalues. Ahn and Horenstein (2013) proposed two estimators by utilizing the ratios of adjacent
eigenvalues, namely the eigenvalue ratio (ER) estimator and the growth ratio (GR) estimator.
Onatski (2010, 2012) proposed an alternative edge distribution (ED) estimator based on the
maximum differences between consecutive eigenvalues instead of their ratios. Owen and Wang
(2016) introduced an estimator that utilizes the bi-cross-validation (BCV) technique from Owen
and Perry (2009). This estimator is based on the theoretical results concerning the spiked sample
covariance matrix .For lagged sample autocovariance matrices, Lam and Yao (2012) developed a
ratio-based estimator for factor modeling of multivariate time series. This estimator was further
extended by Li et al. (2017b) to accommodate weak factors. As for correlation matrices, Fan et al.
(2020) proposed a tuning-free and scale-invariant adjusted correlation thresholding method. This
approach has been further extended to time series tensor factor model in Lam (2021) and Chen
and Lam (2024).

The aforementioned methods have been proved to be inadequate when dealing with heavy-
tailed data, and mostly would result in biased or inconsistent estimators. Heavy-tailed data are
common in various real-world applications. For instance, prices of stock returns often exhibit
heavy tails due to the occurrence of extreme events in the market. However, little literature has
focused on estimating number of factors in the context of heavy-tailed data. Assuming a jointly
elliptical distribution for both common factors and idiosyncratic errors (as discussed in Fan et al.
(2018)), Yu et al. (2019) proposed two estimators utilizing the sample multivariate Kendall’s tau
matrix. He et al. (2022b) further extended it to the matrix factor model. He et al. (2022a) recovered
factor loadings and scores by performing PCA to the multivariate Kendall’s tau matrix. It is worth
mentioning that Yu et al. (2019)’s method requires that |[B'B/p — X5|l, — 0, where g isa K xK
positive definite matrix with bounded and distinct eigenvalues (see their Assumptions 2.3). The
factor model is considered to have a strong factor structure (Bai and Ng, 2002) when both B'B/p
and Y !' | f;f]/n converge to positive definite matrices. In this paper, we consider the weak loading
scenario by assuming BB = I, which is a commonly used identifiability condition in the literature
on factor models (see, for example, Bai and Li (2012)). Moreover, we address a more challenging
scenario where both the factors and idiosyncratic errors may be heavy-tailed, potentially leading to
the non-existence of the limit of )" | f;f]/n. We propose an estimator based on Spearman correlation
matrix (Spearman, 1961) which shows significant improvements over existing methods. Here,
we use a toy example to demonstrate the robustness of Spearman correlation matrix. Data are
generated following factor model (1) with K = 3. The factors and idiosyncratic errors follow either
standard normal distribution or standard Cauchy distribution. As shown in Figure 1, when the
common factors and the idiosyncratic noise are light-tailed, all four sample covariance/correlation
matrices have three spiked eigenvalues, and all factors can be detected. When the data distribution
is heavy-tailed, only our method can clearly identify all three factors.

Spearman correlation matrix is defined as the Pearson correlation matrix of the ranks of the
data. It is a valuable tool when dealing with heavy-tailed data. However, the nonlinear structure
of rank-based correlation brings significant difficulties when analyzing its eigenvalue behavior.

We need to resort to tools in random matrix theory (RMT). Unfortunately, most existing work in
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Figure 1: Scatter plots of the first 30 eigenvalues of the sample covariance matrix (SCM), Pearson correlation matrix,
Spearman correlation matrix, and multivariate Kendall’s tau matrix. Data are generated following the factor model
(1) with K = 3. The factors and idiosyncratic errors are drawn independently from standard Normal distribution (Left
panel: Figures (a), (c), (e), (g)) or standard Cauchy distribution (Right panel: Figures (b), (d), (f), (h)). The symbol “4”
represents the spiked eigenvalues. Further details regarding the matrices B and W can be found in the case (C1) in
Section 3.



RMT focuses on very restrictive settings when data has independent components. Bai and Zhou
(2008) showed that its limiting spectral distribution (LSD) is the well-known Marcenko-Pastur
law. Bao et al. (2015) established the central limiting theorem (CLT) for its linear spectral statistics
(LSS). Bao (2019) showed that the Tracy-Widom law holds for its largest eigenvalues. To the
best of our knowledge, the first investigation of Spearman sample correlation matrix for general
dependent data was conducted very recently by Wu and Wang (2022), which derived its LSD under
the non-paranormal distribution proposed by Liu et al. (2009). Many other spectral properties,
including the extreme eigenvalues, CLT for LSS, and spiked eigenvalues for dependent data, still
remain open. Our work is the first to investigate the eigenvalue behavior of Spearman sample
correlation matrix under spike models, and successfully applies the theories to identify the number
of factors in high-dimensional factor modeling for heavy-tailed data.

To summarize, the main contributions of this paper are two-fold. First, we propose a new
estimator based on Spearman sample correlation matrix for the number of common factors in the
high-dimensional factor model (1). This estimator is distribution-free and capable of estimating the
number of factors even when the data are heavy-tailed. Second, we provide a theoretical explanation
of phase-transition phenomenon for the top eigenvalues of Spearman sample correlation matrix
under spike model. From a technical point of view, we investigate this phase-transition theory
by establishing the universality of the asymptotic law of a low-dimensional random matrix (see
Lemma A.10 and Remark 2.6 for more details), and our method does not require the commonly
used independent component structure.

Before moving forward, let us introduce some notations that will be used throughout this
paper. We use [n] to denote the set {1,2,...,n}. We adopt the convention of using regular letters
for scalars, and bold-face letters for vectors or matrices. For any matrix A, we denote its (i, j)-th

entry by A;;, its transpose by AT, its trace by tr(A), its j-th largest eigenvalue by 1;(A) (when the
Yy by A, p y y ] 8 g Y Aj

j)

eigenvalues of A are real), its spectral norm by ||A||, = \/A;(AAT), and its element-wise maximum

norm by [|A||nax = max|A;j|. We use diag(A) to denote the diagonal matrix of A (replacing all off-
L]

o

diagonal entries with zero). For a sequence of random variables {X,,}>

and a corresponding set of
nonnegative real numbers {a,},>,, we write X, = Op(a,) if X,,/a,, = Op(1) (bounded in probability),
and we write X,, = op(a,) if X,,/a,, — 0 in probability. For any univariate function f, we denote
f(A) =[f(A;j)] as a matrix with f applied on each entry of A. Throughout this paper, C stands
for some positive constant whose value is not important and may change from line to line. The
notation “iy # iy # --- # i,,” indicates that the m indices {i¢},, are pairwise different. All limits are
for n — oo, unless explicitly stated otherwise.

The rest of this article is organized as follows. Section 2 proposes a new estimator of the number
of common factors in the factor model (1). The consistency of our estimator is proven based
on spectral properties of Spearman sample correlation matrix. Section 3 offers comprehensive
simulation experiments, comparing our estimator with others. In Section 4, we evaluate the
performance of the proposed estimator on a real dataset. A brief discussion is given in Section 5.

Auxiliary lemmas and technical proofs are relegated to the appendix.



2 Main results

2.1 Spearman correlation matrix

For p-dimensional i.i.d. data sample {y;};_,, we denote the ranks of the data as follows:

T
Y1 Yir 0 Yip ' 0 Tip
Yl’l = : = . fr— . ,
T ... ...
Yu Yn1 Yup Tn1 Tnp
— R ——
raw data matrix ranks matrix

where r;; = Yo 1{y,j < y;j}is the rank of y;; among {y,;},_,, and 1{} denotes the indicator function.
Spearman correlation matrix of the raw data matrix Y,, is the Pearson correlation matrix of the

ranks matrix. Define the normalized ranks matrix

12 n+1
Ry 2 (- ") >
le—l rl] 2 nxp ( )

and let R] be the i-th row of the matrix R. The Spearman sample correlation matrix of Y,, is

1 1v
p,= R'R=" ZRZ-RiT. (3)
i=1

The empirical spectral distribution (ESD) of p,, is referred to as a random measure FP» = p~! Z?:l 5/‘1(Pn)'
where 6/\,'((7,,) is the Dirac mass at the point A;(p, ). The limit of FP» is called limiting spectral dis-
tribution (LSD). Under the assumption that the components of y; are i.i.d., Bai and Zhou (2008)
proved that the LSD of p,, is the well-known Marcenko-Pastur distribution. Recently, Wu and
Wang (2022) extended this result to the non-paranormal distribution. In this study, we further
extend their findings to encompass the scale mixture of normal distributions (see Definition 2.1),

as stated in Lemma A.9.

