Robust estimation of number for factors in high dimensional factor modeling via Spearman correlation matrix

Jiaxin Qiu, Zeng Li ${ }^{\dagger}$ Jianfeng Yao ‡

(This version: May 13, 2024)

Abstract

Determining the number of factors in high-dimensional factor modeling is essential but challenging, especially when the data are heavy-tailed. In this paper, we introduce a new estimator based on the spectral properties of Spearman sample correlation matrix under the high-dimensional setting, where both dimension and sample size tend to infinity proportionally. Our estimator is robust against heavy tails in either the common factors or idiosyncratic errors. The consistency of our estimator is established under mild conditions. Numerical experiments demonstrate the superiority of our estimator compared to existing methods.

Contents

1 Introduction 2
2 Main results 6
2.1 Spearman correlation matrix 6
2.2 Phase transition theory 8
2.3 Estimation of the number of factors 10
3 Simulation studies 12
4 Real data analysis 14
5 Discussions 17
A Auxiliary lemmas 18

[^0]B Proofs of lemmas 21
B. 1 Proof of Lemma 2.2 21
B. 2 Proof of Lemma 2.3 24
B. 3 Proof of Lemma A. 6 25
B. 4 Proof of Lemma A. 7 26
B. 5 Proof of Lemma A. 9 28
B.5.1 Proofs of (41) and (42) 29
B. 6 Proof of Lemma A. 10 30
C Proofs of Theorems 2.5 and 2.8 33
C. 1 Proof of Theorem 2.5 33
C. 2 Proof of Theorem 2.8 34

1 Introduction

Factor models are helpful tools for understanding the common dependence among high-dimensional outputs. They are widely used in data analysis in various areas like finance, genomics, and economics. Estimating the total number of factors is one of the most fundamental challenges when applying factor models in practice. This paper focuses on the following factor model:

$$
\begin{equation*}
\mathbf{y}_{i}=\mathbf{B f}_{i}+\mathbf{\Psi e}_{i}, \quad i \in[n]:=\{1,2, \ldots, n\}, \tag{1}
\end{equation*}
$$

where $\left\{\mathbf{y}_{i}\right\}_{i=1}^{n}$ are the p-dimensional observation vectors, $\left\{\mathbf{f}_{i}\right\}_{i=1}^{n}$ the K-dimensional latent common factor vectors, $\left\{\mathbf{e}_{i}\right\}_{i=1}^{n}$ the p-dimensional idiosyncratic error vectors, \mathbf{B} the $p \times K$ factor loading matrix, and Ψ a $p \times p$ diagonal matrix. The objective of this paper is to estimate the number of common factors when the observed data are heavy-tailed.

There is a large literature on this estimation problem which can generally be categorized into two types of approaches. The first type is based on information criteria. The seminal work Bai and Ng (2002) proposed several information criteria, which were formulated in many different forms, through modifications of the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Hallin and Liška (2007) proposed an information criterion that utilized spectral density matrix estimation. Alessi et al. (2010) modified Bai and Ng (2002)'s criteria by tuning the penalty function to enhance their performance. Kong (2017) employed similar ideas and put forth a local principal component analysis (PCA) approach to study a continuous-time factor model with time-varying factor loadings using high-frequency data. Li et al. (2017a) used information criteria akin to those proposed by Bai and Ng (2002) to factor models when the number of factors increases with the cross-section size and time period. The first type of approach usually requires strong signals. The second type of approach is based on eigenvalue behavior of various types of covariance/correlation matrices. As for sample covariance matrices, Nadakuditi and Edelman (2008) proposed an estimator by exploiting the distribution properties of the moments of
eigenvalues. Ahn and Horenstein (2013) proposed two estimators by utilizing the ratios of adjacent eigenvalues, namely the eigenvalue ratio (ER) estimator and the growth ratio (GR) estimator. Onatski $(2010,2012)$ proposed an alternative edge distribution (ED) estimator based on the maximum differences between consecutive eigenvalues instead of their ratios. Owen and Wang (2016) introduced an estimator that utilizes the bi-cross-validation (BCV) technique from Owen and Perry (2009). This estimator is based on the theoretical results concerning the spiked sample covariance matrix. For lagged sample autocovariance matrices, Lam and Yao (2012) developed a ratio-based estimator for factor modeling of multivariate time series. This estimator was further extended by Li et al. (2017b) to accommodate weak factors. As for correlation matrices, Fan et al. (2020) proposed a tuning-free and scale-invariant adjusted correlation thresholding method. This approach has been further extended to time series tensor factor model in Lam (2021) and Chen and Lam (2024).

The aforementioned methods have been proved to be inadequate when dealing with heavytailed data, and mostly would result in biased or inconsistent estimators. Heavy-tailed data are common in various real-world applications. For instance, prices of stock returns often exhibit heavy tails due to the occurrence of extreme events in the market. However, little literature has focused on estimating number of factors in the context of heavy-tailed data. Assuming a jointly elliptical distribution for both common factors and idiosyncratic errors (as discussed in Fan et al. (2018)), Yu et al. (2019) proposed two estimators utilizing the sample multivariate Kendall's tau matrix. He et al. (2022b) further extended it to the matrix factor model. He et al. (2022a) recovered factor loadings and scores by performing PCA to the multivariate Kendall's tau matrix. It is worth mentioning that Yu et al. (2019)'s method requires that $\left\|\mathbf{B}^{\top} \mathbf{B} / p-\Sigma_{B}\right\|_{2} \rightarrow 0$, where Σ_{B} is a $K \times K$ positive definite matrix with bounded and distinct eigenvalues (see their Assumptions 2.3). The factor model is considered to have a strong factor structure (Bai and $\mathrm{Ng}, 2002$) when both $\mathbf{B}^{\top} \mathbf{B} / p$ and $\sum_{i=1}^{n} \mathbf{f}_{i} \mathbf{f}_{i}^{\top} / n$ converge to positive definite matrices. In this paper, we consider the weak loading scenario by assuming $\mathbf{B}^{\top} \mathbf{B}=\mathbf{I}_{K}$, which is a commonly used identifiability condition in the literature on factor models (see, for example, Bai and Li (2012)). Moreover, we address a more challenging scenario where both the factors and idiosyncratic errors may be heavy-tailed, potentially leading to the non-existence of the limit of $\sum_{i=1}^{n} \mathbf{f}_{i} \mathbf{f}_{i}^{\top} / n$. We propose an estimator based on Spearman correlation matrix (Spearman, 1961) which shows significant improvements over existing methods. Here, we use a toy example to demonstrate the robustness of Spearman correlation matrix. Data are generated following factor model (1) with $K=3$. The factors and idiosyncratic errors follow either standard normal distribution or standard Cauchy distribution. As shown in Figure 1, when the common factors and the idiosyncratic noise are light-tailed, all four sample covariance/correlation matrices have three spiked eigenvalues, and all factors can be detected. When the data distribution is heavy-tailed, only our method can clearly identify all three factors.

Spearman correlation matrix is defined as the Pearson correlation matrix of the ranks of the data. It is a valuable tool when dealing with heavy-tailed data. However, the nonlinear structure of rank-based correlation brings significant difficulties when analyzing its eigenvalue behavior. We need to resort to tools in random matrix theory (RMT). Unfortunately, most existing work in

Figure 1: Scatter plots of the first 30 eigenvalues of the sample covariance matrix (SCM), Pearson correlation matrix, Spearman correlation matrix, and multivariate Kendall's tau matrix. Data are generated following the factor model (1) with $K=3$. The factors and idiosyncratic errors are drawn independently from standard Normal distribution (Left panel: Figures (a), (c), (e), (g)) or standard Cauchy distribution (Right panel: Figures (b), (d), (f), (h)). The symbol " " represents the spiked eigenvalues. Further details regarding the matrices \mathbf{B} and $\boldsymbol{\Psi}$ can be found in the case (C1) in Section 3.

RMT focuses on very restrictive settings when data has independent components. Bai and Zhou (2008) showed that its limiting spectral distribution (LSD) is the well-known Marčenko-Pastur law. Bao et al. (2015) established the central limiting theorem (CLT) for its linear spectral statistics (LSS). Bao (2019) showed that the Tracy-Widom law holds for its largest eigenvalues. To the best of our knowledge, the first investigation of Spearman sample correlation matrix for general dependent data was conducted very recently by Wu and Wang (2022), which derived its LSD under the non-paranormal distribution proposed by Liu et al. (2009). Many other spectral properties, including the extreme eigenvalues, CLT for LSS, and spiked eigenvalues for dependent data, still remain open. Our work is the first to investigate the eigenvalue behavior of Spearman sample correlation matrix under spike models, and successfully applies the theories to identify the number of factors in high-dimensional factor modeling for heavy-tailed data.

To summarize, the main contributions of this paper are two-fold. First, we propose a new estimator based on Spearman sample correlation matrix for the number of common factors in the high-dimensional factor model (1). This estimator is distribution-free and capable of estimating the number of factors even when the data are heavy-tailed. Second, we provide a theoretical explanation of phase-transition phenomenon for the top eigenvalues of Spearman sample correlation matrix under spike model. From a technical point of view, we investigate this phase-transition theory by establishing the universality of the asymptotic law of a low-dimensional random matrix (see Lemma A. 10 and Remark 2.6 for more details), and our method does not require the commonly used independent component structure.

Before moving forward, let us introduce some notations that will be used throughout this paper. We use $[n]$ to denote the set $\{1,2, \ldots, n\}$. We adopt the convention of using regular letters for scalars, and bold-face letters for vectors or matrices. For any matrix A, we denote its (i, j)-th entry by $A_{i j}$, its transpose by \mathbf{A}^{\top}, its trace by $\operatorname{tr}(\mathbf{A})$, its j-th largest eigenvalue by $\lambda_{j}(\mathbf{A})$ (when the eigenvalues of \mathbf{A} are real), its spectral norm by $\|\mathbf{A}\|_{2}=\sqrt{\lambda_{1}\left(\mathbf{A A}^{\top}\right)}$, and its element-wise maximum norm by $\|\mathbf{A}\|_{\text {max }}=\max _{i, j}\left|A_{i j}\right|$. We use $\operatorname{diag}(\mathbf{A})$ to denote the diagonal matrix of \mathbf{A} (replacing all offdiagonal entries with zero). For a sequence of random variables $\left\{X_{n}\right\}_{n=1}^{\infty}$ and a corresponding set of nonnegative real numbers $\left\{a_{n}\right\}_{n=1}^{\infty}$, we write $X_{n}=O_{P}\left(a_{n}\right)$ if $X_{n} / a_{n}=O_{P}(1)$ (bounded in probability), and we write $X_{n}=o_{P}\left(a_{n}\right)$ if $X_{n} / a_{n} \rightarrow 0$ in probability. For any univariate function f, we denote $f(\mathbf{A})=\left[f\left(A_{i j}\right)\right]$ as a matrix with f applied on each entry of \mathbf{A}. Throughout this paper, C stands for some positive constant whose value is not important and may change from line to line. The notation " $i_{1} \neq i_{2} \neq \cdots \neq i_{m}$ " indicates that the m indices $\left\{i_{\ell}\right\}_{\ell=1}^{m}$ are pairwise different. All limits are for $n \rightarrow \infty$, unless explicitly stated otherwise.

The rest of this article is organized as follows. Section 2 proposes a new estimator of the number of common factors in the factor model (1). The consistency of our estimator is proven based on spectral properties of Spearman sample correlation matrix. Section 3 offers comprehensive simulation experiments, comparing our estimator with others. In Section 4, we evaluate the performance of the proposed estimator on a real dataset. A brief discussion is given in Section 5. Auxiliary lemmas and technical proofs are relegated to the appendix.

2 Main results

2.1 Spearman correlation matrix

For p-dimensional i.i.d. data sample $\left\{\mathbf{y}_{i}\right\}_{i=1}^{n}$, we denote the ranks of the data as follows:

$$
\mathbf{Y}_{n}=\left(\begin{array}{c}
\mathbf{y}_{1}^{\top} \\
\vdots \\
\mathbf{y}_{n}^{\top}
\end{array}\right)=\underbrace{\left(\begin{array}{ccc}
y_{11} & \cdots & y_{1 p} \\
\vdots & \ddots & \vdots \\
y_{n 1} & \cdots & y_{n p}
\end{array}\right)}_{\text {raw data matrix }} \Longrightarrow \underbrace{\left(\begin{array}{ccc}
r_{11} & \cdots & r_{1 p} \\
\vdots & \ddots & \vdots \\
r_{n 1} & \cdots & r_{n p}
\end{array}\right)}_{\text {ranks matrix }}
$$

where $r_{i j}=\sum_{\ell=1}^{n} \mathbb{1}\left\{y_{\ell j} \leqslant y_{i j}\right\}$ is the rank of $y_{i j}$ among $\left\{y_{\ell j}\right\}_{\ell=1}^{n}$, and $\mathbb{1}\{\cdot\}$ denotes the indicator function. Spearman correlation matrix of the raw data matrix \mathbf{Y}_{n} is the Pearson correlation matrix of the ranks matrix. Define the normalized ranks matrix

$$
\begin{equation*}
\mathbf{R}=\sqrt{\frac{12}{n^{2}-1}}\left(r_{i j}-\frac{n+1}{2}\right)_{n \times p}, \tag{2}
\end{equation*}
$$

and let \mathbf{R}_{i}^{\top} be the i-th row of the matrix \mathbf{R}. The Spearman sample correlation matrix of \mathbf{Y}_{n} is

$$
\begin{equation*}
\boldsymbol{\rho}_{n}=\frac{1}{n} \mathbf{R}^{\top} \mathbf{R}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{R}_{i} \mathbf{R}_{i}^{\top} \tag{3}
\end{equation*}
$$

The empirical spectral distribution (ESD) of $\boldsymbol{\rho}_{n}$ is referred to as a random measure $F^{\boldsymbol{\rho}_{n}}=p^{-1} \sum_{j=1}^{p} \delta_{\lambda_{j}\left(\rho_{n}\right)}$, where $\delta_{\lambda_{j}\left(\boldsymbol{\rho}_{n}\right)}$ is the Dirac mass at the point $\lambda_{j}\left(\boldsymbol{\rho}_{n}\right)$. The limit of $F^{\boldsymbol{\rho}_{n}}$ is called limiting spectral distribution (LSD). Under the assumption that the components of \mathbf{y}_{i} are i.i.d., Bai and Zhou (2008) proved that the LSD of ρ_{n} is the well-known Marčenko-Pastur distribution. Recently, Wu and Wang (2022) extended this result to the non-paranormal distribution. In this study, we further extend their findings to encompass the scale mixture of normal distributions (see Definition 2.1), as stated in Lemma A.9.