Throughout this paper, we assume that both common factors and idiosyncratic errors follow
continuous distributions. Therefore, with probability one, there are no ties among {y;;,i € [n]} for
each j. For any j € [p] and i,¢ € [n] with i = £, we have 1{y;; < y;;} = I+ %sign(yij —Y¢j), where
sign(-) denotes the sign function. Hence, we have

rij — % =1+ % Z{l +sign(y;; —Wj)} - n—;l = % ZSign(%‘j —9¢j)- (4)

izl izl

For two sample vectors y; and y,, we define the sign vector

. . . T
Ajo =sign(y; —ye) = (Slgn(yn ~Ye1),---,81g0(Vip —}?ep)) :



Then, from (2) and (4), we can rewrite the Spearman sample correlation matrix (3) as

AT L L AT

i=1 €,0,#i

The application of sign transformations to the data introduces an intractable nonlinear correlation
structure. To address this challenge, we utilize Hoeffding’s decomposition (Hoeffding, 1948) to
handle the nonlinear correlation within A;,. By employing this decomposition, we can identify the
dominant term of p,. Let A; :=E(A;, | y;), the Hoeffding’s decomposition of A;, can be expressed
as follows:

Ajr=Ai—Ar+ei (5)
where ;7 := A;p— A; + Ay. Note that EA;, = EA; = 0, and the covariance matrix of A; is E(AiAZ.T).
With Hoeffding’s decomposition defined in (5), we have

n
o, = {Z Z (Ai—Ag)(A;—Ap) + (Ai—Ag)el,,

i=1 €,,0,#i i=1 €,,0,#i
n

T
+Z Z €ie, (A — Afz) + eifleifz}'
i=1 €y,6,#i

i=1 €1,0,#i

It will be shown that the cross-terms in the above identity are negligible (see Lemma 2.2 and its

proof in Section B.1). We can then focus on the first term,

Z Z (Ai—As)(A —Ap)

i=1 €,,0,#i

n-2 3 1 3
= 1 EZ{m Z (Ai_Afl)(Ai_Afz)T}+n_HTnl (6)

i=1 0120y #1

_1
n(n—1)

matrix (Bandeira et al., 2017; Li et al., 2023). The second term, 37,/(n+ 1), and the cross-terms in

where T, := E Y i(A; = Ag)(A; — Ap)T is the sample marginal Kendall’s tau correlation

(6) are negligible (see Lemma 2.2 and its proof in Section B.1). Hence, the leading order term of p,

3 n
== ) AT (7)
i=1

Through direct calculations, it can be demonstrated that the difference between the expected values

is

of W, and p,, is of the order Op(n~!). To be more precise, we have Ep, = “-EW,, +

n+1 n+1
Under certain assumptions, we can show that the spectrum of p, can be approximated by that

E812812

of W, (see Lemma 2.2). This allows us to study the spectral properties of p, via those of W,,.
Under the scale mixture of normals framework defined in Section 2.2, we find that the population
covariance matrix ¥, = EW,, has a finite-rank perturbation structure with K spiked eigenvalues
(see Lemma 2.3). Thus naturally W, has K relatively large eigenvalues too. Subsequently, we
can estimate the number of factors based on the top eigenvalues of W,, or p, . By establishing the

phase-transition theory of spiked eigenvalues of W,,, the consistency of the new estimator follows.



2.2 Phase transition theory

From the perspective of RMT, the spectrum of W, relies on the structure of ¥, = EW,,. Although
from factor model (1), it is clear that ¥, := Cov(y;) = BB" + W has finite-rank-K perturbation
structure, the relationship between X, and ¥, is unclear. The structure of ¥, changes for different
distributions of y;. Therefore, extra distribution assumption of y; is needed to maintain the finite-
rank perturbation structure of X,. Specifically, we assume that both the common factors and the

idiosyncratic errors follow a scale mixture of normal distributions, defined as follows:

Definition 2.1 (Scale mixture of normals, Andrews and Mallows (1974)). A p-dimensional random
vector X = (Xl,...,Xp)T follows a scale mixture of normal distributions (SMN) if X has the stochastic

representation X £ VWZ, where W is a scalar-valued random variable with positive support, and Z
follows p-dimensional normal distribution \V,(0,X) independent of W, ¥ is a positive semi-definite

. - B e
matrix. The notation “X = Y” means X and Y have the same distribution.

Our motivation for using this scale mixture of normals is two-fold. First, the scale mixture
of normals contains heavy-tailed distributions, such as Student’s ¢ distribution. If W follows
the inverse Gamma distribution invGamma(v/2,v/2) with probability density function gy (w) =
(;(/5};/)2 w2+ exp{—v/(2w)}, then X follows the p-dimentional Student’s ¢ distribution t,,(0,X) with
location parameter 0, scale matrix X, and degrees of freedom v, the probability density function of

which is fx(x) = %(1 + %xTZ_lx)"”"’/z. A number of well-known distributions can be

written as scale mixtures of normals. We refer the readers to Section 2 of Heinen and Valdesogo

(2020) for more examples. The second motivation is for technical advantage. From the fact that
X | (W =w)~ N,(0,wE), we can relate the Spearman sample correlation matrix of X to the scale
matrix X using Grothendieck’s identity (see Lemma A.5). Heinen and Valdesogo (2020) derived an
explicit expression for Spearman correlation of bivariate scale mixture of normals. We extend this
result to a more complicated bivariate population (see Lemma A.6) and utilize it to examine the
structure of X, (see Lemma 2.3). This direct connection to the scale matrix X, is a fundamental
step in the analysis of our proposed estimator.

Furthermore, we need the following assumptions:
Assumption (A1l). As n — oo, p = p(n) — oo and p/n=c, — c €(0,0).

Assumption (A2). All pairs {(f],e])T) arei.id., and f; is independent of e;, and both of them follow
the scale mixture of normal distributions. Suppose that wy and w, are two independent random variables

f f

. Y ) ) d .
with positive support. The common factor f; has a stochastic representation f; = \|w; x;, where w; is an

independent copy of wy, and x; follows K-dimensional standard normal distribution. The idiosyncratic

. . d .. .
error e; has a stochastic representation e; = (\Jw}, zi1,..., /wfpzip)T, where {w;'?]-};?:1 are i.i.d. copies of

w,, and (zil,...,zl-p)T follows p-dimensional standard normal distribution.

Assumption (A3). The loading matrix B is normalized by the constraint BTB = Ix. All the entries of B
are of order O(p™"?).

Assumption (A4). The matrix W is diagonal with entries of order O(1).



Assumption (A1) is common in the RMT literature. Assumption (A2) pertains to the distribution
of the common factors and the idiosyncratic errors, and allows them to be heavy-tailed. This
assumption is crucial for examining the structure of the population covariance matrix X,. The
constraint B'B = I in (A3) is a commonly used identifiability condition, see Bai and Li (2012). It
follows that by singular value decomposition, we can represent B as UV', where U € RP*K and
V € REXK "and both have orthonormal columns. The column vectors of U and V are unit vectors in
RP and RX, respectively. Thus, the condition B;j = O(p~"?) in (A3), for any i € [p] and j € [K], is not
overly restrictive. This condition facilitates our technical proofs. Assumption (A4) is standard in
the factor models literature.

In what follows, we develop some important spectral properties of Spearman sample correlation
matrix. First, we show that the spectrum of p, can be approximated by that of W,,, as stated in the

following lemma.
Lemma 2.2. Under Assumptions (A1) — (A4), for any j € [p], |A;(p,) — A;(W,)| = Op(n~"2) as n — 0.

The proof of this lemma is provided in the supplementary material. From this Lemma, we can
investigate the properties of p, through its surrogate W,,. As ¥, represents the expectation of W,,,
examining the structure of X, provides us with valuable insights of W,,. The spike structure of X,

is illustrated in the following lemma.

Lemma 2.3 (Finite-rank perturbation). Under Assumptions (A1) — (A4), we have
||zp - {diag(lp —yw'BBTW )+ yw I BBTW ! }”2 = o(1) (8)

as n — oo, where y := (6/71)E[wf/{(wf +w)(wh + wi)}l/z]' and w]?, j=1,2,3,4, are independent copies
of w,.

Remark 2.4. Note that both X, and its approximation in (8) are correlation-type matrices, and all the
diagonal entries equal to one. Consequently, the average of their eigenvalues are both one, and their bulk

eigenvalues are clustered around one.

The proof of this lemma is provided in the supplementary material. In this lemma, we derive a
“consistent” approximation of the population covariance matrix ¥,. From Weyl’s lemma (Lemma
A.1), the spectrum of the matrix X, can be approximated by that of a rank-K perturbation of a
diagonal matrix. Intuitively, ¥, would have at most K relatively larger eigenvalues. As for the
sample counterpart, at most K spiked sample eigenvalues of p, would lay outside the support of
its LSD. Naturally, by counting the number of spiked eigenvalues of p,, we can obtain a promising
estimator of total number of factors. However, a very important yet intuitive observation here is
that, for 1 <j <K, Aj(p,,) is not always far away from the bulk eigenvalues {1;(p,), K+1 < j <p}.
It depends on whether the signal A;(X,) is strong enough. If 1;(X,) is too weak, A;(p, ) would lie
on the boundary of the support of bulk eigenvalues. This phenomenon is commonly referred to as

the phase-transition phenomenon, which is described in the following theorem.

Theorem 2.5 (Phase transition). For the high-dimensional factor model (1), assume that Assumptions
(A1) — (A4) hold, and the ESD of ¥, tends to a proper probability measure H as n — oco. Denote
p(a)=a+c[ 2% dH(t), we have



(a) For 1< j <K satisfying ’(1;(X,)) > 0, the j-th sample eigenvalue of p, converges almost surely to

z,b(/\j(Zp)), which is outside the support of the LSD of p,,.

(b) For 1 <j < K satisfying ’(A(E,)) < 0, the j-th sample eigenvalue of p,, converges almost surely to
the right endpoint of the support of the LSD of p,,.

The proof of Theorem 2.5 can be found in Section C.

Remark 2.6. From Lemma 2.2, we can investigate the asymptotic behavior of spiked eigenvalues of p, via
those of W,,. Although W, = (3/n)Y ", AiAlT is a Wishart-type random matrix, the nonlinear correlation
structure of A; makes it difficult to directly apply the current phase-transition analysis techniques. The
reason is that the vectors {A;}}_, do not follow the commonly used independent component structure
as in Bai and Yao (2008, 2012) and Jiang and Bai (2021a). Specifically, the vector A; cannot be written
as A; = £"°x;, where ¥ is non-negative definite and all elements of x; € RP are i.i.d. with zero mean
and unit variance. To remove the independent component structure assumption, we first show that
replacing {\/gAi}?zl in W, with i.i.d. N,(0,X,) random vectors does not change the asymptotic behavior
of spiked eigenvalues of W,, (see Lemma A.10 and Section C.1 for more details). The substitution of
{\/§Ai}l'.1:1 with i.i.d. Np(O,Zp) is feasible because each entry of A; follows a Uniform(—1, 1) distribution
and the universality phenomenon holds for light-tailed distributions. The universality phenomenon
reveals that as long as A; has light-tailed entries, the first-order asymptotic behavior of the eigenvalues
of % Y Al-AiT remains the same when replacing {\/gAl-}Z’-Z:1 with Gaussian vectors. To guarantee the
feasibility of this replacement, we establish concentration properties related to certain quadratic forms
and their higher-order moments under the nonlinear correlation structure (see Lemma A.7). Then since
Gaussian random vectors naturally follows the independent component structure, we can directly apply
the phase transition theory in Bai and Yao (2008, 2012) and Jiang and Bai (2021a) to complete the proof
of Theorem 2.5.

To summarize, we first establish in Lemma 2.2 that [A;(p,,) — A;(W,,)| = 0p(1), and subsequently
turn to analyze the eigenvalues of W,,. Secondly, we prove that ¥, = EW,, exhibits a rank-K
perturbation structure as in Lemma 2.3. Thirdly, we confirm the phase-transition phenomenon
for 1;(W,), where 1 < j < K. Therefore, the corresponding result of 1;(p,) follows naturally, as
demonstrated in Theorem 2.5.

2.3 Estimation of the number of factors

With the phase-transition theory in Theorem 2.5, we now propose our new estimator of number
of factors. As stated in Theorem 2.5, if {’(1;(X,)) < 0 for some j € [K], the corresponding sample
eigenvalue A;(p, ) will converge to the right endpoint of the support of the LSD of p, , which is also
the limit of the largest noise eigenvalue Ag,;(p, ). Hence, such weak factors will be merged into
the noise component, making their signal undetectable. By taking this into account, we define the

number of significant factors as
Ko = #{j € [K]: 9/(1;(Z,)) > 0}, (9)

where the notation #S denotes the cardinality number of the set S. By Theorem 2.5, the leading K
eigenvalues of p, will lay outside the support of its LSD .

10



The LSD of p,, denoted by F_ y, is the generalized Marcenko-Pastur law as stated in Lemma
A.9. Let supp(F. ) denote the support of F. . The Stieltjes transform of F_j; is defined as
ftl dF,p(t) for x € R\ supp(F. ). Its first-order derivative m’(x) is also only defined
out51de supp(F. ), and can be extended as a function mapping the entire real line R to RU {+co} as
follows:
| = dFeu(t), if x € R\ supp(F, 1),

+00, if x € supp(F. p).

m’(x) = (10)
This implies that m’(1;(p,,)) takes either finite or infinite values, depending on whether A;(p, ) is
a spiked eigenvalue or a bulk eigenvalue. Based on this observation, we utilize the derivative of
Stieltjes transform defined in (10) to identify all the spiked eigenvalues and estimate total number
of significant factors. Let K, be a predetermined upper bound on the true number of significant
factors, Ky. As the LSD H of Ep is unknown, we cannot obtain the explicit expression of m’(x).

Therefore, we utilize
p

S 1
=577 L AT =

=j+1

to estimate m’(x) for 1 < j < Kpay. Intuitively, if A;(p,) lies within the bulk spectrum of p,,
we would expect 71, ( j(p,)) to be very large. On the contrary, if A;(p,) is a spiked eigenvalue,

—

n, ].( Ai(p,,)) should be relatively small. This phenomenon bears similarities to the behavior of m’(x)

described in the equation (10). Actually, it will be shown that

., B O(1), for1l <j <Ky
i, (Ai(p,) = ,
O(p), for Ko+1<j < Kpay

as n — oo (see the proof of Theorem 2.8 in Section C.2). Hence, a natural estimator of the number

of significant factors is

—

— mn ]+1(A]+1(pn))
Kgp = argmax — ’
1<j<Kmae M, j(Aj(P)

(12)

where the “S” in subscript stands for Stieltjes transform, and the “R” stands for Ratio.

Remark 2.7. Here, we explain our preference for choosing r’ﬁ;’j() over directly employing eigen-ratio

]+1(Pn)
/\](pn)
constant order for all 1 < j < Kynay. The ratios of eigenvalues exhibit the following behavior:

type estimators. Under our current framework, both eigenvalues A;(p, ) and the ratios are of

Aivi(p,) <1, 1<j
Ajlpy) |=1-¢, K+1

Kmaxr

where €, = op(1) and €, > 0. When factor signals are weak, the values of Aj,1(p,,)/Aj(p,) may be close to
1 for both j = K and j = K+ 1, making it difficult to distinguish between them. This can lead to inaccurate

estimation. Performing the derivative of Stieltjes transform i1, .(-) on the corresponding eigenvalues

nj
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Ai(p,,) significantly amplifies the ratio at j = K. As shown in Section 6.3, we found out that

N —0p(1), 1<j<K-1,
o) |~ F | é

- — 09, =K,

i, i(Ai(p,) J

=1+o0p(1), K+1<j<Kpay

As a result, the sequence of ratios {”7;,1,]41(/\j+1(Pn))/”7;,j(/\j(Pn))} blows up at j = K. Therefore, estimat-
ing K using r’n\;’j(/lj(pn)) is more efficient compared to using ratios of A;(p, ). Based on this observation,

we propose the SR estimator.

The consistency of this estimator is established in the following theorem, and its proof is

postponed to Section C.

Theorem 2.8 (Consistency of Kgg). For the high-dimensional factor model (1), assume that Assumptions
(A1) — (A4) hold. Let Ky be the number of significant factors defined in (9) and Ksg be the proposed
estimator defined in (11) — (12). Then, we have

111’1’1 P(ESR = Ko) =1.

n—oo

3 Simulation studies

In this section, we conduct some simulations to examine the finite sample performance of the
proposed estimator. We compare with several estimators in the current literature, including
the NE estimator (Nadakuditi and Edelman, 2008); the ED estimator (Onatski, 2010, 2012); the
BCV estimator (Owen and Wang, 2016); the MKTCR estimator (Yu et al., 2019), as well as the ACT
estimator (Fan et al., 2020). The MKTCR estimator is designed to handle heavy-tailed data and can
only detect strong factors. Conversely, other estimators are also capable of identifying weak factors.

Specifically, these competing estimators are defined as follows:

1. NE estimator: Let {y;}!; be an i.i.d. sample from the factor model (1). The sample covariance
! | isdefinedasS, =n"t Y (y;-y)(y;-y)", wherey =n~' Y I' |y, is the sample
mean. Based on the eigenvalues of S,;, Nadakuditi and Edelman (2008) introduced the NE

estimator as follows:

matrix of {y;}

2
—~ . 1(n .
Kyg = argmin ){4_1(1_7) tj2+2(] + 1)};

0<j<min(p,n
where t; = p[(p - it ?:j+1 Ai(S,)) 72 ?:j+1 A(S,) -1 —p/n] - p/n.
2. ED estimator: Based on the eigenvalues of S,;, Onatski (2010, 2012) proposed an eigenvalue
difference criterion, defined as

Kep = max{1 < j < Kmax Aj(S,) = Aj41(S,) > 8},

where 0 is a predetermined threshold calculated using a calibration method described in
Onatski (2010, Section IV).

12



3. BCV estimator: Owen and Wang (2016) introduced an algorithm to determine the number
of factors based on S,, and the bi-cross-validation (BCV) technique from Owen and Perry
(2009). This method involves randomly holding out some rows and some columns of the
observed data, fitting a factor model to the held-in data, and comparing held-out data to
corresponding fitted values. We utilize Owen and Wang’s R package “esaBcv” to implement

the BCV method in our simulation studies.

4. MKTCR estimators: The sample multivariate Kendall’s tau matrix is defined as

2 Z (yi _YZ)(Yi_Yf)T.

ne - TV
nn-1), = lyi-y

Based on the eigenvalues of K,,, Yu et al. (2019) constructed the MKTCR estimator as follows:

= Inf1 + A;(K,)/V; 1)
MKTCR = argmax ’
R {1+ A (K,))/ V)

where V; = Zimjnj ") Ai(K,),j€{0,1,...,min(p, n) — 1}.

5. ACT estimator: The sample Pearson correlation matrix of {y;}!" , is defined as

B, = [diag(s,)] 'S, [diag(s,)] "

Based on the spectral properties of P, Fan et al. (2020) proposed an estimator to estimate the

factor number as follows:
Kncr = max{l <j < Kpax 1 @j(Py) > 1++p/(n - 1)},

where {a;(P, )};7 | are bias correction of sample eigenvalues of P,, defined as a;(P,) =

—1/mn,]’()\]~(P )) with m ]( x)=—(1—cj)/x+cjmy;(x), c; = (p—j)/(n—1),and

1 [ & 1 1
mn,j(x) = p__]|: Z, /\Z(Pn)_x + {3)\]~(Pn)+/\j+1(Pn)}/4—xl'

{=j+1

Our simulation studies consider various combinations of dimension and sample size, namely
(p,n)=(50,100), (100,200), (150,300), and (200,400), which all have the ratio p/n = 1/2. We take
the true number of common factors K = 3 and set the possible maximum value of the number of
common factors K, = 10. Recalling our distribution assumption (A2) for both common factors
f; and idiosyncratic errors e;, we generate f; and e; by f; = (wf) 2%; and ejj = (w l]) 2 zjj, where ¢;;
denotes the j-th component of e;, {x;}i_; —~ Lid Nk (0,1k), and {z;;,i € [n],j € [p]} = Lid (0,1). We
employ four different scenarios to generate sample data for w{ and wi]..
f

1. (Normal population, see Table 1) Let w; = wfj =1forallie[n]andje€[p];

n Lid.

2. (Uniform and Chi-squared population, see Table 1) Let {wlf}i | —— Uniform(0,1) and {wf{ ,z €

13
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Figure 2: Correct identification rate of six estimators. Entries of common factors and idiosyncratic errors are generated
from the standard normal distribution.

3. (Student’s t(2) population, see Table 2) Let {w -f}Z 1 Lid invGamma(1,1) and {w{;,i € [n],] €

pl} Lid invGamma(1,1), where invGamma(a, ) denotes the inverse Gamma dlstrlbutlon
with shape parameter @ and scale parameter . In this scenario, both f; and ¢;; follow

(multivariate) Student’s ¢(2) distributions;

ii.

. f d. .
4. (Cauchy population, see Table 2) Let {w; }i_; =~ invGamma(1/2,1/2) and {w ieln]je

pl} Lid invGamma(1/2,1/2). In this scenario, both f; and ¢;; follow (multlvarlate) Cauchy

distribution.