Throughout this paper, we assume that both common factors and idiosyncratic errors follow continuous distributions. Therefore, with probability one, there are no ties among $\left\{y_{i j}, i \in[n]\right\}$ for each j. For any $j \in[p]$ and $i, \ell \in[n]$ with $i \neq \ell$, we have $\mathbb{1}\left\{y_{\ell j} \leqslant y_{i j}\right\}=\frac{1}{2}+\frac{1}{2} \operatorname{sign}\left(y_{i j}-y_{\ell j}\right)$, where $\operatorname{sign}(\cdot)$ denotes the sign function. Hence, we have

$$
\begin{equation*}
r_{i j}-\frac{n+1}{2}=1+\frac{1}{2} \sum_{i \neq \ell}\left\{1+\operatorname{sign}\left(y_{i j}-y_{\ell j}\right)\right\}-\frac{n+1}{2}=\frac{1}{2} \sum_{i \neq \ell} \operatorname{sign}\left(y_{i j}-y_{\ell j}\right) . \tag{4}
\end{equation*}
$$

For two sample vectors \mathbf{y}_{i} and \mathbf{y}_{ℓ}, we define the sign vector

$$
\mathbf{A}_{i \ell}=\operatorname{sign}\left(\mathbf{y}_{i}-\mathbf{y}_{\ell}\right)=\left(\operatorname{sign}\left(y_{i 1}-y_{\ell 1}\right), \ldots, \operatorname{sign}\left(y_{i p}-y_{\ell p}\right)\right)^{\top} .
$$

Then, from (2) and (4), we can rewrite the Spearman sample correlation matrix (3) as

$$
\rho_{n}=\frac{3}{n\left(n^{2}-1\right)} \sum_{i=1}^{n} \sum_{\ell_{1}, \ell_{2} \neq i} \mathbf{A}_{i \ell_{1}} \mathbf{A}_{i \ell_{2}}^{\top} .
$$

The application of sign transformations to the data introduces an intractable nonlinear correlation structure. To address this challenge, we utilize Hoeffding's decomposition (Hoeffding, 1948) to handle the nonlinear correlation within $\mathbf{A}_{i \ell}$. By employing this decomposition, we can identify the dominant term of ρ_{n}. Let $\mathbf{A}_{i}:=\mathbb{E}\left(\mathbf{A}_{i \ell} \mid \mathbf{y}_{i}\right)$, the Hoeffding's decomposition of $\mathbf{A}_{i \ell}$ can be expressed as follows:

$$
\begin{equation*}
\mathbf{A}_{i \ell}=\mathbf{A}_{i}-\mathbf{A}_{\ell}+\varepsilon_{i \ell}, \tag{5}
\end{equation*}
$$

where $\varepsilon_{i \ell}:=\mathbf{A}_{i \ell}-\mathbf{A}_{i}+\mathbf{A}_{\ell}$. Note that $\mathbb{E} \mathbf{A}_{i \ell}=\mathbb{E} \mathbf{A}_{i}=\mathbf{0}$, and the covariance matrix of \mathbf{A}_{i} is $\mathbb{E}\left(\mathbf{A}_{i} \mathbf{A}_{i}^{\top}\right)$. With Hoeffding's decomposition defined in (5), we have

$$
\begin{aligned}
\rho_{n}=\frac{3}{n\left(n^{2}-1\right)}\left\{\sum_{i=1}^{n}\right. & \sum_{\ell_{1}, \ell_{2} \neq i}\left(\mathbf{A}_{i}-\mathbf{A}_{\ell_{1}}\right)\left(\mathbf{A}_{i}-\mathbf{A}_{\ell_{2}}\right)^{\top}+\sum_{i=1}^{n} \sum_{\ell_{1}, \ell_{2} \neq i}\left(\mathbf{A}_{i}-\mathbf{A}_{\ell_{1}}\right) \varepsilon_{i \ell_{2}}^{\top} \\
& \left.+\sum_{i=1}^{n} \sum_{\ell_{1}, \ell_{2} \neq i} \varepsilon_{i \ell_{1}}\left(\mathbf{A}_{i}-\mathbf{A}_{\ell_{2}}\right)^{\top}+\sum_{i=1}^{n} \sum_{\ell_{1}, \ell_{2} \neq i} \varepsilon_{i \ell_{1}} \varepsilon_{i \ell_{2}}^{\top}\right\} .
\end{aligned}
$$

It will be shown that the cross-terms in the above identity are negligible (see Lemma 2.2 and its proof in Section B.1). We can then focus on the first term,

$$
\begin{align*}
& \frac{3}{n\left(n^{2}-1\right)} \sum_{i=1}^{n} \sum_{\ell_{1}, \ell_{2} \neq i}\left(\mathbf{A}_{i}-\mathbf{A}_{\ell_{1}}\right)\left(\mathbf{A}_{i}-\mathbf{A}_{\ell_{2}}\right)^{\top} \\
= & \frac{n-2}{n+1} \cdot \frac{3}{n} \sum_{i=1}^{n}\left\{\frac{1}{(n-1)(n-2)} \sum_{\ell_{1} \neq \ell_{2} \neq i}\left(\mathbf{A}_{i}-\mathbf{A}_{\ell_{1}}\right)\left(\mathbf{A}_{i}-\mathbf{A}_{\ell_{2}}\right)^{\top}\right\}+\frac{3}{n+1} \boldsymbol{\tau}_{n}, \tag{6}
\end{align*}
$$

where $\boldsymbol{\tau}_{n}:=\frac{1}{n(n-1)} \sum_{i=1}^{n} \sum_{\ell \neq i}\left(\mathbf{A}_{i}-\mathbf{A}_{\ell}\right)\left(\mathbf{A}_{i}-\mathbf{A}_{\ell}\right)^{\top}$ is the sample marginal Kendall's tau correlation matrix (Bandeira et al., 2017; Li et al., 2023). The second term, $3 \tau_{n} /(n+1)$, and the cross-terms in (6) are negligible (see Lemma 2.2 and its proof in Section B.1). Hence, the leading order term of $\boldsymbol{\rho}_{n}$ is

$$
\begin{equation*}
\mathbf{W}_{n}=\frac{3}{n} \sum_{i=1}^{n} \mathbf{A}_{i} \mathbf{A}_{i}^{\top} . \tag{7}
\end{equation*}
$$

Through direct calculations, it can be demonstrated that the difference between the expected values of \mathbf{W}_{n} and ρ_{n} is of the order $O_{P}\left(n^{-1}\right)$. To be more precise, we have $\mathbb{E} \boldsymbol{\rho}_{n}=\frac{n}{n+1} \mathbb{E} \mathbf{W}_{n}+\frac{3}{n+1} \mathbb{E} \varepsilon_{12} \varepsilon_{12}^{\top}$.

Under certain assumptions, we can show that the spectrum of ρ_{n} can be approximated by that of \mathbf{W}_{n} (see Lemma 2.2). This allows us to study the spectral properties of ρ_{n} via those of \mathbf{W}_{n}. Under the scale mixture of normals framework defined in Section 2.2, we find that the population covariance matrix $\Sigma_{\rho}=\mathbb{E} \mathbf{W}_{n}$ has a finite-rank perturbation structure with K spiked eigenvalues (see Lemma 2.3). Thus naturally \mathbf{W}_{n} has K relatively large eigenvalues too. Subsequently, we can estimate the number of factors based on the top eigenvalues of \mathbf{W}_{n} or ρ_{n}. By establishing the phase-transition theory of spiked eigenvalues of \mathbf{W}_{n}, the consistency of the new estimator follows.

2.2 Phase transition theory

From the perspective of RMT, the spectrum of \mathbf{W}_{n} relies on the structure of $\Sigma_{\rho}=\mathbb{E} \mathbf{W}_{n}$. Although from factor model (1), it is clear that $\Sigma_{y}:=\operatorname{Cov}\left(\mathbf{y}_{i}\right)=\mathbf{B B}^{\top}+\Psi$ has finite-rank-K perturbation structure, the relationship between Σ_{ρ} and Σ_{y} is unclear. The structure of Σ_{ρ} changes for different distributions of \mathbf{y}_{i}. Therefore, extra distribution assumption of \mathbf{y}_{i} is needed to maintain the finiterank perturbation structure of Σ_{ρ}. Specifically, we assume that both the common factors and the idiosyncratic errors follow a scale mixture of normal distributions, defined as follows:

Definition 2.1 (Scale mixture of normals, Andrews and Mallows (1974)). A p-dimensional random vector $\mathbf{X}=\left(X_{1}, \ldots, X_{p}\right)^{\top}$ follows a scale mixture of normal distributions (SMN) if \mathbf{X} has the stochastic representation $\mathbf{X} \stackrel{\text { d }}{=} \sqrt{W} \mathbf{Z}$, where W is a scalar-valued random variable with positive support, and \mathbf{Z} follows p-dimensional normal distribution $\mathcal{N}_{p}(\mathbf{0}, \Sigma)$ independent of W, Σ is a positive semi-definite matrix. The notation " $X \stackrel{\text { d }}{=} Y$ " means X and Y have the same distribution.

Our motivation for using this scale mixture of normals is two-fold. First, the scale mixture of normals contains heavy-tailed distributions, such as Student's t distribution. If W follows the inverse Gamma distribution invGamma $(v / 2, v / 2)$ with probability density function $g_{W}(w)=$ $\frac{(v / 2)^{v / 2}}{\Gamma(v / 2)} w^{-(v / 2+1)} \exp \{-v /(2 w)\}$, then \mathbf{X} follows the p-dimentional Student's t distribution $t_{v}(0, \Sigma)$ with location parameter $\mathbf{0}$, scale matrix Σ, and degrees of freedom v, the probability density function of which is $f_{\mathbf{X}}(\mathbf{x})=\frac{\Gamma((v+p) / 2)}{\Gamma(v / 2) v^{p / 2} \pi^{p / 2}|\Sigma|^{1 / 2}}\left(1+\frac{1}{v} \mathbf{x}^{\top} \Sigma^{-1} \mathbf{x}\right)^{-(v+p) / 2}$. A number of well-known distributions can be written as scale mixtures of normals. We refer the readers to Section 2 of Heinen and Valdesogo (2020) for more examples. The second motivation is for technical advantage. From the fact that $\mathbf{X} \mid(W=w) \sim \mathcal{N}_{p}(\mathbf{0}, w \Sigma)$, we can relate the Spearman sample correlation matrix of \mathbf{X} to the scale matrix Σ using Grothendieck's identity (see Lemma A.5). Heinen and Valdesogo (2020) derived an explicit expression for Spearman correlation of bivariate scale mixture of normals. We extend this result to a more complicated bivariate population (see Lemma A.6) and utilize it to examine the structure of Σ_{ρ} (see Lemma 2.3). This direct connection to the scale matrix Σ_{ρ} is a fundamental step in the analysis of our proposed estimator.

Furthermore, we need the following assumptions:
Assumption (A1). As $n \rightarrow \infty, p=p(n) \rightarrow \infty$ and $p / n=c_{n} \rightarrow c \in(0, \infty)$.
Assumption (A2). All pairs $\left\{\left(\mathbf{f}_{i}^{\top}, \mathbf{e}_{i}^{\top}\right)^{\top}\right\}_{i=1}^{n}$ are i.i.d., and \mathbf{f}_{i} is independent of \mathbf{e}_{i}, and both of them follow the scale mixture of normal distributions. Suppose that w_{f} and w_{e} are two independent random variables with positive support. The common factor \mathbf{f}_{i} has a stochastic representation $\mathbf{f}_{i} \stackrel{d}{=} \sqrt{w_{i}^{f}} \mathbf{x}_{i}$, where w_{i}^{f} is an independent copy of w_{f}, and \mathbf{x}_{i} follows K-dimensional standard normal distribution. The idiosyncratic error \mathbf{e}_{i} has a stochastic representation $\mathbf{e}_{i} \stackrel{\mathrm{~d}}{=}\left(\sqrt{w_{i 1}^{e}} z_{i 1}, \ldots, \sqrt{w_{i p}^{e}} z_{i p}\right)^{\top}$, where $\left\{w_{i j}^{e}\right\}_{j=1}^{p}$ are i.i.d. copies of w_{e}, and $\left(z_{i 1}, \ldots, z_{i p}\right)^{\top}$ follows p-dimensional standard normal distribution.

Assumption (A3). The loading matrix \mathbf{B} is normalized by the constraint $\mathbf{B}^{\top} \mathbf{B}=\mathbf{I}_{K}$. All the entries of \mathbf{B} are of order $O\left(p^{-1 / 2}\right)$.

Assumption (A4). The matrix $\boldsymbol{\Psi}$ is diagonal with entries of order $O(1)$.

Assumption (A1) is common in the RMT literature. Assumption (A2) pertains to the distribution of the common factors and the idiosyncratic errors, and allows them to be heavy-tailed. This assumption is crucial for examining the structure of the population covariance matrix Σ_{ρ}. The constraint $\mathbf{B}^{\top} \mathbf{B}=\mathbf{I}_{K}$ in (A3) is a commonly used identifiability condition, see Bai and Li (2012). It follows that by singular value decomposition, we can represent \mathbf{B} as $\mathbf{U V}^{\top}$, where $\mathbf{U} \in \mathbb{R}^{p \times K}$ and $\mathbf{V} \in \mathbb{R}^{K \times K}$, and both have orthonormal columns. The column vectors of \mathbf{U} and \mathbf{V} are unit vectors in \mathbb{R}^{p} and \mathbb{R}^{K}, respectively. Thus, the condition $B_{i j}=O\left(p^{-1 / 2}\right)$ in (A3), for any $i \in[p]$ and $j \in[K]$, is not overly restrictive. This condition facilitates our technical proofs. Assumption (A4) is standard in the factor models literature.

In what follows, we develop some important spectral properties of Spearman sample correlation matrix. First, we show that the spectrum of ρ_{n} can be approximated by that of \mathbf{W}_{n}, as stated in the following lemma.

Lemma 2.2. Under Assumptions (A1) - (A4), for any $j \in[p],\left|\lambda_{j}\left(\boldsymbol{\rho}_{n}\right)-\lambda_{j}\left(\mathbf{W}_{n}\right)\right|=O_{P}\left(n^{-1 / 2}\right)$ as $n \rightarrow \infty$.
The proof of this lemma is provided in the supplementary material. From this Lemma, we can investigate the properties of ρ_{n} through its surrogate \mathbf{W}_{n}. As Σ_{ρ} represents the expectation of \mathbf{W}_{n}, examining the structure of Σ_{ρ} provides us with valuable insights of \mathbf{W}_{n}. The spike structure of Σ_{ρ} is illustrated in the following lemma.

Lemma 2.3 (Finite-rank perturbation). Under Assumptions (A1) - (A4), we have

$$
\begin{equation*}
\left\|\Sigma_{\rho}-\left\{\operatorname{diag}\left(\mathbf{I}_{p}-\gamma \boldsymbol{\Psi}^{-1} \mathbf{B} \mathbf{B}^{\top} \boldsymbol{\Psi}^{-1}\right)+\gamma \boldsymbol{\Psi}^{-1} \mathbf{B B}^{\top} \boldsymbol{\Psi}^{-1}\right\}\right\|_{2}=o(1) \tag{8}
\end{equation*}
$$

as $n \rightarrow \infty$, where $\gamma:=(6 / \pi) \mathbb{E}\left[w^{f} /\left\{\left(w_{1}^{e}+w_{2}^{e}\right)\left(w_{3}^{e}+w_{4}^{e}\right)\right\}^{1 / 2}\right]$, and $w_{j}^{e}, j=1,2,3,4$, are independent copies of w_{e}.

Remark 2.4. Note that both Σ_{ρ} and its approximation in (8) are correlation-type matrices, and all the diagonal entries equal to one. Consequently, the average of their eigenvalues are both one, and their bulk eigenvalues are clustered around one.

The proof of this lemma is provided in the supplementary material. In this lemma, we derive a "consistent" approximation of the population covariance matrix Σ_{ρ}. From Weyl's lemma (Lemma A.1), the spectrum of the matrix Σ_{ρ} can be approximated by that of a rank-K perturbation of a diagonal matrix. Intuitively, Σ_{ρ} would have at most K relatively larger eigenvalues. As for the sample counterpart, at most K spiked sample eigenvalues of ρ_{n} would lay outside the support of its LSD. Naturally, by counting the number of spiked eigenvalues of ρ_{n}, we can obtain a promising estimator of total number of factors. However, a very important yet intuitive observation here is that, for $1 \leqslant j \leqslant K, \lambda_{j}\left(\boldsymbol{\rho}_{n}\right)$ is not always far away from the bulk eigenvalues $\left\{\lambda_{j}\left(\boldsymbol{\rho}_{n}\right), K+1 \leqslant j \leqslant p\right\}$. It depends on whether the signal $\lambda_{j}\left(\Sigma_{\rho}\right)$ is strong enough. If $\lambda_{j}\left(\Sigma_{\rho}\right)$ is too weak, $\lambda_{j}\left(\boldsymbol{\rho}_{n}\right)$ would lie on the boundary of the support of bulk eigenvalues. This phenomenon is commonly referred to as the phase-transition phenomenon, which is described in the following theorem.

Theorem 2.5 (Phase transition). For the high-dimensional factor model (1), assume that Assumptions (A1) - (A4) hold, and the ESD of Σ_{ρ} tends to a proper probability measure H as $n \rightarrow \infty$. Denote $\psi(\alpha)=\alpha+c \int \frac{t \alpha}{\alpha-t} \mathrm{~d} H(t)$, we have
(a) For $1 \leqslant j \leqslant K$ satisfying $\psi^{\prime}\left(\lambda_{j}\left(\Sigma_{\rho}\right)\right)>0$, the j-th sample eigenvalue of $\boldsymbol{\rho}_{n}$ converges almost surely to $\psi\left(\lambda_{j}\left(\Sigma_{\rho}\right)\right)$, which is outside the support of the LSD of $\boldsymbol{\rho}_{n}$.
(b) For $1 \leqslant j \leqslant K$ satisfying $\psi^{\prime}\left(\lambda_{j}\left(\Sigma_{\rho}\right)\right) \leqslant 0$, the j-th sample eigenvalue of $\boldsymbol{\rho}_{n}$ converges almost surely to the right endpoint of the support of the LSD of $\boldsymbol{\rho}_{n}$.

The proof of Theorem 2.5 can be found in Section C.
Remark 2.6. From Lemma 2.2, we can investigate the asymptotic behavior of spiked eigenvalues of $\boldsymbol{\rho}_{n}$ via those of \mathbf{W}_{n}. Although $\mathbf{W}_{n}=(3 / n) \sum_{i=1}^{n} \mathbf{A}_{i} \mathbf{A}_{i}^{\top}$ is a Wishart-type random matrix, the nonlinear correlation structure of \mathbf{A}_{i} makes it difficult to directly apply the current phase-transition analysis techniques. The reason is that the vectors $\left\{\mathbf{A}_{i}\right\}_{i=1}^{n}$ do not follow the commonly used independent component structure as in Bai and Yao (2008, 2012) and Jiang and Bai (2021a). Specifically, the vector \mathbf{A}_{i} cannot be written as $\mathbf{A}_{i}=\Sigma^{1 / 2} \mathbf{x}_{i}$, where Σ is non-negative definite and all elements of $\mathbf{x}_{i} \in \mathbb{R}^{p}$ are i.i.d. with zero mean and unit variance. To remove the independent component structure assumption, we first show that replacing $\left\{\sqrt{3} \mathbf{A}_{i}\right\}_{i=1}^{n}$ in \mathbf{W}_{n} with i.i.d. $\mathcal{N}_{p}\left(\mathbf{0}, \Sigma_{\rho}\right)$ random vectors does not change the asymptotic behavior of spiked eigenvalues of \mathbf{W}_{n} (see Lemma A. 10 and Section C. 1 for more details). The substitution of $\left\{\sqrt{3} \mathbf{A}_{i}\right\}_{i=1}^{n}$ with i.i.d. $\mathcal{N}_{p}\left(0, \Sigma_{\rho}\right)$ is feasible because each entry of \mathbf{A}_{i} follows a Uniform($-1,1$) distribution and the universality phenomenon holds for light-tailed distributions. The universality phenomenon reveals that as long as \mathbf{A}_{i} has light-tailed entries, the first-order asymptotic behavior of the eigenvalues of $\frac{3}{n} \sum_{i=1}^{n} \mathbf{A}_{i} \mathbf{A}_{i}^{\top}$ remains the same when replacing $\left\{\sqrt{3} \mathbf{A}_{i}\right\}_{i=1}^{n}$ with Gaussian vectors. To guarantee the feasibility of this replacement, we establish concentration properties related to certain quadratic forms and their higher-order moments under the nonlinear correlation structure (see Lemma A.7). Then since Gaussian random vectors naturally follows the independent component structure, we can directly apply the phase transition theory in Bai and Yao $(2008,2012)$ and Jiang and Bai 2021 a) to complete the proof of Theorem 2.5.

To summarize, we first establish in Lemma 2.2 that $\left|\lambda_{j}\left(\rho_{n}\right)-\lambda_{j}\left(\mathbf{W}_{n}\right)\right|=o_{P}(1)$, and subsequently turn to analyze the eigenvalues of \mathbf{W}_{n}. Secondly, we prove that $\Sigma_{\rho}=\mathbb{E} \mathbf{W}_{n}$ exhibits a rank- K perturbation structure as in Lemma 2.3. Thirdly, we confirm the phase-transition phenomenon for $\lambda_{j}\left(\mathbf{W}_{n}\right)$, where $1 \leqslant j \leqslant K$. Therefore, the corresponding result of $\lambda_{j}\left(\boldsymbol{\rho}_{n}\right)$ follows naturally, as demonstrated in Theorem 2.5.

2.3 Estimation of the number of factors

With the phase-transition theory in Theorem 2.5, we now propose our new estimator of number of factors. As stated in Theorem 2.5, if $\psi^{\prime}\left(\lambda_{j}\left(\Sigma_{\rho}\right)\right) \leqslant 0$ for some $j \in[K]$, the corresponding sample eigenvalue $\lambda_{j}\left(\boldsymbol{\rho}_{n}\right)$ will converge to the right endpoint of the support of the LSD of ρ_{n}, which is also the limit of the largest noise eigenvalue $\lambda_{K+1}\left(\rho_{n}\right)$. Hence, such weak factors will be merged into the noise component, making their signal undetectable. By taking this into account, we define the number of significant factors as

$$
\begin{equation*}
K_{0}=\#\left\{j \in[K]: \psi^{\prime}\left(\lambda_{j}\left(\Sigma_{\rho}\right)\right)>0\right\}, \tag{9}
\end{equation*}
$$

where the notation $\# \mathcal{S}$ denotes the cardinality number of the set \mathcal{S}. By Theorem 2.5, the leading K_{0} eigenvalues of ρ_{n} will lay outside the support of its LSD .

The LSD of ρ_{n}, denoted by $F_{c, H}$, is the generalized Marčenko-Pastur law as stated in Lemma A.9. Let $\operatorname{supp}\left(F_{c, H}\right)$ denote the support of $F_{c, H}$. The Stieltjes transform of $F_{c, H}$ is defined as $m(x)=\int \frac{1}{t-x} \mathrm{~d} F_{c, H}(t)$ for $x \in \mathbb{R} \backslash \operatorname{supp}\left(F_{c, H}\right)$. Its first-order derivative $m^{\prime}(x)$ is also only defined outside $\operatorname{supp}\left(F_{c, H}\right)$, and can be extended as a function mapping the entire real line \mathbb{R} to $\mathbb{R} \cup\{+\infty\}$ as follows:

$$
m^{\prime}(x)= \begin{cases}\int \frac{1}{(t-x)^{2}} \mathrm{~d} F_{c, H}(t), & \text { if } x \in \mathbb{R} \backslash \operatorname{supp}\left(F_{c, H}\right) \tag{10}\\ +\infty, & \text { if } x \in \operatorname{supp}\left(F_{c, H}\right)\end{cases}
$$

This implies that $m^{\prime}\left(\lambda_{j}\left(\boldsymbol{\rho}_{n}\right)\right)$ takes either finite or infinite values, depending on whether $\lambda_{j}\left(\boldsymbol{\rho}_{n}\right)$ is a spiked eigenvalue or a bulk eigenvalue. Based on this observation, we utilize the derivative of Stieltjes transform defined in (10) to identify all the spiked eigenvalues and estimate total number of significant factors. Let $K_{\max }$ be a predetermined upper bound on the true number of significant factors, K_{0}. As the LSD H of Σ_{ρ} is unknown, we cannot obtain the explicit expression of $m^{\prime}(x)$. Therefore, we utilize

$$
\begin{equation*}
\widehat{m}_{n, j}^{\prime}(x)=\frac{1}{p-j} \sum_{\ell=j+1}^{p} \frac{1}{\left\{x-\lambda_{\ell}\left(\boldsymbol{\rho}_{n}\right)\right\}^{2}} \tag{11}
\end{equation*}
$$

to estimate $m^{\prime}(x)$ for $1 \leqslant j \leqslant K_{\max }$. Intuitively, if $\lambda_{j}\left(\boldsymbol{\rho}_{n}\right)$ lies within the bulk spectrum of $\boldsymbol{\rho}_{n}$, we would expect $\widehat{m}_{n, j}^{\prime}\left(\lambda_{j}\left(\rho_{n}\right)\right)$ to be very large. On the contrary, if $\lambda_{j}\left(\rho_{n}\right)$ is a spiked eigenvalue, $\widehat{m}_{n, j}^{\prime}\left(\lambda_{j}\left(\rho_{n}\right)\right)$ should be relatively small. This phenomenon bears similarities to the behavior of $m^{\prime}(x)$ described in the equation (10). Actually, it will be shown that

$$
\widehat{m}_{n, j}^{\prime}\left(\lambda_{j}\left(\rho_{n}\right)\right)= \begin{cases}O(1), & \text { for } 1 \leqslant j \leqslant K_{0} \\ O(p), & \text { for } K_{0}+1 \leqslant j \leqslant K_{\max }\end{cases}
$$