Furthermore, we consider three cases for the loading matrix B = (B;;),xx and the matrix W as
follows. (C1) is from (Harding, 2013; Fan et al., 2020). (C2) and (C3) are both from Onatski (2012).

(C1) For any j € [K], let B;; = /5j/p for i € [K], and let B;; = a;;+/5j/(p—j) for i e {K +1,...,p},
wherea,-j:—l 1fz_r]ora1]_l1f1¢r],reN+. Let W =1,.

(C2) For any i € [p] and j € [K], let \/pB;;//10] Lid N(0,1). Let W =1,,.
(C3) For any i € [p] and j € [K], let 4/pB;;j/4/10j Lid N(0,1). Let W = T”2, where T is a Toeplitz
matrix with its (i, j)-th entry equal to 0.45/"l,

The simulation results are reported in Tables 1 - 2 and Figures 2 - 5. In the case of light-tailed
data (see Tables 1 and Figures 2 - 3), our SR estimator performs comparably to other estimators.
However, when handling heavy-tailed data (see Tables 2 and Figures 4 - 5), the NE, ED, and BCV
estimators, which are based on sample covariance matrices, prove ineffective, whereas our SR

estimator outperforms the MKTCR and ACT estimators.

4 Real data analysis

In this section, we analyze the monthly macroeconomic dataset (FRED-MD, McCracken and
Ng (2016)) from March 1959 to January 2023. The data can be downloaded from the website

http://research.stlouisfed.org/econ/mccracken/fred-md/, and includes the monthly series
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Table 1: Percentages (%) of estimated number of common factors in 1000 simulations. Entries of common factors and
idiosyncratic errors are generated from light-tailed distributions. The results are reported in the form a(b|c), in which
a,b,c are the percentages of true estimates, overestimates, and underestimates, respectively. The notation “ave(K)”

denotes mean estimators for the case (p,n) = (200,400).
Case p NE ED BCV MKTCR ACT SR
Normal population
50 97.7(2.3/0) 98.9(1.1[0) 97.5(0.5[2) 86.1(0/13.9)  100(0[0) 96.5(12.5)
100 97.2(2.8[0) 99(1]0) 100(0]0) 84.4(015.6)  100(0]0) 99.6(0.1]0.3)
150 96.7(3.3/0) 99.5(0.5[0) 100(0/0) 80.2(0]19.8)  100(0[0) 99.8(0.2|0)
€1 200 96.3(3.7]0) 99.6(0.4]0) 100(0/0) 78.3(0[21.7)  99.9(0.1]0)  99.8(0.2/0)
ave(K)  3.038 3.004 3 2.783 3.001 3.002
50 97.1(2.9/0) 98.8(1.2]0) 99.1(0.80.1)  91.7(0|8.3)  100(0]0) 92(0.917.1)
100 97.9(2.1/0) 99.3(0.7]0) 100(0]0) 98(0[2) 100(00) 99.9(0.1/0)
150 96.7(3.3/0) 99.6(0.4]0) 100(0/0) 100(0]0) 100(0[0) 100(0]0)
(€2 200  97.1(2.9)0) 99.6(0.4/0) 100(0]0) 100(0]0) 100(0]0) 100(0[0)
ave(K) 3.03 3.007 3 3 3 3
50 0(100]0) 97(3/0) 80.3(19.710)  99.6(0[0.4)  99.9(0.1]0)  95(1.7]3.3)
100 0(100]0) 99(110) 82.9(17.10)  100(0]0) 72.2(27.8/0)  99.7(0.3/0)
150 0(100]0) 99.4(0.6|0) 82.3(17.7/0)  100(0]0) 39.9(60.1/0)  100(0]0)
(€3) 200  0(100/0) 99.3(0.7]0) 77.7(22.3)0)  100(0]0) 4.4(95.6/0)  100(0/0)
ave(K) 55.225 3.008 3.28 3 5.448 3
Uniform and Chi-squared population
50  37.4(62.3|0.3) 58.7(2.7|38.6)  23.2(0.4]76.4) 22.4(0[77.6) 89.5(0]10.5)  86.7(2]11.3)
100 26.7(73.3[0)  91(1.1]7.9) 34.4(065.6)  12.9(0[87.1)  99.8(0.1/0.1)  98.1(0.6]1.3)
150 22.7(77.2]0.1)  97.7(0.3]2) 36.4(0.163.5)  5.1(0[94.9)  99.6(0.4]0)  99.6(0.3/0.1)
(C1) 200  23.3(76.710)  99.1(0.8/0.1)  35.6(064.4)  3.4(0[96.6)  99.4(0.6]0)  99.7(0.3[0)
ave(R) 4.204 3.009 2.356 1.919 3.006 3.004
50 34.6(65.3)0.1) 91.5(2.4]6.1)  63.6(1.7|34.7) 27.2(0[72.8) 96.7(0|3.3)  85.3(1.6/13.1)
100 23.9(76.110)  98.7(1.3/0) 99.8(0.2]0) 99.3(0[0.7)  100(0]0) 100(0[0)
150 22.1(77.9)0)  99.3(0.7]0) 100(0/0) 82.8(0/17.2)  99.8(0.210)  100(0]0)
(€2) 200  16.6(83.400)  99(1]0) 100(0]0) 98.5(0[1.5)  100(0]0) 100(0[0)
ave(K) 4.343 3.01 3 2.985 3 3
50 0(100]0) 96.5(2.6/0.9)  58.3(41.60.1) 57.7(0[42.3) 94.8(5.20)  69.8(7.9]22.3)
100 0(100]0) 98.2(1.8|0) 79.7(20.3]0)  99.9(0[0.1)  27.7(72.3]0)  99(1|0)
150 0(100]0) 99.3(0.7]0) 82(18]0) 97.9(012.1)  5.3(94.7]0)  99.7(0.3]0)
(€3) 200  0(100]0) 99.2(0.8)0) 84(160) 100(0]0) 0.1(99.90)  99.9(0.1]0)
ave(K) 56.198 3.01 3.193 3 7.554 3.001
Case (CI1) Case (C2) Case (C3)
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Figure 3: Correct identification rate of six estimators. Entries of common factors are generated from a scale mixture
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Table 2: Percentages (%) of estimated number of common factors in 1000 simulations. Entries of common factors and
idiosyncratic errors are generated from heavy-tailed distributions. The results are reported in the form a(b|c), in which

a,b,c are the percentages of true estimates, overestimates, and underestimates, respectively. The notation “ave(K)

»

denotes mean estimators for the case (p,n) = (200,400).
Case p NE ED BCV MKTCR ACT SR
t(2) population
50 0(100]0) 16.9(29.4/53.7) 26.6(6.3|67.1) 22.6(0.2|77.2) 83.3(0.3|16.4) 92.2(1.1]6.7)
100 0(100j0) 16.1(33.6/50.3)  31.3(4/64.7) 15.2(0/84.8)  93.5(4.3]2.2) 99.4(0]0.6)
150 0(100[0) 13.8(33.253)  34(4.2/61.8) 12.9(0/87.1)  91.9(7.4/0. 7) 99.9(0/0.1)
(C1) 200 0(100J0) 14.1(38|47.9) 37.9(2.9|59.2) 11(0[89) 87.6(11.6]0.8) 99.8(0.2/0)
ave(I?) 37.884 3.316 2.228 1.941 3.12 3.002
50 0(100[0) 24.1(44.2]31.7) 47.6(10.6|41.8) 26.1(0.2|73.7)  90.4(0.39.3) 91.2(0.7]8.1)
100 0(100j0) 19.1(44.9]36)  59.3(8.332.4)  31.2(0[68.8)  96(2.9]1.1) 99.9(0.1|0)
150 0(100[0) 14.4(49.735.9)  80(4]16) 77.5(0122.5)  93.3(6.6/0.1) 100(0/0)
(€2) 200  0(100j0) 14.6(53.1]32.3) 85(2.1]12.9) 94.8(0|5.2) 89.4(10.5/0.1)  100(0]0)
ave(K) 38.064  4.501 2.836 2.944 3.109 3
50 0(100/0) 28.8(50.1]21.1) 36.8(49.513.7) 38.4(0.1/61.5) 67.5(28.83.7)  71.1(9.6|19.3)
100 0(100j0) 19.9(57.1]23)  47.5(43.6/8.9)  57.8(0j42.2)  18(81.4/0.6) 90.1(7.2[2.7)
150  0(100j0) 14.8(64.5[20.7) 66.8(28.6|14.6)  92.6(0[7.4) 6.3(93.50.2) 99.7(0.3/0)
(C3) 200  0(100/0) 13.1(66.3]20.6)  72.2(24.8]3) 99.3(0[0.7) 2.6(97.3/0.1) 100(0/0)
ave([?) 70.59 4911 3.47 2.993 7.959 3
Cauchy population
50 0(100[0) 11.2(77.6]11.2)  0.8(0.3|98.9) 7.7(5.9|86.4)  24.9(2.1|73) 89.8(0.2/10)
100 0(100j0)  7.2(85|7.8) .1(0.1]99.8) 6 8(5/88.2) 38(12.4]49.6)  98.4(0.3[1.3)
150  0(100/0) 8(84.4/7.6) (o|99 9) 6.3(4.2189.5)  36.7(28.4|34.9)  98.6(1.30.1)
(€1) 200  0(100/0) 7.5(86.5(6) .2(0.1]99.7) 4.9(48190.3)  357(41.7]22.6) 98.6(1.4/0)
ave(f<\) 118.068 8.138 0.038 1.507 3.439 3.015
50 0(100]0) 12.4(76.9(10.7) 1(0.7|98.3) 8(2.6/90.6) 29.1(2.3|68.6) 91.3(0.8|7.9)
100 0(100[0)  8.5(83.3]8.2) 0.1(0.1]99.8) 3(3.2190.5)  49.9(1733.1)  100(0[0)
150 0(100[0)  8(86.8/5.2) 0.4(099.6) 6.2(2.1191.7)  46.7(35.6|17.7)  100(0[0)
(€2) 200  0(100j0) 5.6(886.4) 0.1(0.2/99.7) 4(2.890.8)  37(49.5]13.5)  100(0[0)
ave(I?) 118.511 8.236 0.069 1.486 3.596 3
50 0(100[0)  12.6(77.5/9.9) 2 5(10.1/87.4) 6(3.890.6)  13.9(74.6/11.5)  10.4(33.5/56.1)
100 0(100j0) 10.2(818.8) .9(4.7]93.4) .6(1.4]93) 3.3(93.43.3) 38.3(36/25.7)
150 0(100[0)  8.8(83.5[7.7) 1(4.8]94.1) 7(1.3195) 0.8(97.3|1.9) 89.5(10.3(0.2)
(C3) 200  o(100/0) 5.7(87.27.1) .5(3.5/95) 4.6(1.2194.2)  0.8(98.5[0.7) 92.8(7.1]0.1)
ave(I’<\) 126.004 7.919 0.421 1.416 16.854 3.464
Case (C1) Case (C2) Case (C3)
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Figure 4: Correct identification rate of six estimators. Entries of common factors and idiosyncratic errors are generated
from Student’s ¢(2) distribution.

16



Case (C1) Case (C2) Case (C3)

1004 | 1009 | 1009
= 75- L= 754 L= 754
X X X
= = =
o 50- @ 50- @ 50-
-~ -— -—
o o o
o 95+ | X 95 | X 925 |
—_ . fr— " e —
O,‘ \4’, o,‘ | O,‘ |
50 100 150 200 50 100 150 200 50 100 150 200
Dimension Dimension Dimension
. ACT = ED NE
Estimator

BCV —+ MKTCR SR

Figure 5: Correct identification rate of six estimators. Entries of common factors and idiosyncratic errors are generated
from the standard Cauchy distribution.

of 128 macroeconomic variables. Following McCracken and Ng (2016), the series with missing
values are removed and the remaining dataset is transformed to a stationary form. After this
preprocessing procedure, the data dimension is p = 105 and the sample size is n = 767. McCracken
and Ng (2016)’s recommendation to remove outliers has not been implemented in our data analysis,
as we believe that data with heavy-tailed distributions will inevitably contain extreme observations
that cannot be circumvented. Since our estimator is tailored to heavy-tailed observations, we
directly use it to identify number of factors.

The dataset reveals that more than 67% of the macroeconomic variables exhibit a sample
kurtosis that exceeds 9, which is the theoretical kurtosis of the Student’s ¢(5) distribution. This
indicates that the dataset is probably heavy-tailed. Compared to the other estimators, MKTCR, ACT,
and SR have slightly higher accuracy under heavy-tailed conditions, so we employ these three
methods for estimation. The results are as follows: EACT =13, EMKTCR =1, and k\SR =7. As shown in
the simulation studies in Section 3, ACT has similar performance with our estimator when data is
light-tailed, while it tends to overestimate when data is heavy-tailed. Same story happens for this
real dataset. Both our SR estimator and Yu et al. (2019)’s MKTCR estimator are based on eigenvalues
of certain type of sample correlation matrices as plotted in Figure 6. From Figure 6(a), it is evident
that the multivariate Kendall’s tau matrix exhibits one “strong” spike and several “weak” spikes.
However, the MKTCR estimator only detects the strong spike while ignore the weaker spikes. It
potentially underestimate the total number of factors, similarly as shown in the simulation studies
in Section 3. On the other hand, Figure 6(b) illustrates that our SR estimator has successfully
detected all seven spikes of Spearman sample correlation matrix. Therefore, Kgg = 7 is a more

persuasive estimation for this dataset.

5 Discussions

In summary, we propose a novel estimator to identify number of common factors in high-dimensional
factor models when data is heavy-tailed. We demonstrate that, under certain assumptions, the num-
ber of spiked eigenvalues of Spearman sample correlation matrix is consistent with total number
of significant factors. Our estimator is constructed based on this observation, and its consistency is
proved under mild assumptions. From the perspective of RMT, we investigate the eigenstructure
of Spearman sample correlation matrix under spike models and establish the phase-transition
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Figure 6: Scatter plots of all the eigenvalues of multivariate Kendall’s tau matrix and Spearman correlation matrix
generated from the real dataset. The MKTCR estimator only detects one “strong” spiked eigenvalue of the multivariate
Kendall’s tau matrix, and neglects several “weak” spikes. Our SR estimator detects all seven spikes of Spearman
correlation matrix.

theory of its spiked eigenvalues. Simulation results demonstrate that our proposed estimator
outperforms competing methods in various scenarios, especially with heavy-tailed observations.
However, our SR estimator does not perform well when the sample size is not large enough, such as
(p,n)=(50,100). The possible reason is that the estimation of m’(x) is inaccurate when the sample
size is small. A more accurate estimator for m’(x) would improve the accuracy of our SR estimator.
Furthermore, it is worth extending our method for factor modeling in high-dimensional time series
(Lam and Yao, 2012; Li et al., 2017b) and tensor data (Lam, 2021; Chen and Lam, 2024). These
extensions are beyond the scope of the current paper, and we leave them to future work.

A Auxiliary lemmas

This section introduces several auxiliary lemmas used in the technical proofs of our theoretical
results. Lemmas A.1 — A.5 are from existing literature, while Lemmas A.6 and A.7 are our original
contributions. We provide the proofs of these two new lemmas in Sections B.3 and B.4, respectively.

Lemma A.1 (Weyl’s inequality, Corollary 6.3.4 in Horn and Johnson (2012) ). Let A and B be two
n x n normal matrices, and let A{(A) > --- > A,,(A) and A{(B) > --- > A,(B) be the nonincreasingly
ordered eigenvalues of A and B, respectively. Then

max [1;(A) - A;(B)| < [|A - B,

1<ign
where ||A —B||, denotes the spectral norm of A —B.

Lemma A.2 (Lemma 7 in El Karoui (2009)). Suppose that the random vector r € RP has the property
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that for any convex 1-Lipschitz (with respect to the Euclidean norm) function F from RP to R, we have
IP’(lF(r) —mpg| > t) < Cexp{—c(p)tz},

where mp denotes a median of F, and C and c(p) are independent of F, and C is independent of p. We
allow c(p) to be a constant or to go to zero with p like p~™®, 0 < a < 1. Suppose, further, that E(r) = 0,
E(rr") = X, with |X||, < log(p). If M is a complex deterministic matrix such that |[M||, < &, where & is
independent of p, then p~'x"Mr is strongly concentrated around its mean, p~'tr(MX). In particular, if,

for >0, t,(e) = (logp)*¢/\/pc(p), then
T ].
—r ' Mr - l—]tr(ME)

1
logs P
of#(;

Lemma A.3 (Corollary 4.10 in Ledoux (2001)). For every product probability IP on [0,1]", every convex

> tp(e))} = —(log p)1 2.

1-Lipschitz function F on R", and every r > 0, we have
P(lF —mp| > r) < 4e4,

where mp is a median of F for PP.

Lemma A.4 ((3.3.41) in Horn and Johnson (1991)). For any nxn Hermitian A = (A;;) with eigenvalues

if(Aii) < if(/\i)-
i1 i=1

Lemma A.5 (Grothendieck’s identity, Lemma 3.6.6 in Vershynin (2018), Lemma 4.1 in Li et al.

(2023)). Consider a bivariate normal vector:
z 0) (o
Zz 0 )4 02

E[sign(Z,)sign(Z;)] = % arcsin(é )

At,..., Ay, and convex f, we have

we have

Lemma A.6 is utilized to analyze the structure of ¥, as stated in Lemma 2.3.

Lemma A.6. Consider a bivariate random vector:

Q:Z(Ql]g[mxlu/wwl} 13)

Q) VWxX; + Wy, s

where Wx, Wy,, and Wy, are three independent scalar-valued random variables with positive support,
and (Xl,Xz, Yl' Yz)T ~ N4(0,Qo) U/lth

rx O oz y oz 0
Qoz[o > ] EXZ[ I A S
Y Y  Ox, Oy,

Suppose that Q; and Q, (they are independent) are independent copies of Q, and Q,, respectively, then,
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we have 5
Elsign(Q; ~ Qu)sign(Q; - Q)] = ~Efaresin(r)},

where
y Wx

r= ’
\/(WX + WX1)O')2(1 + (WYI + Wyl)Cf%l \/(WX + WXZ)G)%Q + (Wyz + ‘/\]}/2)0'1%2

and (WXI, Wyl) and (sz’ Wyz) are independent copies of (Wx, Wy, ) and (Wx, Wy,), respectively.
Lemma A.7 is used in the proof of Lemma A.10.

Lemma A.7. Let X = (xq,...,%X,)" and Y = (y1,...,y,)" be two n x p independent random matri-
ces satisfying the same assumptions as those in Lemma A.10. For any i € [n], we denote X; =

T _ T
(X1, Xi Yistse-¥u) ' Xio = (X1se s Xi1,Yiv1s- -, Yn) 5 and

1

Bi =1 —x[T7(AL-n'TVX]X;ol ) 'T "x;, (14)
1

Bio =1 - (L= T X X0 ) (15)

with T = U,D, U} defined before the equation (48) in the main text. Then, for any K x K symmetric

matrix W, it holds that, as n — oo,

Bio _)_ﬁ(/\)’ € :=Bi—PBio >0, (16)
Ee? =o(1), Eef=o(n™), (17)
Eftr(Wr;)}?=0(1),  Eftr(Wo)}* = O(1), (18)

where m(-) denotes the Stieltjes transform of the LSD of the matrix n‘lxiOFXlTO, and t;y and T; are
defined in (43) and (44), respectively.

Remark A.8. The conclusions (16) — (18) presented in Lemma A.7 are identical to those in Lemma C.3
and Lemma D.1 of Jiang and Bai (2021b). However, the proof provided by Jiang and Bai (2021b) is
not applicable for our scenario as we do not assume that X (or Y) possesses i.i.d. entries, as stated in
Assumption (B1). Specifically, we need to establish the concentration properties of certain quadratic
forms without the i.i.d. assumption. We address this challenge in Section B.4 by leveraging concentration
inequalities from Ledoux (2001) and El Karoui (2009). See the proof in Section B.4 for more details.