as $n \rightarrow \infty$ (see the proof of Theorem 2.8 in Section C.2). Hence, a natural estimator of the number of significant factors is

$$
\begin{equation*}
\widehat{K}_{\mathrm{SR}}=\underset{1 \leqslant j \leqslant K_{\max }}{\arg \max } \frac{\widehat{m}_{n, j+1}^{\prime}\left(\lambda_{j+1}\left(\boldsymbol{\rho}_{n}\right)\right)}{\widehat{m}_{n, j}^{\prime}\left(\lambda_{j}\left(\boldsymbol{\rho}_{n}\right)\right)}, \tag{12}
\end{equation*}
$$

where the " S " in subscript stands for Stieltjes transform, and the " R " stands for Ratio.
Remark 2.7. Here, we explain our preference for choosing $\widehat{m}_{n, j}^{\prime}(\cdot)$ over directly employing eigen-ratio type estimators. Under our current framework, both eigenvalues $\lambda_{j}\left(\rho_{n}\right)$ and the ratios $\frac{\lambda_{j+1}\left(\rho_{n}\right)}{\lambda_{j}\left(\rho_{n}\right)}$ are of constant order for all $1 \leqslant j \leqslant K_{\max }$. The ratios of eigenvalues exhibit the following behavior:

$$
\frac{\lambda_{j+1}\left(\boldsymbol{\rho}_{n}\right)}{\lambda_{j}\left(\boldsymbol{\rho}_{n}\right)} \begin{cases}<1, & 1 \leqslant j \leqslant K \\ =1-\varepsilon_{p}, & K+1 \leqslant j \leqslant K_{\max }\end{cases}
$$

where $\varepsilon_{p}=o_{P}(1)$ and $\varepsilon_{p}>0$. When factor signals are weak, the values of $\lambda_{j+1}\left(\boldsymbol{\rho}_{n}\right) / \lambda_{j}\left(\boldsymbol{\rho}_{n}\right)$ may be close to 1 for both $j=K$ and $j=K+1$, making it difficult to distinguish between them. This can lead to inaccurate estimation. Performing the derivative of Stieltjes transform $\widehat{m}_{n, j}^{\prime}(\cdot)$ on the corresponding eigenvalues
$\lambda_{j}\left(\boldsymbol{\rho}_{n}\right)$ significantly amplifies the ratio at $j=K$. As shown in Section 6.3, we found out that

$$
\frac{\widehat{m}_{n, j+1}^{\prime}\left(\lambda_{j+1}\left(\boldsymbol{\rho}_{n}\right)\right)}{\widehat{m}_{n, j}^{\prime}\left(\lambda_{j}\left(\boldsymbol{\rho}_{n}\right)\right)} \begin{cases}=O_{P}(1), & 1 \leqslant j \leqslant K-1 \\ \rightarrow \infty, & j=K \\ =1+o_{P}(1), & K+1 \leqslant j \leqslant K_{\max }\end{cases}
$$

As a result, the sequence of ratios $\left\{\widehat{m}_{n, j+1}^{\prime}\left(\lambda_{j+1}\left(\rho_{n}\right)\right) / \widehat{m}_{n, j}^{\prime}\left(\lambda_{j}\left(\rho_{n}\right)\right)\right\}$ blows up at $j=K$. Therefore, estimating K using $\widehat{m}_{n, j}^{\prime}\left(\lambda_{j}\left(\rho_{n}\right)\right)$ is more efficient compared to using ratios of $\lambda_{j}\left(\rho_{n}\right)$. Based on this observation, we propose the SR estimator.

The consistency of this estimator is established in the following theorem, and its proof is postponed to Section C.

Theorem 2.8 (Consistency of $\widehat{K}_{S R}$). For the high-dimensional factor model (1), assume that Assumptions (A1) - (A4) hold. Let K_{0} be the number of significant factors defined in (9) and $\widehat{K}_{S R}$ be the proposed estimator defined in (11) - (12). Then, we have

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\widehat{K}_{\mathrm{SR}}=K_{0}\right)=1
$$

3 Simulation studies

In this section, we conduct some simulations to examine the finite sample performance of the proposed estimator. We compare with several estimators in the current literature, including the NE estimator (Nadakuditi and Edelman, 2008); the ED estimator (Onatski, 2010, 2012); the BCV estimator (Owen and Wang, 2016); the MKTCR estimator (Yu et al., 2019), as well as the ACT estimator (Fan et al., 2020). The MKTCR estimator is designed to handle heavy-tailed data and can only detect strong factors. Conversely, other estimators are also capable of identifying weak factors. Specifically, these competing estimators are defined as follows:

1. NE estimator: Let $\left\{\mathbf{y}_{i}\right\}_{i=1}^{n}$ be an i.i.d. sample from the factor model (1). The sample covariance matrix of $\left\{\mathbf{y}_{i}\right\}_{i=1}^{n}$ is defined as $\mathbf{S}_{n}=n^{-1} \sum_{i=1}^{n}\left(\mathbf{y}_{i}-\overline{\mathbf{y}}\right)\left(\mathbf{y}_{i}-\overline{\mathbf{y}}\right)^{\top}$, where $\overline{\mathbf{y}}=n^{-1} \sum_{i=1}^{n} \mathbf{y}_{i}$ is the sample mean. Based on the eigenvalues of \mathbf{S}_{n}, Nadakuditi and Edelman (2008) introduced the NE estimator as follows:

$$
\widehat{K}_{\mathrm{NE}}=\underset{0 \leqslant j<\min (p, n)}{\arg \min }\left\{\frac{1}{4}\left(\frac{n}{p}\right)^{2} t_{j}^{2}+2(j+1)\right\},
$$

where $t_{j}=p\left[(p-j)\left\{\sum_{i=j+1}^{p} \lambda_{i}\left(\mathbf{S}_{n}\right)\right\}^{-2} \sum_{i=j+1}^{p} \lambda_{i}^{2}\left(\mathbf{S}_{n}\right)-1-p / n\right]-p / n$.
2. ED estimator: Based on the eigenvalues of \mathbf{S}_{n}, Onatski $(2010,2012)$ proposed an eigenvalue difference criterion, defined as

$$
\widehat{K}_{\mathrm{ED}}=\max \left\{1 \leqslant j \leqslant K_{\max }, \lambda_{j}\left(\mathbf{S}_{n}\right)-\lambda_{j+1}\left(\mathbf{S}_{n}\right) \geqslant \delta\right\},
$$

where δ is a predetermined threshold calculated using a calibration method described in Onatski (2010, Section IV).
3. BCV estimator: Owen and Wang (2016) introduced an algorithm to determine the number of factors based on \mathbf{S}_{n} and the bi-cross-validation (BCV) technique from Owen and Perry (2009). This method involves randomly holding out some rows and some columns of the observed data, fitting a factor model to the held-in data, and comparing held-out data to corresponding fitted values. We utilize Owen and Wang's R package "esaBcv" to implement the BCV method in our simulation studies.
4. MKTCR estimators: The sample multivariate Kendall's tau matrix is defined as

$$
\mathbf{K}_{n}=\frac{2}{n(n-1)} \sum_{1 \leqslant i<\ell \leqslant n} \frac{\left(\mathbf{y}_{i}-\mathbf{y}_{\ell}\right)\left(\mathbf{y}_{i}-\mathbf{y}_{\ell}\right)^{\top}}{\left\|\mathbf{y}_{i}-\mathbf{y}_{\ell}\right\|^{2}}
$$

Based on the eigenvalues of \mathbf{K}_{n}, Yu et al. (2019) constructed the MKTCR estimator as follows:

$$
\widehat{K}_{\text {MKTCR }}=\underset{1 \leqslant j \leqslant K_{\max }}{\arg \max } \frac{\ln \left\{1+\lambda_{j}\left(\mathbf{K}_{n}\right) / V_{j-1}\right\}}{\ln \left\{1+\lambda_{j+1}\left(\mathbf{K}_{n}\right) / V_{j}\right\}},
$$

where $V_{j}=\sum_{i=j+1}^{\min (p, n)} \lambda_{i}\left(\mathbf{K}_{n}\right), j \in\{0,1, \ldots, \min (p, n)-1\}$.
5. ACT estimator: The sample Pearson correlation matrix of $\left\{\mathbf{y}_{i}\right\}_{i=1}^{n}$ is defined as

$$
\mathbf{P}_{n}=\left[\operatorname{diag}\left(\mathbf{S}_{n}\right)\right]^{-1 / 2} \mathbf{S}_{n}\left[\operatorname{diag}\left(\mathbf{S}_{n}\right)\right]^{-1 / 2}
$$

Based on the spectral properties of \mathbf{P}_{n}, Fan et al. (2020) proposed an estimator to estimate the factor number as follows:

$$
\widehat{K}_{\mathrm{ACT}}=\max \left\{1 \leqslant j \leqslant K_{\max }: \widehat{\alpha}_{j}\left(\mathbf{P}_{n}\right)>1+\sqrt{p /(n-1)}\right\},
$$

where $\left\{\widehat{\alpha}_{j}\left(\mathbf{P}_{n}\right)\right\}_{j=1}^{p}$ are bias correction of sample eigenvalues of \mathbf{P}_{n}, defined as $\widehat{\alpha}_{j}\left(\mathbf{P}_{n}\right)=$ $-1 / \underline{m}_{n, j}\left(\lambda_{j}\left(\mathbf{P}_{n}\right)\right)$ with $\underline{m}_{n, j}(x)=-\left(1-c_{j}\right) / x+c_{j} m_{n, j}(x), c_{j}=(p-j) /(n-1)$, and

$$
m_{n, j}(x)=\frac{1}{p-j}\left[\sum_{\ell=j+1}^{p} \frac{1}{\lambda_{\ell}\left(\mathbf{P}_{n}\right)-x}+\frac{1}{\left\{3 \lambda_{j}\left(\mathbf{P}_{n}\right)+\lambda_{j+1}\left(\mathbf{P}_{n}\right)\right\} / 4-x}\right]
$$

Our simulation studies consider various combinations of dimension and sample size, namely $(p, n)=(50,100),(100,200),(150,300)$, and $(200,400)$, which all have the ratio $p / n=1 / 2$. We take the true number of common factors $K=3$ and set the possible maximum value of the number of common factors $K_{\max }=10$. Recalling our distribution assumption (A2) for both common factors \mathbf{f}_{i} and idiosyncratic errors \mathbf{e}_{i}, we generate \mathbf{f}_{i} and \mathbf{e}_{i} by $\mathbf{f}_{i}=\left(w_{i}^{f}\right)^{1 / 2} \mathbf{x}_{i}$ and $e_{i j}=\left(w_{i j}^{e}\right)^{1 / 2} z_{i j}$, where $e_{i j}$ denotes the j-th component of $\mathbf{e}_{i},\left\{\mathbf{x}_{i}\right\}_{i=1}^{n} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}_{K}\left(\mathbf{0}, \mathbf{I}_{K}\right)$, and $\left\{z_{i j}, i \in[n], j \in[p]\right\} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0,1)$. We employ four different scenarios to generate sample data for w_{i}^{f} and $w_{i j}^{e}$:

1. (Normal population, see Table 1) Let $w_{i}^{f}=w_{i j}^{e}=1$ for all $i \in[n]$ and $j \in[p]$;
2. (Uniform and Chi-squared population, see Table 1) Let $\left\{w_{i}^{f}\right\}_{i=1}^{n} \stackrel{\text { i.i.d. }}{ } \operatorname{Uniform}(0,1)$ and $\left\{w_{i j}^{e}, i \in\right.$

$$
\begin{aligned}
& \text { Estimator } \rightarrow \mathrm{ACT}-\mathrm{ED} \div \mathrm{NE} \\
& \rightarrow \mathrm{BCV}+\mathrm{MKTCR} * S R
\end{aligned}
$$

Figure 2: Correct identification rate of six estimators. Entries of common factors and idiosyncratic errors are generated from the standard normal distribution.

$$
[n], j \in[p]\} \stackrel{\text { i.i.d. }}{\sim} \chi^{2}(1) ;
$$

3. (Student's $t(2)$ population, see Table 2) Let $\left\{w_{i}^{f}\right\}_{i=1}^{n} \stackrel{\text { i.i.d. }}{ } \operatorname{invGamma}(1,1)$ and $\left\{w_{i j}^{e}, i \in[n], j \in\right.$ $[p]\} \stackrel{\text { i.i.d. }}{-} \operatorname{invGamma}(1,1)$, where invGamma (α, β) denotes the inverse Gamma distribution with shape parameter α and scale parameter β. In this scenario, both \mathbf{f}_{i} and $e_{i j}$ follow (multivariate) Student's t (2) distributions;
4. (Cauchy population, see Table 2) Let $\left\{w_{i}^{f}\right\}_{i=1}^{n} \stackrel{\text { i.i.d. }}{ }$ invGamma(1/2,1/2) and $\left\{w_{i j}^{e}, i \in[n], j \in\right.$ $[p]\} \stackrel{\text { i.i.d. }}{\sim}$ invGamma $(1 / 2,1 / 2)$. In this scenario, both \mathbf{f}_{i} and $e_{i j}$ follow (multivariate) Cauchy distribution.

Furthermore, we consider three cases for the loading matrix $\mathbf{B}=\left(B_{i j}\right)_{p \times K}$ and the matrix $\boldsymbol{\Psi}$ as follows. (C1) is from (Harding, 2013; Fan et al., 2020). (C2) and (C3) are both from Onatski (2012).
(C1) For any $j \in[K]$, let $B_{i j}=\sqrt{5 j / p}$ for $i \in[K]$, and let $B_{i j}=a_{i j} \sqrt{5 j /(p-j)}$ for $i \in\{K+1, \ldots, p\}$, where $a_{i j}=-1$ if $i=r j$ or $a_{i j}=1$ if $i \neq r j, r \in \mathbb{N}^{+}$. Let $\Psi=\mathbf{I}_{p}$.
(C2) For any $i \in[p]$ and $j \in[K]$, let $\sqrt{p} B_{i j} / \sqrt{10 j} \stackrel{\text { i.i.d. }}{\sim} \mathcal{N}(0,1)$. Let $\Psi=\mathbf{I}_{p}$.
(C3) For any $i \in[p]$ and $j \in[K]$, let $\sqrt{p} B_{i j} / \sqrt{10 j} \stackrel{\text { i.i.d. }}{ } \mathcal{N}(0,1)$. Let $\boldsymbol{\Psi}=\mathbf{T}^{1 / 2}$, where \mathbf{T} is a Toeplitz matrix with its (i, j)-th entry equal to $0.45^{|i-j|}$.

The simulation results are reported in Tables 1-2 and Figures 2-5. In the case of light-tailed data (see Tables 1 and Figures 2-3), our SR estimator performs comparably to other estimators. However, when handling heavy-tailed data (see Tables 2 and Figures $4-5$), the NE, ED, and BCV estimators, which are based on sample covariance matrices, prove ineffective, whereas our SR estimator outperforms the MKTCR and ACT estimators.

4 Real data analysis

In this section, we analyze the monthly macroeconomic dataset (FRED-MD, McCracken and Ng (2016)) from March 1959 to January 2023. The data can be downloaded from the website http://research.stlouisfed.org/econ/mccracken/fred-md/, and includes the monthly series

Table 1: Percentages (\%) of estimated number of common factors in 1000 simulations. Entries of common factors and idiosyncratic errors are generated from light-tailed distributions. The results are reported in the form $a(b \mid c)$, in which a, b, c are the percentages of true estimates, overestimates, and underestimates, respectively. The notation "ave (\widehat{K}) " denotes mean estimators for the case $(p, n)=(200,400)$.

Case	p	NE	ED	BCV	MKTCR	ACT	SR
(C1)	Normal population						
	50	97.7(2.3\|0)	98.9(1.1\|0)	97.5(0.5\|2)	86.1(0\|13.9)	100(0\|0)	96.5(1\|2.5)
	100	97.2(2.8\|0)	99(1\|0)	100(0\|0)	84.4(0\|15.6)	100(0\|0)	99.6(0.1\|0.3)
	150	96.7(3.3\|0)	99.5(0.5\|0)	100(0\|0)	80.2(0\|19.8)	100(0\|0)	99.8(0.2\|0)
	200	96.3(3.7\|0)	99.6(0.4\|0)	100(0\|0)	78.3(0\|21.7)	99.9(0.1\|0)	99.8(0.2\|0)
	ave($\widehat{K})$	3.038	3.004	3	2.783	3.001	3.002
(C2)	50	97.1(2.9\|0)	98.8(1.2\|0)	99.1(0.8\|0.1)	91.7(0\|8.3)	100(0\|0)	92(0.9\|7.1)
	100	97.9(2.1\|0)	99.3(0.7\|0)	100(0\|0)	98(0\|2)	100(0\|0)	99.9(0.1\|0)
	150	96.7(3.3\|0)	99.6(0.4\|0)	100(0\|0)	100(0\|0)	100(0\|0)	100(0\|0)
	200	97.1(2.9\|0)	99.6(0.4\|0)	100(0\|0)	100(0\|0)	100(0\|0)	100(0\|0)
	ave(\widehat{K})	3.03	3.007	3	3	3	3
(C3)	50	O(100\|0)	97(3\|0)	80.3(19.7\|0)	99.6(0\|0.4)	99.9(0.1\|0)	95(1.7\|3.3)
	100	$0(100 \mid 0)$	99(1\|0)	82.9(17.1\|0)	100(0\|0)	72.2(27.8\|0)	99.7(0.3\|0)
	150	O(100\|0)	99.4(0.6\|0)	82.3(17.7\|0)	100(0\|0)	39.9(60.1\|0)	100(0\|0)
	200	$0(100 \mid 0)$	99.3(0.7\|0)	77.7(22.3\|0)	100(0\|0)	4.4(95.6\|0)	100(0\|0)
	ave(\widehat{K})	55.225	3.008	3.28	3	5.448	3
Uniform and Chi-squared population							
(C1)	50	37.4(62.3\|0.3)	58.7(2.7\|38.6)	23.2(0.4\|76.4)	22.4(0\|77.6)	89.5(0\|10.5)	86.7(2\|11.3)
	100	26.7(73.3\|0)	$91(1.1 \mid 7.9)$	34.4(0\|65.6)	12.9(0\|87.1)	99.8(0.1\|0.1)	$98.1(0.6 \mid 1.3)$
	150	$22.7(77.2 \mid 0.1)$	$97.7(0.3 \mid 2)$	$36.4(0.1 \mid 63.5)$	$5.1(0 \mid 94.9)$	$99.6(0.4 \mid 0)$	$99.6(0.3 \mid 0.1)$
	200	$23.3(76.7 \mid 0)$	$99.1(0.8 \mid 0.1)$	$35.6(0 \mid 64.4)$	$3.4(0 \mid 96.6)$	99.4(0.6\|0)	$99.7(0.3 \mid 0)$
	ave (\widehat{K})	4.204	3.009	2.356	1.919	3.006	3.004
(C2)	50	34.6(65.3\|0.1)	91.5(2.4\|6.1)	63.6(1.7\|34.7)	27.2(0\|72.8)	96.7(0\|3.3)	85.3(1.6\|13.1)
	100	23.9(76.1\|0)	98.7(1.3\|0)	99.8(0.2\|0)	99.3(0\|0.7)	100(0\|0)	100(0\|0)
	150	22.1(77.9\|0)	99.3(0.7\|0)	100(0\|0)	82.8(0\|17.2)	99.8(0.2\|0)	100(0\|0)
	200	16.6(83.4\|0)	99(1\|0)	100(0\|0)	98.5(0\|1.5)	100(0\|0)	100(0\|0)
	ave(\widehat{K})	4.343	3.01	3	2.985	3	3
(C3)	50	0(100\|0)	96.5(2.6\|0.9)	58.3(41.6\|0.1)	57.7(0\|42.3)	94.8(5.2\|0)	69.8(7.9\|22.3)
	100	0 (100\|0)	98.2(1.8\|0)	79.7(20.3\|0)	99.9(0\|0.1)	27.7(72.3\|0)	99(1\|0)
	150	0 (100\|0)	99.3(0.7\|0)	82(18\|0)	97.9(0\|2.1)	5.3(94.7\|0)	99.7(0.3\|0)
	200	$0(100 \mid 0)$	99.2(0.8\|0)	$84(16 \mid 0)$	100(0\|0)	0.1(99.9\|0)	99.9(0.1\|0)
	ave (\widehat{K})	56.198	3.01	3.193	3	7.554	3.001

$$
\text { Estimator }-\mathrm{ACT}-\mathrm{ED}-\mathrm{NE}+\mathrm{NCV}+\mathrm{MKTCR}-\mathrm{SR}
$$

Figure 3: Correct identification rate of six estimators. Entries of common factors are generated from a scale mixture of normals with $\left\{w_{i}^{f}\right\}_{i=1}^{n} \stackrel{\text { i.i.d. }}{ }$ Uniform $(0,1)$, and entries of idiosyncratic errors are generated from a scale mixture of normals with $\left\{w_{i j}^{e}, i \in[n], j \in[p] \stackrel{\text { i.i.d. }}{\sim} \chi^{2}(1)\right.$.

Table 2: Percentages (\%) of estimated number of common factors in 1000 simulations. Entries of common factors and idiosyncratic errors are generated from heavy-tailed distributions. The results are reported in the form $a(b \mid c)$, in which a, b, c are the percentages of true estimates, overestimates, and underestimates, respectively. The notation "ave (\widehat{K}) " denotes mean estimators for the case $(p, n)=(200,400)$.

Case	p	NE	ED	BCV	MKTCR	ACT	SR
(C1)	$t(2)$ population						
	50	0(100\|0)	16.9(29.4\|53.7)	26.6(6.3\|67.1)	22.6(0.2\|77.2)	83.3(0.3\|16.4)	92.2(1.1\|6.7)
	100	0 (100\|0)	16.1(33.6\|50.3)	31.3(4\|64.7)	15.2(0\|84.8)	93.5(4.3\|2.2)	99.4(0\|0.6)
	150	0 (100\|0)	13.8(33.2\|53)	34(4.2\|61.8)	12.9(0\|87.1)	91.9(7.4\|0.7)	99.9(0\|0.1)
	200	0 (100\|0)	14.1(38\|47.9)	37.9(2.9\|59.2)	11(0\|89)	87.6(11.6\|0.8)	99.8(0.2\|0)
	ave((\widehat{K})	37.884	3.316	2.228	1.941	3.12	3.002
(C2)	50	0(100\|0)	24.1(44.2\|31.7)	47.6(10.6\|41.8)	26.1(0.2\|73.7)	90.4(0.3\|9.3)	91.2(0.7\|8.1)
	100	0 (100\|0)	19.1(44.9\|36)	59.3(8.3\|32.4)	31.2(0\|68.8)	96(2.9\|1.1)	99.9(0.1\|0)
	150	0 (100\|0)	14.4(49.7\|35.9)	80(4\|16)	77.5(0\|22.5)	93.3(6.6\|0.1)	100(0\|0)
	200	0 (100\|0)	14.6(53.1\|32.3)	85(2.1\|12.9)	94.8(0\|5.2)	89.4(10.5\|0.1)	100(0\|0)
	ave(\widehat{K})	38.064	4.501	2.836	2.944	3.109	3
(C3)	50	0(100\|0)	28.8(50.1\|21.1)	36.8(49.5\|13.7)	38.4(0.1\|61.5)	67.5(28.8\|3.7)	71.1(9.6\|19.3)
	100	0 (100\|0)	19.9(57.1\|23)	47.5(43.6\|8.9)	57.8(0\|42.2)	18(81.4\|0.6)	90.1(7.2\|2.7)
	150	0 (100\|0)	14.8(64.5\|20.7)	66.8(28.6\|4.6)	92.6(0\|7.4)	6.3(93.5\|0.2)	99.7(0.3\|0)
	200	0 (100\|0)	13.1(66.3\|20.6)	72.2(24.8\|3)	99.3(0\|0.7)	2.6(97.3\|0.1)	100(0\|0)
	ave(\widehat{K})	70.59	4.911	3.47	2.993	7.959	3
Cauchy population							
(C1)	50	0(100\|0)	11.2(77.6\|11.2)	0.8(0.3\|98.9)	7.7(5.9\|86.4)	24.9(2.1\|73)	89.8(0.2\|10)
	100	0 (100\|0)	7.2(85\|7.8)	0.1(0.1\|99.8)	6.8(5\|88.2)	38(12.4\|49.6)	98.4(0.3\|1.3)
	150	$0(100 \mid 0)$	$8(84.4 \mid 7.6)$	$0.1(0 \mid 99.9)$	$6.3(4.2 \mid 89.5)$	$36.7(28.4 \mid 34.9)$	$\mathbf{9 8 . 6}(1.3 \mid 0.1)$
	200	$0(100 \mid 0)$	7.5(86.5\|6)	0.2(0.1\|99.7)	4.9(4.8\|90.3)	35.7(41.7\|22.6)	98.6(1.4\|0)
	ave(\widehat{K})	118.068	8.138	0.038	1.507	3.439	3.015
(C2)	50	0(100\|0)	12.4(76.9\|10.7)	1(0.7\|98.3)	6.8(2.6\|90.6)	29.1(2.3\|68.6)	91.3(0.8\|7.9)
	100	0 (100\|0)	8.5(83.3\|8.2)	0.1(0.1\|99.8)	6.3(3.2\|90.5)	49.9(17\|33.1)	100(0\|0)
	150	0 (100\|0)	8(86.8\|5.2)	0.4(0\|99.6)	6.2(2.1\|91.7)	46.7(35.6\|17.7)	100(0\|0)
	200	$0(100 \mid 0)$	5.6(88\|6.4)	0.1(0.2\|99.7)	6.4(2.8\|90.8)	37(49.5\|13.5)	100(0\|0)
	ave(\widehat{K})	118.511	8.236	0.069	1.486	3.596	3
(C3)	50	0(100\|0)	12.6(77.5\|9.9)	2.5(10.1\|87.4)	5.6(3.8\|90.6)	13.9(74.6\|11.5)	10.4(33.5\|56.1)
	100	$0(100 \mid 0)$	$10.2(81 \mid 8.8)$	$1.9(4.7 \mid 93.4)$	$5.6(1.4 \mid 93)$	3.3(93.4\|3.3)	$38.3(36 \mid 25.7)$
	150	$0(100 \mid 0)$	8.8(83.5\|7.7)	1.1(4.8\|94.1)	3.7(1.3\|95)	0.8(97.3\|1.9)	89.5(10.3\|0.2)
	200	0 (100\|0)	5.7(87.2\|7.1)	1.5(3.5\|95)	4.6(1.2\|94.2)	0.8(98.5\|0.7)	92.8(7.1\|0.1)
	ave(\widehat{K})	126.004	7.919	0.421	1.416	16.854	3.464

Figure 4: Correct identification rate of six estimators. Entries of common factors and idiosyncratic errors are generated from Student's $t(2)$ distribution.