Lemma A.9 provides the LSD of p, and W, extending the result of Wu and Wang (2022). Their
result is restricted to the non-paranormal distribution, and our study considers the case where the

data follows a scale mixture of normal distributions, as indicated in Assumption (A2).

Lemma A.9 (Limiting spectral distribution). For the high-dimensional factor model (1), assume that
Assumptions (A1) - (A4) hold, and the ESD of X, = EW, tends to a proper probability measure H as
n — co. Then, with probability one, both FP» and FWr tend to a non-random probability distribution

F. 1, the Stieltjes transform m = m(z) (z € C*) of which is the unique solution to the equation

1
’”:ftu dH(t). (19)

—c—czm)—z
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The following Lemma A.10 concerns the limiting behavior of Qg(,-) defined in (48), which

plays a crucial role in the proof of Theorem 2.5.

Lemma A.10. Let X = (Xjj)uxp = (X1,...,%,)" be an nx p random matrix. Assume that X satisfies

Assumption (A1) and the following assumptions:
(B1) The vectors {x,};_, are i.i.d., but the entries of each x, are not necessarily i.i.d.

(B2) (Moment condition) For any i,],s,t € [p] with i # j #s # t, we have

EX;; =0, EX{; =1, EX;;X;;=0, EX{,=0(1),
EX}X1iX15=0(p™"), EXy;X1;X1Xq, = O(p~?).
(B3) (Weak dependency) For any p x p symmetric matrix T with bounded spectral norm, we have
Var(xITxl) =o(p?) as p — .

(B4) (Concentration) For any convex 1-Lipschitz (with respect to the Euclidean norm) function F from
RP to R, let mp denote a median of F,

P(IF(x1) ~me| > t) < Cexpl-c(p)i?},

where C and c(p) are independent of F, and C is independent of p. We allow c(p) to be a constant
or to go to zero with p like p™®, 0 < a < 1.

Moreover, let Y = (Yjj)uxp = (Y1,---,yn)" be a random matrix independent of X, satisfying Assumptions
(A1) and (B1) - (B4) with X;; and x, replaced by Y;; and y, respectively. Then, Qg (A, X) and Qg (A,Y)
have the same limiting distribution, where Qg -,-) is defined in (48).

Remark A.11. Assumption (B4) is from El Karoui (2009). In (El Karoui, 2009, p. 2386), the author
gave some examples of distributions satisfying Assumption (B4), such as:

* Gaussian random vectors with covariance matrix ¥, and c(p) = 1/||E,| (according to Theorem
2.7 in Ledoux (2001)).

* Random vectors with entries bounded by 1/+/c(p) (according to Lemma A.3).

B Proofs of lemmas

B.1 Proof of Lemma 2.2

Let A, denote the difference between p, and W, that is,
IR 3y
,_ _ T T
Ayi=p,-W, = E;RiRi —E;AiAi, (20)
1= 1=

where Rl-T is the i-th row of R defined in (2) and A; := E{sign(y; —y¢) | y;}. From Lemma A.1, it is
sufficient to show that |[\/nA, ||, = Op(1). To this end, we show that \/nA, is a Wigner-type matrix
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by the following moment estimations:

E{(VuA,)je} = O(n™"),  Var((VnA,);c) = O(1), (21)
Corr((Vnd,)je, (Vi )jp) = O(m™"),  j=e=C, (22)
Corr((Vih,)j;, (Vidy)er) = O(n™), L. (23)

Let p;; be the j-th component of y;. For each j € [p], we define the empirical cumulative
distribution function (ECDF) as

. 1 n
Fiy)=—) 1y <yl, (24)
=1
and let r;; = nf:\j(yi]-) be the rank of y;; among {y,;};_,, where and i € [n] and j € [p]. For notational

simplicity, we denote F;; = Fi(y;;) and Ej = fj(yij), where F;(-) is the CDF of y;;. Using these
notations, we write the (7, j)-th entry of the matrix R defined in (2) as

12 n+1 12n? (=~ n+1
R =\ o1 (=5 )=V (B 5 ) (29)

and write the j-th entry of the vector A; as

Ajj= E{Sign(yij ‘Wj) | yij} =2F;;—1. (26)

First, we prove (21). From (20) and (25) — (26), the j-th diagonal entries of A, can be written as
(Ap)jj=1-(12/n) Y1 (F;j - 1/2)2. By using the fact that {Fij}iz iid Uniform(0, 1) for fixed j, we

obtain s
E{(An)jj} =0, Var{(An)jj} = —. (27)

Then, we consider the off-diagonal entries. From (20) and (25) — (26), the (j,{)-th entry of A,,, where

j #¢, can be written as

(& 1202\~ n+1\— n+1 & 1 1
S e LS BN Lt |
i= =
n

From the fact that {F;;}/_, Lid Uniform(0, 1) for fixed j and the definition (24) of ECDF, we obtain

n+1
2n

7

1 1 = 1y
EFj=3  EF}=z,  EF;=-) Elly;<y)=
=1
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and
(n-1)(n-2)

1 .
EF F1€ = ) IEﬂ:z' sz"’ E]l{ys] < yl]}]l{ys(f < 3}16} + - (s #1).

These identities imply that

(1) 6 2 1 -
E{(An)]'g } == g BF Pt By < p1jHlipae < pied + - = Oln h.

As {(An)i.ig)}?:1 are i.i.d. for fixed j and ¢, we have
E{(A,)je} = 6E{(A,)j/ ) = O(™). (28)

Moreover, a similar calculation gives

(1)
Var{(An)].g }
n3 1
_(nz—lvE 5+4PUPM{3aj+3RM—4PUFM)—10FUFM
1 —
~4(Fyj o+ Fig = 2By Fr =5 JLvsy < wighLivae < el |+ O(n™2)
=0(n™).
Thus, we have 36
1 —
vmyAﬁﬂ}:7;thAﬁy}:oulﬂ. (29)

This, together with (27) and (28), implies (21).
Now, we prove (22). For any j,¢,¢’ € [p] with j = € # ¢/, direct calculation gives us

COV((An)jZI (An)j€’)

36n?
= WE{—MP FieFrp+8FF Fro+ 4F 1y < v10}U{yae < 910/}

+12FjF1¢F1p +4Fj1{y;; < ylj}[FM]l{yM’ <y} + Frol{yae < }’15}]
- 3131]‘(1315 +F1€') —2Fj1{y,; < Plj}[]l{yze <y1eh+ Hyop < }’15'}]
—4FjUyye < y1c}l{vae < 10} - FieFie

= 21{yy; < piH{Frelfpae <p10}+ Fiolfyae < p10)]

+ Uyoj < y1 {vae < y1et+ Uyoj <91 1{y2e < 910/}

1 -
+Uyar <y1chiiyare <m}+g}+0<n ) (30)

From Assumptions (A1), (A3), and (A4), the constant term in the curly brackets of (30) is of order
O(n~"?), then we have Cov((An)jg, (An)]’g/) = O(n~7?). This, together with (29), implies that

_ Cov(<A )i (Aw)jer)
\/Var Var{(An)]-gr}

COI‘I‘((A ]g, ]g — O(Vl_l/z),
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and thus (22) holds true.

Finally, we prove (23). For any j,¢,r € [p] with € # r, by using similar argument above, we have

Cov((An)jjr (An)er )

72 1

1
= {(2E[F1j11{yzg <316l Upar < 91| - 6BFyFi Fyy 4 2B(FyFig + FijFiy) - 5 )

1
- (ZE[Ffjll{yze <9100 11p2r < 91| - 6BF} FyoFy, + 2E(FY Fro + F Fyy) = 5)

1
- 2| -OERIFL + 2B < vl Tl <3+ 1]}

=0(n 7).

This, together with (27) and (29), implies (23) and completes the proof.

B.2 Proof of Lemma 2.3
Recall that A;, = sign(y; —y¢) and A; = E(A;, | y;) for any i,€ € [n] with i # {. By using the law of
iterated expectations repeatedly, we obtain
T, =3E(AA]) = 3E{E(A12 ly1 )AI} = 3E(A,A])
= 3E{A12E(AI3 |Y1:Y2)} = 3E{E(A12A13 |Y1,Y2)}
=3E(A,A]3) = 3]E{sign(y1 —y2)sign(y; —Y3)T}-
Let biT denote the i-th row of B, and W;; denote the i-th diagonal element of W. From Assumption

(A2) and Definition 2.1, the i-th component of y; = Bf; + We; has a stochastic representation
(below, we omit “1” in subscripts to simplify notations)

= Vw/b]x+ \JwiWz;, i€lp], (31)

where x ~ Ng(0,Ig), {z; }le Lid (0,1), and they are independent. For any i € [p], let
- wabi o wabi
V= , V;i= ,

! + @ )bTb; + (w + ) W2 ! + @ )bTb; + (wf + ) W2

where (ﬁf,ﬁf) and (ﬁf,ﬂ?f) are two independent copies of (wf,wf). It follows from Lemma A.6

that, the (i, j)-th element of X, can be written as

(6/n)E{arcsin(fllT‘7-)}, i#],
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By using Taylor’s expansion, we derive that (X,);; = EE(VIT\?j) +O(p~?) for i # j. By definitions of v;

and v; and Assumption (A3), we have
E( v Vi)
{ V! ' V! }
\/wf + @/ )bTb; + (w¢ + )W \/(wf + )T, + (wh + @) W2
E{( +0(1))[L +0(1)]}binj
(wf +w W2 (WS + W)W

]

bb;

ﬁ

—1

{\/m\/m} blb;

By using the above estimations, we obtain
T, =diag(I, - y¥ 'BB'W )+ yW 'BB'W ' +E,, (32)

where E,, := X, —diag(I, - y\P_lBBTlI’_l) - 7/\1’_1BBT1P_1 with ||E,|lmax = 0(p~!) and

6
__ f e e e, —en2
Y= —n]E[w /{(w; +wl-)(wj +w]-)} ] (33)
By the basic norm inequality [|A||; < p||Allmax for any p x p matrix A, we have

Bl <p-o(p™)=o(1). (34)

e\P
}11

can replace wf,w;,f&f,@\]‘? in (33) by wf,wg,w3,w4, respectively. This, together with (32) and (34),

completes the proof of Lemma 2.3.