Figure 5: Correct identification rate of six estimators. Entries of common factors and idiosyncratic errors are generated from the standard Cauchy distribution.
of 128 macroeconomic variables. Following McCracken and Ng (2016), the series with missing values are removed and the remaining dataset is transformed to a stationary form. After this preprocessing procedure, the data dimension is $p=105$ and the sample size is $n=767$. McCracken and Ng (2016)'s recommendation to remove outliers has not been implemented in our data analysis, as we believe that data with heavy-tailed distributions will inevitably contain extreme observations that cannot be circumvented. Since our estimator is tailored to heavy-tailed observations, we directly use it to identify number of factors.

The dataset reveals that more than 67% of the macroeconomic variables exhibit a sample kurtosis that exceeds 9 , which is the theoretical kurtosis of the Student's $t(5)$ distribution. This indicates that the dataset is probably heavy-tailed. Compared to the other estimators, MKTCR, ACT, and SR have slightly higher accuracy under heavy-tailed conditions, so we employ these three methods for estimation. The results are as follows: $\widehat{K}_{\text {ACT }}=13, \widehat{K}_{\text {MKTCR }}=1$, and $\widehat{K}_{\text {SR }}=7$. As shown in the simulation studies in Section 3, ACT has similar performance with our estimator when data is light-tailed, while it tends to overestimate when data is heavy-tailed. Same story happens for this real dataset. Both our SR estimator and Yu et al. (2019)'s MKTCR estimator are based on eigenvalues of certain type of sample correlation matrices as plotted in Figure 6. From Figure 6(a), it is evident that the multivariate Kendall's tau matrix exhibits one "strong" spike and several "weak" spikes. However, the MKTCR estimator only detects the strong spike while ignore the weaker spikes. It potentially underestimate the total number of factors, similarly as shown in the simulation studies in Section 3. On the other hand, Figure 6(b) illustrates that our SR estimator has successfully detected all seven spikes of Spearman sample correlation matrix. Therefore, $\widehat{K}_{S R}=7$ is a more persuasive estimation for this dataset.

5 Discussions

In summary, we propose a novel estimator to identify number of common factors in high-dimensional factor models when data is heavy-tailed. We demonstrate that, under certain assumptions, the number of spiked eigenvalues of Spearman sample correlation matrix is consistent with total number of significant factors. Our estimator is constructed based on this observation, and its consistency is proved under mild assumptions. From the perspective of RMT, we investigate the eigenstructure of Spearman sample correlation matrix under spike models and establish the phase-transition

Figure 6: Scatter plots of all the eigenvalues of multivariate Kendall's tau matrix and Spearman correlation matrix generated from the real dataset. The MKTCR estimator only detects one "strong" spiked eigenvalue of the multivariate Kendall's tau matrix, and neglects several "weak" spikes. Our SR estimator detects all seven spikes of Spearman correlation matrix.
theory of its spiked eigenvalues. Simulation results demonstrate that our proposed estimator outperforms competing methods in various scenarios, especially with heavy-tailed observations. However, our SR estimator does not perform well when the sample size is not large enough, such as $(p, n)=(50,100)$. The possible reason is that the estimation of $m^{\prime}(x)$ is inaccurate when the sample size is small. A more accurate estimator for $m^{\prime}(x)$ would improve the accuracy of our SR estimator. Furthermore, it is worth extending our method for factor modeling in high-dimensional time series (Lam and Yao, 2012; Li et al., 2017b) and tensor data (Lam, 2021; Chen and Lam, 2024). These extensions are beyond the scope of the current paper, and we leave them to future work.

A Auxiliary lemmas

This section introduces several auxiliary lemmas used in the technical proofs of our theoretical results. Lemmas A. 1 - A. 5 are from existing literature, while Lemmas A. 6 and A. 7 are our original contributions. We provide the proofs of these two new lemmas in Sections B. 3 and B.4, respectively.

Lemma A. 1 (Weyl's inequality, Corollary 6.3.4 in Horn and Johnson (2012)). Let A and B be two $n \times n$ normal matrices, and let $\lambda_{1}(\mathbf{A}) \geqslant \cdots \geqslant \lambda_{n}(\mathbf{A})$ and $\lambda_{1}(\mathbf{B}) \geqslant \cdots \geqslant \lambda_{n}(\mathbf{B})$ be the nonincreasingly ordered eigenvalues of \mathbf{A} and \mathbf{B}, respectively. Then

$$
\max _{1 \leqslant i \leqslant n}\left|\lambda_{i}(\mathbf{A})-\lambda_{i}(\mathbf{B})\right| \leqslant\|\mathbf{A}-\mathbf{B}\|_{2},
$$

where $\|\mathbf{A}-\mathbf{B}\|_{2}$ denotes the spectral norm of $\mathbf{A}-\mathbf{B}$.
Lemma A. 2 (Lemma 7 in El Karoui (2009)). Suppose that the random vector $\mathbf{r} \in \mathbb{R}^{p}$ has the property
that for any convex 1-Lipschitz (with respect to the Euclidean norm) function F from \mathbb{R}^{p} to \mathbb{R}, we have

$$
\mathbb{P}\left(\left|F(\mathbf{r})-m_{F}\right|>t\right) \leqslant C \exp \left\{-c(p) t^{2}\right\},
$$

where m_{F} denotes a median of F, and C and $c(p)$ are independent of F, and C is independent of p. We allow $c(p)$ to be a constant or to go to zero with p like $p^{-\alpha}, 0 \leqslant \alpha<1$. Suppose, further, that $\mathbb{E}(\mathbf{r})=\mathbf{0}$, $\mathbb{E}\left(\mathbf{r r}^{\top}\right)=\Sigma$, with $\|\Sigma\|_{2} \leqslant \log (p)$. If \mathbf{M} is a complex deterministic matrix such that $\|\mathbf{M}\|_{2} \leqslant \xi$, where ξ is independent of p, then $p^{-1} \mathbf{r}^{\top} \mathbf{M r}$ is strongly concentrated around its mean, $p^{-1} \operatorname{tr}(\mathbf{M} \Sigma)$. In particular, if, for $\varepsilon>0, t_{p}(\varepsilon)=(\log p)^{1+\varepsilon} / \sqrt{p c(p)}$, then

$$
\log \left\{\mathbb{P}\left(\left|\frac{1}{p} \mathbf{r}^{\top} \mathbf{M r}-\frac{1}{p} \operatorname{tr}(\mathbf{M} \Sigma)\right|>t_{p}(\varepsilon)\right)\right\} \asymp-(\log p)^{1+2 \varepsilon} .
$$

Lemma A. 3 (Corollary 4.10 in Ledoux (2001)). For every product probability \mathbb{P} on $[0,1]^{n}$, every convex 1 -Lipschitz function F on \mathbb{R}^{n}, and every $r \geqslant 0$, we have

$$
\mathbb{P}\left(\left|F-m_{F}\right| \geqslant r\right) \leqslant 4 e^{-r^{2} / 4}
$$

where m_{F} is a median of F for \mathbb{P}.
Lemma A. 4 ((3.3.41) in Horn and Johnson (1991)). For any $n \times n$ Hermitian $\mathbf{A}=\left(A_{i j}\right)$ with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$, and convex f, we have

$$
\sum_{i=1}^{n} f\left(A_{i i}\right) \leqslant \sum_{i=1}^{n} f\left(\lambda_{i}\right)
$$

Lemma A. 5 (Grothendieck's identity, Lemma 3.6.6 in Vershynin (2018), Lemma 4.1 in Li et al. (2023)). Consider a bivariate normal vector:

$$
\binom{Z_{1}}{Z_{2}} \sim \mathcal{N}_{2}\left(\binom{0}{0},\left(\begin{array}{cc}
\sigma_{1}^{2} & \gamma \\
\gamma & \sigma_{2}^{2}
\end{array}\right)\right),
$$

we have

$$
\mathbb{E}\left[\operatorname{sign}\left(Z_{1}\right) \operatorname{sign}\left(Z_{2}\right)\right]=\frac{2}{\pi} \arcsin \left(\frac{\gamma}{\sigma_{1} \sigma_{2}}\right) .
$$

Lemma A. 6 is utilized to analyze the structure of Σ_{ρ}, as stated in Lemma 2.3.
Lemma A.6. Consider a bivariate random vector:

$$
\begin{equation*}
\mathbf{Q}:=\binom{Q_{1}}{Q_{2}} \stackrel{d}{=}\binom{\sqrt{W_{X}} X_{1}+\sqrt{W_{Y_{1}}} Y_{1}}{\sqrt{W_{X}} X_{2}+\sqrt{W_{Y_{2}}} Y_{2}}, \tag{13}
\end{equation*}
$$

where $W_{X}, W_{Y_{1}}$, and $W_{Y_{2}}$ are three independent scalar-valued random variables with positive support, and $\left(X_{1}, X_{2}, Y_{1}, Y_{2}\right)^{\top} \sim \mathcal{N}_{4}\left(\mathbf{0}, \mathbf{\Omega}_{0}\right)$ with

$$
\mathbf{\Omega}_{0}=\left(\begin{array}{cc}
\Sigma_{X} & O \\
O & \Sigma_{Y}
\end{array}\right), \quad \Sigma_{X}=\left(\begin{array}{cc}
\sigma_{X_{1}}^{2} & \gamma \\
\gamma & \sigma_{X_{2}}^{2}
\end{array}\right), \quad \Sigma_{Y}=\left(\begin{array}{cc}
\sigma_{Y_{1}}^{2} & 0 \\
0 & \sigma_{Y_{2}}^{2}
\end{array}\right) .
$$

Suppose that \widetilde{Q}_{1} and \widetilde{Q}_{2} (they are independent) are independent copies of Q_{1} and Q_{2}, respectively, then,
we have

$$
\mathbb{E}\left[\operatorname{sign}\left(Q_{1}-\widetilde{Q}_{1}\right) \operatorname{sign}\left(Q_{2}-\widetilde{Q}_{2}\right)\right]=\frac{2}{\pi} \mathbb{E}\{\arcsin (r)\},
$$

where

$$
r=\frac{\gamma W_{X}}{\sqrt{\left(W_{X}+\widetilde{W}_{X_{1}}\right) \sigma_{X_{1}}^{2}+\left(W_{Y_{1}}+\widetilde{W}_{Y_{1}}\right) \sigma_{Y_{1}}^{2}} \sqrt{\left(W_{X}+\widetilde{W}_{X_{2}}\right) \sigma_{X_{2}}^{2}+\left(W_{Y_{2}}+\widetilde{W}_{Y_{2}}\right) \sigma_{Y_{2}}^{2}}},
$$

and $\left(\widetilde{W}_{X_{1}}, \widetilde{W}_{Y_{1}}\right)$ and $\left(\widetilde{W}_{X_{2}}, \widetilde{W}_{Y_{2}}\right)$ are independent copies of $\left(W_{X}, W_{Y_{1}}\right)$ and $\left(W_{X}, W_{Y_{2}}\right)$, respectively.
Lemma A. 7 is used in the proof of Lemma A. 10.
Lemma A.7. Let $\mathbf{X}=\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)^{\boldsymbol{\top}}$ and $\mathbf{Y}=\left(\mathbf{y}_{1}, \ldots, \mathbf{y}_{n}\right)^{\boldsymbol{\top}}$ be two $n \times p$ independent random matrices satisfying the same assumptions as those in Lemma A.10. For any $i \in[n]$, we denote $\mathbf{X}_{i}=$ $\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{i}, \mathbf{y}_{i+1}, \ldots, \mathbf{y}_{n}\right)^{\top}, \mathbf{X}_{i 0}=\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{i-1}, \mathbf{y}_{i+1}, \ldots, \mathbf{y}_{n}\right)^{\top}$, and

$$
\begin{align*}
\beta_{i} & =1-\frac{1}{n} \mathbf{x}_{i}^{\top} \boldsymbol{\Gamma}^{1 / 2}\left(\lambda \mathbf{I}-n^{-1} \boldsymbol{\Gamma}^{1 / 2} \mathbf{X}_{i 0}^{\top} \mathbf{X}_{i 0} \boldsymbol{\Gamma}^{1 / 2}\right)^{-1} \boldsymbol{\Gamma}^{1 / 2} \mathbf{x}_{i}, \tag{14}\\
\beta_{i 0} & =1-\frac{1}{n} \operatorname{tr}\left\{\boldsymbol{\Gamma}\left(\lambda \mathbf{I}-n^{-1} \boldsymbol{\Gamma}^{1 / 2} \mathbf{X}_{i 0}^{\top} \mathbf{X}_{i 0} \boldsymbol{\Gamma}^{1 / 2}\right)^{-1}\right\}, \tag{15}
\end{align*}
$$

with $\boldsymbol{\Gamma}=\mathbf{U}_{2} \mathbf{D}_{2} \mathbf{U}_{2}^{\top}$ defined before the equation (48) in the main text. Then, for any $K \times K$ symmetric matrix \mathbf{W}, it holds that, as $n \rightarrow \infty$,

$$
\begin{align*}
& \beta_{i 0} \rightarrow-\frac{1}{\lambda \underline{m}(\lambda)}, \quad \varepsilon_{i}:=\beta_{i}-\beta_{i 0} \rightarrow 0, \tag{16}\\
& \mathbb{E} \varepsilon_{i}^{2}=o(1), \quad \mathbb{E} \varepsilon_{i}^{4}=o\left(n^{-1}\right), \tag{17}\\
& \mathbb{E}\left\{\operatorname{tr}\left(\mathbf{W} \boldsymbol{\tau}_{i}\right)\right\}^{2}=O(1), \quad \mathbb{E}\left\{\operatorname{tr}\left(\mathbf{W} \boldsymbol{\tau}_{i 0}\right)\right\}^{2}=O(1), \tag{18}
\end{align*}
$$

where $\underline{m}(\cdot)$ denotes the Stieltjes transform of the LSD of the matrix $n^{-1} \mathbf{X}_{i 0} \boldsymbol{\Gamma} \mathbf{X}_{i 0}^{\top}$, and $\boldsymbol{\tau}_{i 0}$ and $\boldsymbol{\tau}_{i}$ are defined in (43) and (44), respectively.

Remark A.8. The conclusions (16) - (18) presented in Lemma A. 7 are identical to those in Lemma C. 3 and Lemma D. 1 of Jiang and Bai (2021b). However, the proof provided by Jiang and Bai (2021b) is not applicable for our scenario as we do not assume that $\mathbf{X}($ or $\mathbf{Y})$ possesses i.i.d. entries, as stated in Assumption (B1). Specifically, we need to establish the concentration properties of certain quadratic forms without the i.i.d. assumption. We address this challenge in Section B. 4 by leveraging concentration inequalities from Ledoux (2001) and El Karoui (2009). See the proof in Section B. 4 for more details.

Lemma A. 9 provides the LSD of $\boldsymbol{\rho}_{n}$ and \mathbf{W}_{n}, extending the result of Wu and Wang (2022). Their result is restricted to the non-paranormal distribution, and our study considers the case where the data follows a scale mixture of normal distributions, as indicated in Assumption (A2).

Lemma A. 9 (Limiting spectral distribution). For the high-dimensional factor model (1), assume that Assumptions (A1) - (A4) hold, and the ESD of $\Sigma_{\rho}=\mathbb{E} \mathbf{W}_{n}$ tends to a proper probability measure H as $n \rightarrow \infty$. Then, with probability one, both $F^{\boldsymbol{\rho}_{n}}$ and $F^{\mathbf{W}_{n}}$ tend to a non-random probability distribution $F_{c, H}$, the Stieltjes transform $m=m(z)\left(z \in \mathbb{C}^{+}\right)$of which is the unique solution to the equation

$$
\begin{equation*}
m=\int \frac{1}{t(1-c-c z m)-z} \mathrm{~d} H(t) \tag{19}
\end{equation*}
$$

The following Lemma A. 10 concerns the limiting behavior of $\boldsymbol{\Omega}_{K}(\cdot, \cdot)$ defined in (48), which plays a crucial role in the proof of Theorem 2.5.

Lemma A.10. Let $\mathbf{X}=\left(X_{i j}\right)_{n \times p}=\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)^{\top}$ be an $n \times p$ random matrix. Assume that \mathbf{X} satisfies Assumption (A1) and the following assumptions:
(B1) The vectors $\left\{\mathbf{x}_{\ell}\right\}_{\ell=1}^{n}$ are i.i.d., but the entries of each \mathbf{x}_{ℓ} are not necessarily i.i.d.
(B2) (Moment condition) For any $i, j, s, t \in[p]$ with $i \neq j \neq s \neq t$, we have

$$
\begin{aligned}
& \mathbb{E} X_{1 i}=0, \quad \mathbb{E} X_{1 i}^{2}=1, \quad \mathbb{E} X_{1 i} X_{1 j}=0, \quad \mathbb{E} X_{1 i}^{4}=O(1) \\
& \mathbb{E} X_{1 i}^{2} X_{1 j} X_{1 s}=O\left(p^{-1}\right), \quad \mathbb{E} X_{1 i} X_{1 j} X_{1 s} X_{1 t}=O\left(p^{-2}\right)
\end{aligned}
$$

(B3) (Weak dependency) For any $p \times p$ symmetric matrix \mathbf{T} with bounded spectral norm, we have $\operatorname{Var}\left(\mathbf{x}_{1}^{\top} \mathbf{T} \mathbf{x}_{1}\right)=o\left(p^{2}\right)$ as $p \rightarrow \infty$.
(B4) (Concentration) For any convex 1-Lipschitz (with respect to the Euclidean norm) function F from \mathbb{R}^{p} to \mathbb{R}, let m_{F} denote a median of F,

$$
\mathbb{P}\left(\left|F\left(\mathbf{x}_{1}\right)-m_{F}\right|>t\right) \leqslant C \exp \left\{-c(p) t^{2}\right\}
$$

where C and $c(p)$ are independent of F, and C is independent of p. We allow $c(p)$ to be a constant or to go to zero with p like $p^{-\alpha}, 0 \leqslant \alpha<1$.

Moreover, let $\mathbf{Y}=\left(Y_{i j}\right)_{n \times p}=\left(\mathbf{y}_{1}, \ldots, \mathbf{y}_{n}\right)^{\top}$ be a random matrix independent of \mathbf{X}, satisfying Assumptions (A1) and (B1) - (B4) with $X_{i j}$ and \mathbf{x}_{ℓ} replaced by $Y_{i j}$ and \mathbf{y}_{ℓ}, respectively. Then, $\mathbf{\Omega}_{K}(\lambda, \mathbf{X})$ and $\mathbf{\Omega}_{K}(\lambda, \mathbf{Y})$ have the same limiting distribution, where $\mathbf{\Omega}_{K}(\cdot, \cdot)$ is defined in (48).

Remark A.11. Assumption (B4) is from El Karoui (2009). In (El Karoui, 2009, p. 2386), the author gave some examples of distributions satisfying Assumption (B4), such as:

- Gaussian random vectors with covariance matrix Σ_{p} and $c(p)=1 /\left\|\Sigma_{p}\right\|_{2}$ (according to Theorem 2.7 in Ledoux (2001)).
- Random vectors with entries bounded by $1 / \sqrt{c(p)}$ (according to Lemma A.3).

B Proofs of lemmas

B. 1 Proof of Lemma 2.2

Let Δ_{n} denote the difference between ρ_{n} and \mathbf{W}_{n}, that is,

$$
\begin{equation*}
\Delta_{n}:=\boldsymbol{\rho}_{n}-\mathbf{W}_{n}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{R}_{i} \mathbf{R}_{i}^{\top}-\frac{3}{n} \sum_{i=1}^{n} \mathbf{A}_{i} \mathbf{A}_{i}^{\top} \tag{20}
\end{equation*}
$$

where \mathbf{R}_{i}^{\top} is the i-th row of \mathbf{R} defined in (2) and $\mathbf{A}_{i}:=\mathbb{E}\left\{\operatorname{sign}\left(\mathbf{y}_{i}-\mathbf{y}_{\ell}\right) \mid \mathbf{y}_{i}\right\}$. From Lemma A.1, it is sufficient to show that $\left\|\sqrt{n} \Delta_{n}\right\|_{2}=O_{P}(1)$. To this end, we show that $\sqrt{n} \Delta_{n}$ is a Wigner-type matrix
by the following moment estimations:

$$
\begin{align*}
& \mathbb{E}\left\{\left(\sqrt{n} \Delta_{n}\right)_{j \ell}\right\}=O\left(n^{-1 / 2}\right), \quad \operatorname{Var}\left\{\left(\sqrt{n} \Delta_{n}\right)_{j \ell}\right\}=O(1), \tag{21}\\
& \operatorname{Corr}\left(\left(\sqrt{n} \Delta_{n}\right)_{j \ell},\left(\sqrt{n} \Delta_{n}\right)_{j \ell^{\prime}}\right)=O\left(n^{-1 / 2}\right), \quad j \neq \ell \neq \ell^{\prime}, \tag{22}\\
& \operatorname{Corr}\left(\left(\sqrt{n} \Delta_{n}\right)_{j j},\left(\sqrt{n} \Delta_{n}\right)_{\ell r}\right)=O\left(n^{-1 / 2}\right), \quad \ell \neq r . \tag{23}
\end{align*}
$$

Let $y_{i j}$ be the j-th component of \mathbf{y}_{i}. For each $j \in[p]$, we define the empirical cumulative distribution function (ECDF) as

$$
\begin{equation*}
\widehat{F}_{j}(y)=\frac{1}{n} \sum_{\ell=1}^{n} \mathbb{1}\left\{y_{\ell j} \leqslant y\right\}, \tag{24}
\end{equation*}
$$

and let $r_{i j}=n \widehat{F}_{j}\left(y_{i j}\right)$ be the rank of $y_{i j}$ among $\left\{y_{\ell j}\right\}_{\ell=1}^{n}$, where and $i \in[n]$ and $j \in[p]$. For notational simplicity, we denote $F_{i j}=F_{j}\left(y_{i j}\right)$ and $\widehat{F}_{i j}=\widehat{F}_{j}\left(y_{i j}\right)$, where $F_{j}(\cdot)$ is the CDF of $y_{1 j}$. Using these notations, we write the (i, j)-th entry of the matrix \mathbf{R} defined in (2) as

$$
\begin{equation*}
R_{i j}=\sqrt{\frac{12}{n^{2}-1}}\left(r_{i j}-\frac{n+1}{2}\right)=\sqrt{\frac{12 n^{2}}{n^{2}-1}}\left(\widehat{F}_{i j}-\frac{n+1}{2 n}\right), \tag{25}
\end{equation*}
$$

and write the j-th entry of the vector \mathbf{A}_{i} as

$$
\begin{equation*}
A_{i j}=\mathbb{E}\left\{\operatorname{sign}\left(y_{i j}-y_{\ell j}\right) \mid y_{i j}\right\}=2 F_{i j}-1 . \tag{26}
\end{equation*}
$$

First, we prove (21). From (20) and (25) - (26), the j-th diagonal entries of Δ_{n} can be written as $\left(\Delta_{n}\right)_{j j}=1-(12 / n) \sum_{i=1}^{n}\left(F_{i j}-1 / 2\right)^{2}$. By using the fact that $\left\{F_{i j}\right\}_{i=1}^{n} \xrightarrow{\text { i.i.d. }} \operatorname{Uniform}(0,1)$ for fixed j, we obtain

$$
\begin{equation*}
\mathbb{E}\left\{\left(\boldsymbol{\Delta}_{n}\right)_{j j}\right\}=0, \quad \operatorname{Var}\left\{\left(\boldsymbol{\Delta}_{n}\right)_{j j}\right\}=\frac{4}{5 n} . \tag{27}
\end{equation*}
$$

Then, we consider the off-diagonal entries. From (20) and (25) - (26), the (j, ℓ)-th entry of Δ_{n}, where $j \neq \ell$, can be written as

$$
\begin{aligned}
& \left(\Delta_{n}\right)_{j \ell} \\
= & \frac{1}{n}\left\{\sum_{i=1}^{n}\left(\frac{12 n^{2}}{n^{2}-1}\right)\left(\widehat{F}_{i j}-\frac{n+1}{2 n}\right)\left(\widehat{F}_{i \ell}-\frac{n+1}{2 n}\right)-\sum_{i=1}^{n} 12\left(F_{i j}-\frac{1}{2}\right)\left(F_{i \ell}-\frac{1}{2}\right)\right\} \\
= & \frac{6}{n} \sum_{i=1}^{n}\left\{\left(\frac{2 n^{2}}{n^{2}-1} \widehat{F}_{i j} \widehat{F}_{i \ell}-2 F_{i j} F_{i \ell}\right)-\left(\frac{n}{n-1} \widehat{F}_{i j}-F_{i j}\right)-\left(\frac{n}{n-1} \widehat{F}_{i \ell}-F_{i \ell}\right)+\frac{1}{n-1}\right\} \\
= & \frac{6}{n} \sum_{i=1}^{n}\left(\Delta_{n}\right)_{j \ell}^{(i)} .
\end{aligned}
$$

From the fact that $\left\{F_{i j}\right\}_{i=1}^{n} \stackrel{\text { i.i.d. }}{ }$ Uniform $(0,1)$ for fixed j and the definition (24) of ECDF, we obtain

$$
\mathbb{E} F_{i j}=\frac{1}{2}, \quad \mathbb{E} F_{i j}^{2}=\frac{1}{3}, \quad \mathbb{E} \widehat{F}_{i j}=\frac{1}{n} \sum_{\ell=1}^{n} \mathbb{E} \mathbb{1}\left\{y_{\ell j} \leqslant y_{i j}\right\}=\frac{n+1}{2 n},
$$

and

$$
\mathbb{E} \widehat{F}_{i j} \widehat{F}_{i \ell}=\frac{(n-1)(n-2)}{n^{2}} \mathbb{E} F_{i j} F_{i \ell}+\frac{n-1}{n^{2}} \mathbb{E} \mathbb{1}\left\{y_{s j} \leqslant y_{i j}\right\} \mathbb{1}\left\{y_{s \ell} \leqslant y_{i \ell}\right\}+\frac{1}{n}, \quad(s \neq i) .
$$

These identities imply that

$$
\mathbb{E}\left\{\left(\Delta_{n}\right)_{j \ell}^{(1)}\right\}=-\frac{6}{n+1} \mathbb{E} F_{1 j} F_{1 \ell}+\frac{2}{n+1} \mathbb{E} \mathbb{1}\left\{y_{2 j} \leqslant y_{1 j}\right\} \mathbb{1}\left\{y_{2 \ell} \leqslant y_{1 \ell}\right\}+\frac{1}{n+1}=O\left(n^{-1}\right) .
$$

As $\left\{\left(\Delta_{n}\right)_{j \ell}^{(i)}\right\}_{i=1}^{n}$ are i.i.d. for fixed j and ℓ, we have

$$
\begin{equation*}
\mathbb{E}\left\{\left(\Delta_{n}\right)_{j \ell}\right\}=6 \mathbb{E}\left\{\left(\Delta_{n}\right)_{j \ell}^{(1)}\right\}=O\left(n^{-1}\right) . \tag{28}
\end{equation*}
$$