Since (ﬁf,ﬁ?j) is an independent copy of (w;} ) for i # j and random variables {w are i.i.d., we

B.3 Proof of Lemma A.6

From the definition of Q in (13), we obtain Q|(Wx, Wy,, Wy,) ~ N,(0,X), where

¥ - (WXO‘)%1 + Wy, 0‘12,1 27/WX X J
VWX WXGXZ + WYZGYZ

For Q; and Q,, they have the following stochastic representations:

G e K+ W T O 2 W X+ (W, T

where (WXI' Wyl ) (sz’ WYz)' (X;,Y;), and (X5, Y,) are independent copies of (Wx, Wy, ), (Wx, Wy,),
(X1,Y7), and (X, Y,), respectively. Note that X, and X, are independent. Two random vectors Q
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and Q = (Q;,Q,)T are independent, and él(le, WXQ, Wyl, WYQ) ~ /\/'Z(O,f), where

W2 T 2
E:[wxlaxlwvylay1 0
0 Wy, 0%, + Wy,o7,
Comnbining Q and 6 into a vector Q := (g) then we have QW ~ Ny(0,Q), where W :=
(I/\])(,I/VY1 WYZ’ I/VX1 VVXZ,I/VY1 WYZ) and Q = (g%) From

(8;% ) = (Ip,-1,)Q =: By,

we obtain (Q1 Ql) W ~ N,(0,BoQB]), where
27X2
B, QB! = ((WX + Wy, )og, +(Wy, + Wy, )oy Yy Wy
yWx (WX+WX2)UX (WY2+WY2)

Given W, the Pearson correlation coefficient between Q; — 61 and Q, — 62 is

y Wx
\/(WX+WX1)GX +(Wy, +WY1)UY\/(Wx+Wx2)0x (WY2+WY2)

r =

By Lemma A.5, we conclude that

Efsign(Q; — Q1 )sign(Q, - Qy)} = E[E{sign(Ql —Qy)sign(Q; - 62)|W}] = %E{arcsin(r)}.

This completes the proof of Lemma A.6.

B.4 Proof of Lemma A.7

The convergence of f8;y can be proven by using the same argument in the proof of Lemma C.3 of
Jiang and Bai (2021b). The conclusion ¢; — 0 follows from (17). First, we prove that Eeiz =o0(1).
Since ||T'||, is bounded and the variable A (spiked eigenvalue) stays away from the bulk eigenvalues
of n‘ll"l/ZXiTOXiol"]/z, the spectral norm of B := I'"*(AI - n‘ll"1/2)(170)(1'01"1/2)‘1I"l/2 is bounded. By
Assumptions (A1) and (B3), we have

1
]Eef = —2E|x1.TBxi —trB|2 =0(1)
n

Second, we prove Ee =o(n~!). From Assumption (B4), we can apply Lemma A.2 to estimating
moments of &;. For 6 > 0, let t,(0) = (p/n)(logp) 1”/\/17, where ¢(p) is defined in Assumption
(B4). Define an event

F(8) = {x; : n7 1 (x] Bx; —trB) < ,,(9)).

From Lemma A.2 and the fact E(x;x]) = I, (see Assumption (B2)), we have ]P’(]-",f(é)) =o(n™1). By
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the elementary inequality |a + b|” < 2" (|a|” +|b|") for r > 1, we have
4
Eef = Eleil s+ eilizzon| < 8[BefTiz o)+ Beflizz) | (35)

For the first term, we have

14 ()
Eg;lnwb)}zjo 48P(|ei1 5, o] > t)dt < L ar’dt=o(n™"). (36)

For the second term, by the fact that |¢;| = |n‘1(xlTBxi - trB)| < C||B||, (using Assumption (B2) and
the Courant-Fischer principle) and ||B||, = O(1), we obtain

Eell 7o) < CHIBISP(F(9)) = o(n™").

This, together with (35) and (36), implies that Ee? =o(n™1).
Finally, we prove (18). The proofs of E{tr(Wt;)}? = O(1) and E{tr(W;()}* = O(1) are similar,
and thus we only prove the first conclusion. Let

Ti1 = nt (X}-Hzxi —trH,)Ig,
72 = Ul (I, + Hy)(x;x] = L,)(I, + H;) Uy,

then we can write t; = T;; —T;,. To prove E{tr(Wt;)}> = O(1), it suffices to show that E{tr(Wt;,)}? =
O(1), since
Eftr(Wr;)}? = E{trW(z;) — 7)) < 2E{tr(Wrjp)) + 2E{tr(Wr;2))?,

and
E{tr(Wz;))}? = n?E(x] Hyx; — trH;)? - (trW)? = o(1),

which follows from Assumption (B3) and the fact ||H,||, = O(1). Let
A = (I, + H])U;WU{ (I, + Hy),

then we have
E[tr(Wz;,)]? = Elx] Ax; — trA]> < 2E|x] Ax;|* + 2EJtrA|>.
Note that
tr(A) = tr{(WU] (I, + Hy)(I, + H))U, }
< K[WUT(I, + Hy)(I, + H])Uy [l = O(1),
and similarly, (trA)?> = O(1). Thus, we need only to show ElxiTAxl-l2 = O(1). Let Ay denote the (k,€)-

th entry of A. From Lemma A.4, we obtain Zzzl A,%k < tr(A?) = O(1). By using Cauchy-Schwarz

inequality, we obtain

Y Audee < (ZAkk)(ZAaz) (trA)? = O(1),

k=(
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Y Auebis= Y Aude < (ZAkk) (ZA ) < (trd) - pera®) 2 = O(p),

k#l+#s k#l+#s
Y Ay < (ZAke)(ZAst)wtr (A)= O(p?).
k=l=s#t szt

It follows from the above inequalities and Assumption (B2) that

p
Elx] Ax;|? = ZEA,{k EXE + ZE(AkkAM +2A2,)-EX2 X2,
k=1 k=t
+ Z E(2AkkAgs + 401 Axs) - EXE X0 X
kzl#s
+ ) EAgrAgEXgXiXisXie
k=l#s+t

= O(1).
This completes the proof of Lemma A.7.

B.5 Proof of Lemma A.9

From Lemma 2.2, p,, and W, share the same LSD, thus we only need to derive the LSD of W,,. Since
the vectors {A;}!"_, arei.i.d., by Theorem 1.1 of Bai and Zhou (2008), we can prove Lemma A.9 by
verifying that the elements of A, are weakly dependent in the following sense: for any non-random
p x p matrix D with bounded spectral norm,

Var(A]DA ) = o(p?). (37)

From the Corollary 1.1 in Bai and Zhou (2008), (37) holds true if

2
Z{E(AliAlj - Gij)(Au'Alj' - Gi’j’)} =o(p?), (38)
A
maxE|Aj;A;; - 01]| =o(p), (39)
i#j

where Ay; is the i-th component of Ay, 0;; :=EA;A;;, and
A={(i,], i) i1 j € lpD\ 1) ri=i" = j=fori=]"=j=1i}
Now, we prove (38) and (39). From (26), we have A;; ~ Uniform(-1,1) for any i € [p], and thus
EAL = é o =EA% = % (40)
Two moment conditions (38) and (39) follow from (40) and the following estimations:
0ij=0(p7"),  EAuAjjAipAyp=0(p7%),  EAjAA=0(p™), (41)

EA3A1j=0(p7"),  EB(A};-0ii)(Af; - 0j;) = O(p72), (42)
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where 7,7,i’,j’ € [p] and i # j # i’ # j'. Proofs of (41) and (42) are provided in Section B.5.1. From
(40) — (42), we obtain

2
maxE|Aj;A;;— o0y = 0(1),

i#]

and

Z{E(Auf‘w -0 ) A1 Ar - "i’f’)}Z

A
= Z (EAliAleli’Alj’ — CTZ']'UZ"]")Z +2 Z (EA%iAli’Alj’ - O-iiai’]")2
iwji2]’ i#i2]’
+2 Z (EAfiAleljr - Ujjajj’)z +2 Z(EA%AU - UijUii)z
i#j#]’ i#j
+ Y (BALAY —oi0y) + ) (BAL-o7)
i] i

O(p*)-O(p™*) +O(p®)- O(p~2) + O(p®)- O(p™2) + O(p?) - O(p~?)
+0(p?)-O(p™) + O(p)- O(1)
= O(p).

This implies (38) and (39), completing the proof of Lemma A.9.

B.5.1 Proofs of (41) and (42)

In this section, we provide the proofs of some moment estimations (41) and (42), which are used in
the proof of Lemma A.9.
From equations (26), (31), and Assumption (A3), we have

EAy; = 2EF;(b]f; + Wyey;) -1
= E{ZFi(\Piieli) ~1}+0(p~?) =t EA;; + O(p~ ).

Since EA;; = 0, we obtain that EA;; = O(p~/?). By using the same argument, we obtain
EAZ, =EA%,+0(p™"), EA} =0(p"?).
Since A;; and Alj are independent for i # j, we have
0ij=EA;A;j=EA;;-EA;j+O(p™) = O(p™").
By using the above estimations, for i # j # i’ # j’, we have

EAliAleli'Alj' = ]EAU EAl] 'EA“/ -EA~1]‘/ + O(p_z) = O(p_z),

EA%iAli’Alj’ = ]EI:A%i{A“, + O<p*1/2)}{A~1],, + O(Pil/z)}]
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= EA%l 'EAU/ 'EAlj’ + O(p_l) = O(P_l )1

EA?,-AU = E[{Ali + o(p—l/z)}3{A1]_ N O(p—l/Z)}]

= ]E[{Ai' +O0(p~?)- A+ O(p™")- Ay + O(p—3/2)}{A1]_ N O(p_l/z)}]

=0(p™),

]E(A%i — O’ii)(A%j — O']])

[

E
O(p™).

A% — 0+ O(p™V%) Ay + O(p‘l)}{Afj —0jj+O0(p™"?)- A+ O(P_l)}]
2

These equations complete the proofs of (41) and (42).

B.6 Proof of Lemma A.10

Throughout this proof, Qg (A,X) is simply denoted as Qg (X) if no confusion. Recall that X =
(x1,...,%x,)Tand Y = (yy,...,y,)". We denote
X;=(xq,.. X Vit "Yn)Tr Xio = (x1,. X1, Yitlr-- 'lYn)T

with convention X = X, and Y = Xj). Using the Sherman-Morrison formula, we obtain

Qg (X;) - Qx(Xjo)
1
 Bivn

{(1 + 1 x[Hox; )Ig = U (I, + Hy )x;x] (I, + Hy )TU1}

€2

BhoBi

i) (Tio +Ti),

Ti0+Ti)+

! (tijp+ 7 i (
Biovn BioVn
where ; and ;o are defined in (14) and (15), and

H; = n ' X (AL,_; —n7'X;oT X)) ' X0,

H, = 0 'TX],(AL,_; — 7' X;oT X)) 2 X;0T,

Tio = (1+n "trHy)Ix = U (I, + Hy )(I, + Hy) Uy, (43)
;=" (x] Hpx; — trHy)Ig — U (I, + Hy ) (x;x] = 1,)(I, + H;)TU;. (44)

Similarly, we have

Qi (Xi—1) - Qx(Xjo)
22

iy
ﬂizolgiy\/z(

_ 1 Eiy
—W(TiO"'Tiy)_W(TiO"'Tiy)"' Tio + Tiy)s
1
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where B;,, Ty, and ¢;, are similarly defined as f;, 7;, and ¢; with x; replaced by y;.
Now, we begin to prove that Qg (X) and Qg (Y) have the same limiting distribution. To this end,
we show that the difference between the characteristic functions tends to zero, that is, for any K x K

deterministic symmetric matrix W,
E(exp[itr{WQK(X)}]) - E(exp[itr{WQK(Y)}]) — 0,
where i = V-1. Using the notations we introduced above, we can write

E{explitr{w (0] - B(explir{wea, (1))
_ ZEexp(itf[W{QK(xiO) + ﬂ:\oﬁ}]){ﬂzi eXp(itr[W{ ﬁi:i/ﬁ _ (Tz-/gl?:\;%)gi }])
gl e )|
+ iEeXp(itr[W{QK(xiO)"' ﬁ;fm}])
(ool o

-E; exp(itr[w{ /J’:f/ﬁ _ (Tioﬂ“izo’:;%)giy }])(exp[i tr{%}] - 1)},

where E;(-) := E(- | X;) denotes the conditional expectation given X;o. The second term on the RHS
of the above identity can be shown to be negligible by using the same argument as in (Jiang and
Bai, 2021b, p. 16) and our Lemma A.7. Hence, we have

B (explitr( WOk ()}]) - E[exp[i W (v}

n

ool ) ool

i=1
a2 - o ) oy

BioVn BV

Moreover, by using the same argument, we obtain

E(exp[i tr{WQK(X)}]) - E(exp[itr{WQK(Y)}])
= ZEexp(itr[W{QK(Xio) + ﬁ}]) . (Ei exp[itr{W( ﬁi:i/E - ﬂt%o\j%)}]

-E; exp[itr{W( ﬁ:)i\y/z - ;}Zf}%)}” +0(1).
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This, together with Taylor’s expansion, gives us

E(exp[itr{WQK(X)}]) - E(exp[itr{WQK(Y)}])
< iEexp(itr[W{QK(Xio)Jr ﬁ:\()/ﬁ}])x
e e L e | R

—Ei(1+itr{ (ﬁ:i)/_ ﬁlzzz)}_%[t{ (/5:)?/_ ;lzf/lz)}]Z of —1))}l

=o(1),

=

where we use some facts as follows:

I A PN R
R
Finally, it remains to prove (45). Note that
e el
2

1 2 2¢; & 2
- ;[—Z{tr(W’ci)} - ﬁTtr(WTi)tr(WTiO) + —{tr(Wrjp)} ]
i0 i0 i0

and from Lemma A.7, we have

%E{tr(Wri)tr(W’rioei)} =<Eeg; =0(1),
i0

ﬁ%E[{tr(W’rio)}%?] =Ee? =o(1).
i0

Since X and Y satisfy (B1) — (B4), by using above estimates and Lemma A.7, we obtain

=il =Gl
- %Ei(ﬁ%[{tr(Wn)}z - {tr(W'riy)}z] T 0(1)) —o(n"),
i0

which is (45), completing the proof of Lemma A.10.

32



C Proofs of Theorems 2.5 and 2.8

C.1 Proof of Theorem 2.5

From Lemma 2.2, we investigate the phase-transition theory of spiked eigenvalues of p, by those
of W, = (3/n) L, A;A]. Recall that ¥, =EW,,. Define the spectral decomposition of ng as

D" 0

2 _ 1 T

by —U( . DW]U,
2

where U is a pxp orthogonal matrix, D; is the diagonal matrix consisting of the K spiked population
eigenvalues, and D, is the diagonal matrix consisting of the remaining p—K non-spiked eigenvalues.
Let A, := \/5251/ 2A; denote a transformed version of V3A,. It is obvious that A; is isotropic, that
is, Cov(A;) = I,. By using these notations and the spectral decomposition of ¥/2, we can write the

characteristic equation as

1/2 1/2
0=|AI,-W,|=[AI,-U| ! U'W, U Dy U’
—| P n| - 12 D12/2 n Dl/z

, (46)

where W,, :=n"1 A" A with A := (A;,...,A,)". Let Q = U"W, U and partition it as
0- [Qll le] _ (UIWnUl U-{WnUZ]
Qx Q) (UW,U; UW,U,
where Uj is the submatrix formed by the first K columns of U, and U, is the remaining submatrix.

Plugging this identity into (46) yields that

O 3 ‘/\I _ (Dll/lelDll/z D11/2Q12D12/2)
- p /2 /2 /2 /2
D,°Q,D;” D,°Q,,D,

= |/\Ip—K ~-D}Qy,DY’

X '/\IK -D}/’Q,,D{" - D11/2Q12D12/2(/\Ip—K -DJ’Q,,D})"'D})*Q,, D},

where the last equality follows from the formula det (‘é 5 ) = det(A-BD!C)-det(D). Since we only
consider the spiked eigenvalues, we have [AI,_x - D12/2Q22D12/2| # 0, and

0=[AD;'-Qq; - leDlz/z(/'\Ipr - D52Q22D32)71D52Q21|
1 1 1 -1
= |[ap7! - EUI.AT[IH ¥ ;AU2D12/2(/\IP,K - ED;/ZUEATAUZD?) DIZ/ZUE.AT]AU1|

A 1 -1
- [ap7! - ;UIAT(AIH - ;AU2D2U§AT) .AU1’

-1
_ D71 - %tr{(/\ln _ %AFAT) e+ 20 (1,.4), (47)
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where I’ = U2D2U; and

Qx(A,A) = i[tr{(un - lArAT)1 }IK - U{AT(un _ lAl‘AT)lAUl]. (48)
v z "
From Lemma A.10 and Remark A.11, if A, satisfies Assumptions (B1) — (B4), we can replace entries
of A in (47) by the standard Gaussian entries without changing the phase-transition theory of the
spiked eigenvalues. Then, our Theorem 2.5 follows from Lemma 3.1 and Theorems 4.1 — 4.2 in Bai
and Yao (2012).

It remains to prove that random vector A; satisfies Assumptions (B1) — (B4), which shows that
our Lemma A.10 applies. It is obvious that A; satisfies Assumption (B1). By using Lemma 2.3,
we conclude that liminf,_,, /\p():gz
this information and the fact that each component of the random vector A; follows Uniform(-1,1)

) >0, and thus E;l/z is bounded in spectral norm. Combining

distribution, we conclude that each component of the random vector A; has bounded fourth
moment. This, together with Lemma 2.3 and similar calculations in Section B.5.1, implies that A;
satisfies the moment condition (B2). From (37) and the fact that ||E;1/2||2 = 0O(1), we have, for any
pxp symmetry matrix T with bounded spectral norm, Var(A]TA;) = Var(3AiTZ;,V2TZ;V2Ai) = o(p?).
Hence, A; satisfies Assumption (B3). By Assumptions (A3) and (A4), Lemma 2.3, and the fact that
each component of A; follows Uniform(—1,1), we conclude that each component of Ki is bounded,
and thus satisfies the concentration assumption (B4), according to Lemma A.3. Therefore, the
random vector A; satisfies Assumptions (B1) — (B4), which shows that our Lemma A.10 applies.
This completes the proof of Theorem 2.5.

C.2 Proof of Theorem 2.8

From Theorem 2.5, we have, with probability one,

1 & 1

PTG (Ao - Adtp, )}

n?;'f(/\j(pn)) -

< {/\ (p,) i\ (p )}2 _){¢(Aj(zp))_¢(/\j+1(2p))}_2 =1,
Fi\Wn) — Aj+1\Py

for any j € [K(], where the function (-) is defined in Theorem 2.5. Thus,

i, 1 (A1 (p,)
i, (Ai(e,)

=<1, for j e [Ky—1]. (49)

The eigenvalues {1;(p,), Ko + 1 < j < Kpax} are bulk eigenvalues, and then we have A;(p,) -
Ai(p,) = O(p~!). Thus, for Ky + 1 < j < Kpay, we obtain

1 < 1 1 1
i, (Ai(p,)) = — > — = O(p).
iten) P—Jg:]ZH ()= Aee,)) P70, = A}
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Therefore,
n?;,KO+1 (AK0+1 (pn))

ﬁ;,KO (/\KO (pn))

Moreover, for Ko+ 1 < j < Kyax, We have

— oo. (50)

Moia(A10p0)  poj Tijuafdiate,) - 2ete,)
n?;’](/\](pn)) p_j_l Z§:j+1{/\j<pn)_/\€(pn)}72

X o{Nale) - Ade,))

—— =< 1. (51)
Yo {rie.) - Adp,)

Combining (49) — (51), we complete the proof of Theorem 2.8.
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