Moreover, a similar calculation gives

$$
\begin{aligned}
& \quad \operatorname{Var}\left\{\left(\Delta_{n}\right)_{j \ell}^{(1)}\right\} \\
& \begin{aligned}
= & \frac{n^{3}}{\left(n^{2}-1\right)^{2}} \mathbb{E}\left[\frac{1}{3}\right. \\
& +4 F_{1 j} F_{1 \ell}\left(3 F_{1 j}+3 F_{1 \ell}-4 F_{1 j} F_{1 \ell}\right)-10 F_{1 j} F_{1 \ell} \\
& \left.-4\left(F_{1 j}+F_{1 \ell}-2 F_{1 j} F_{1 \ell}-\frac{1}{2}\right) \mathbb{1}\left\{y_{2 j} \leqslant y_{1 j}\right\} \mathbb{1}\left\{y_{2 \ell} \leqslant y_{1 \ell}\right\}\right]+O\left(n^{-2}\right) \\
= & O\left(n^{-1}\right) .
\end{aligned}
\end{aligned}
$$

Thus, we have

$$
\begin{equation*}
\operatorname{Var}\left\{\left(\Delta_{n}\right)_{j \ell}\right\}=\frac{36}{n} \operatorname{Var}\left\{\left(\Delta_{n}\right)_{j \ell}^{(1)}\right\}=O\left(n^{-2}\right) . \tag{29}
\end{equation*}
$$

This, together with (27) and (28), implies (21).
Now, we prove (22). For any $j, \ell, \ell^{\prime} \in[p]$ with $j \neq \ell \neq \ell^{\prime}$, direct calculation gives us

$$
\begin{align*}
& \operatorname{Cov}\left(\left(\Delta_{n}\right)_{j \ell},\left(\Delta_{n}\right)_{j \ell^{\prime}}\right) \\
&=\frac{36 n^{2}}{\left(n^{2}-1\right)^{2}} \mathbb{E}\left\{-16 F_{1 j}^{2} F_{1 \ell} F_{1 \ell^{\prime}}+8 F_{1 j}^{2} F_{1 \ell}+4 F_{1 j}^{2} \mathbb{1}\left\{y_{2 \ell} \leqslant y_{1 \ell}\right\} \mathbb{1}\left\{y_{2 \ell^{\prime}} \leqslant y_{1 \ell^{\prime}}\right\}\right. \\
&+12 F_{1 j} F_{1 \ell} F_{1 \ell^{\prime}}+4 F_{1 j} \mathbb{1}\left\{y_{2 j} \leqslant y_{1 j}\right\}\left[F_{1 \ell} \mathbb{1}\left\{y_{2 \ell^{\prime}} \leqslant y_{1 \ell^{\prime}}\right\}+F_{1 \ell^{\prime}} \mathbb{1}\left\{y_{2 \ell} \leqslant y_{1 \ell}\right\}\right] \\
&-3 F_{1 j}\left(F_{1 \ell}+F_{1 \ell^{\prime}}\right)-2 F_{1 j} \mathbb{1}\left\{y_{2 j} \leqslant y_{1 j}\right\}\left[\mathbb{1}\left\{y_{2 \ell} \leqslant y_{1 \ell}\right\}+\mathbb{1}\left\{y_{2 \ell^{\prime}} \leqslant y_{1 \ell^{\prime}}\right\}\right] \\
&-4 F_{1 j} \mathbb{1}\left\{y_{2 \ell} \leqslant y_{1 \ell}\right\} \mathbb{1}\left\{y_{2 \ell^{\prime}} \leqslant y_{1 \ell^{\prime}}\right\}-F_{1 \ell} F_{1 \ell^{\prime}} \\
&-2 \mathbb{1}\left\{y_{2 j} \leqslant y_{1 j}\right\}\left[F_{1 \ell^{\prime}} \mathbb{1}\left\{y_{2 \ell^{\prime}} \leqslant y_{1 \ell^{\prime}}\right\}+F_{1 \ell^{\prime}} \mathbb{1}\left\{y_{2 \ell} \leqslant y_{1 \ell}\right\}\right] \\
&+\mathbb{1}\left\{y_{2 j} \leqslant y_{1 j}\right\} \mathbb{1}\left\{y_{2 \ell} \leqslant y_{1 \ell}\right\}+\mathbb{1}\left\{y_{2 j} \leqslant y_{1 j}\right\} \mathbb{1}\left\{y_{2 \ell^{\prime}} \leqslant y_{1 \ell^{\prime}}\right\} \\
&\left.+\mathbb{1}\left\{y_{2 \ell} \leqslant y_{1 \ell\}}\right\} \mathbb{1}\left\{y_{2 \ell^{\prime}} \leqslant y_{1 \ell^{\prime}}\right\}+\frac{1}{6}\right\}+O\left(n^{-3}\right) . \tag{30}
\end{align*}
$$

From Assumptions (A1), (A3), and (A4), the constant term in the curly brackets of (30) is of order $O\left(n^{-1 / 2}\right)$, then we have $\operatorname{Cov}\left(\left(\Delta_{n}\right)_{j \ell},\left(\Delta_{n}\right)_{\ell^{\prime}}\right)=O\left(n^{-5 / 2}\right)$. This, together with (29), implies that

$$
\operatorname{Corr}\left(\left(\Delta_{n}\right)_{j \ell},\left(\Delta_{n}\right)_{j \ell^{\prime}}\right)=\frac{\operatorname{Cov}\left(\left(\Delta_{n}\right)_{j \ell},\left(\Delta_{n}\right)_{j \ell^{\prime}}\right)}{\sqrt{\operatorname{Var}\left\{\left(\Delta_{n}\right)_{j \ell}\right\} \cdot \operatorname{Var}\left\{\left(\Delta_{n}\right)_{j \ell^{\prime}}\right\}}}=O\left(n^{-1 / 2}\right),
$$

and thus (22) holds true.
Finally, we prove (23). For any $j, \ell, r \in[p]$ with $\ell \neq r$, by using similar argument above, we have

$$
\begin{array}{rl}
\operatorname{Cov}(& \left.\left(\Delta_{n}\right)_{j j},\left(\Delta_{n}\right)_{\ell r}\right) \\
=\frac{72}{n} & \frac{1}{n+1}\left\{\left(2 \mathbb{E}\left[F_{1 j} \mathbb{1}\left\{y_{2 \ell} \leqslant y_{1 \ell}\right\} \mathbb{1}\left\{y_{2 r} \leqslant y_{1 r}\right\}\right]-6 \mathbb{E} F_{1 j} F_{1 \ell} F_{1 r}+2 \mathbb{E}\left(F_{1 j} F_{1 \ell}+F_{1 j} F_{1 r}\right)-\frac{1}{2}\right)\right. \\
& -\left(2 \mathbb{E}\left[F_{1 j}^{2} \mathbb{1}\left\{y_{2 \ell} \leqslant y_{1 \ell}\right\} \mathbb{1}\left\{y_{2 r} \leqslant y_{1 r}\right\}\right]-6 \mathbb{E} F_{1 j}^{2} F_{1 \ell} F_{1 r}+2 \mathbb{E}\left(F_{1 j}^{2} F_{1 \ell}+F_{1 j}^{2} F_{1 r}\right)-\frac{1}{3}\right) \\
& \left.-\frac{1}{6}\left[-6 \mathbb{E} F_{1 \ell} F_{1 r}+2 \mathbb{E} \mathbb{1}\left\{y_{2 \ell} \leqslant y_{1 \ell}\right\} \mathbb{1}\left\{y_{2 r} \leqslant y_{1 r}\right\}+1\right]\right\} \\
=O & O\left(n^{-5 / 2}\right) .
\end{array}
$$

This, together with (27) and (29), implies (23) and completes the proof.

B. 2 Proof of Lemma 2.3

Recall that $\mathbf{A}_{i \ell}=\operatorname{sign}\left(\mathbf{y}_{i}-\mathbf{y}_{\ell}\right)$ and $\mathbf{A}_{i}=\mathbb{E}\left(\mathbf{A}_{i \ell} \mid \mathbf{y}_{i}\right)$ for any $i, \ell \in[n]$ with $i \neq \ell$. By using the law of iterated expectations repeatedly, we obtain

$$
\begin{aligned}
\Sigma_{\rho} & =3 \mathbb{E}\left(\mathbf{A}_{1} \mathbf{A}_{1}^{\top}\right)=3 \mathbb{E}\left\{\mathbb{E}\left(\mathbf{A}_{12} \mid \mathbf{y}_{1}\right) \mathbf{A}_{1}^{\top}\right\}=3 \mathbb{E}\left(\mathbf{A}_{12} \mathbf{A}_{1}^{\top}\right) \\
& =3 \mathbb{E}\left\{\mathbf{A}_{12} \mathbb{E}\left(\mathbf{A}_{13}^{\top} \mid \mathbf{y}_{1}, \mathbf{y}_{2}\right)\right\}=3 \mathbb{E}\left\{\mathbb{E}\left(\mathbf{A}_{12} \mathbf{A}_{13}^{\top} \mid \mathbf{y}_{1}, \mathbf{y}_{2}\right)\right\} \\
& =3 \mathbb{E}\left(\mathbf{A}_{12} \mathbf{A}_{13}^{\top}\right)=3 \mathbb{E}\left\{\operatorname{sign}\left(\mathbf{y}_{1}-\mathbf{y}_{2}\right) \operatorname{sign}\left(\mathbf{y}_{1}-\mathbf{y}_{3}\right)^{\top}\right\} .
\end{aligned}
$$

Let \mathbf{b}_{i}^{\top} denote the i-th row of \mathbf{B}, and $\Psi_{i i}$ denote the i-th diagonal element of $\boldsymbol{\Psi}$. From Assumption (A2) and Definition 2.1, the i-th component of $\mathbf{y}_{1}=\mathbf{B} \mathbf{f}_{1}+\boldsymbol{\Psi} \mathbf{e}_{1}$ has a stochastic representation (below, we omit " 1 " in subscripts to simplify notations)

$$
\begin{equation*}
y_{i} \stackrel{\mathrm{~d}}{=} \sqrt{w^{f}} \mathbf{b}_{i}^{\top} \mathbf{x}+\sqrt{w_{i}^{e}} \Psi_{i i} z_{i}, \quad i \in[p], \tag{31}
\end{equation*}
$$

where $\mathbf{x} \sim \mathcal{N}_{K}\left(\mathbf{0}, \mathbf{I}_{K}\right),\left\{z_{i}\right\}_{i=1}^{p} \xrightarrow{\text { i.i.d. }} \mathcal{N}(0,1)$, and they are independent. For any $i \in[p]$, let

$$
\tilde{\mathbf{v}}_{i}:=\frac{\sqrt{w^{f}} \mathbf{b}_{i}}{\sqrt{\left(w^{f}+\widetilde{w}^{f}\right) \mathbf{b}_{i}^{\top} \mathbf{b}_{i}+\left(w_{i}^{e}+\widetilde{w}_{i}^{e}\right) \Psi_{i i}^{2}}}, \quad \hat{\mathbf{v}}_{i}:=\frac{\sqrt{w^{f}} \mathbf{b}_{i}}{\sqrt{\left(w^{f}+\widehat{w}^{f}\right) \mathbf{b}_{i}^{\top} \mathbf{b}_{i}+\left(w_{i}^{e}+\widehat{w}_{i}^{e}\right) \Psi_{i i}^{2}}},
$$

where $\left(\widetilde{w}^{f}, \widetilde{w}_{i}^{e}\right)$ and $\left(\widehat{w}^{f}, \widehat{w}_{i}^{e}\right)$ are two independent copies of (w^{f}, w_{i}^{e}). It follows from Lemma A. 6 that, the (i, j)-th element of Σ_{ρ} can be written as

$$
\left(\Sigma_{\rho}\right)_{i j}= \begin{cases}(6 / \pi) \mathbb{E}\left\{\arcsin \left(\tilde{\mathbf{v}}_{i}^{\top} \hat{\mathbf{v}}_{j}\right)\right\}, & i \neq j \\ 1, & i=j\end{cases}
$$

By using Taylor's expansion, we derive that $\left(\Sigma_{\rho}\right)_{i j}=\frac{6}{\pi} \mathbb{E}\left(\tilde{\mathbf{v}}_{i}^{\top} \hat{\mathbf{v}}_{j}\right)+O\left(p^{-2}\right)$ for $i \neq j$. By definitions of $\tilde{\mathbf{v}}_{i}$ and $\hat{\mathbf{v}}_{j}$ and Assumption (A3), we have

$$
\begin{aligned}
& \mathbb{E}\left(\tilde{\mathbf{v}}_{i}^{\top} \hat{\mathbf{v}}_{j}\right) \\
= & \mathbb{E}\left\{\frac{\sqrt{w^{f}}}{\sqrt{\left(w^{f}+\widetilde{w}^{f}\right) \mathbf{b}_{i}^{\top} \mathbf{b}_{i}+\left(w_{i}^{e}+\widetilde{w}_{i}^{e}\right) \Psi_{i i}^{2}}} \cdot \frac{\sqrt{w^{f}}}{\sqrt{\left(w^{f}+\widehat{w}^{f}\right) \mathbf{b}_{j}^{\top} \mathbf{b}_{j}+\left(w_{j}^{e}+\widehat{w}_{j}^{e}\right) \Psi_{j j}^{2}}}\right\} \mathbf{b}_{i}^{\top} \mathbf{b}_{j} \\
= & \mathbb{E}\left\{\left(\frac{\sqrt{w^{f}}}{\sqrt{\left(w_{i}^{e}+\widetilde{w}_{i}^{e}\right) \Psi_{i i}^{2}}+o(1)}\right)\left(\frac{\sqrt{w^{f}}}{\sqrt{\left(w_{j}^{e}+\widehat{w}_{j}^{e}\right) \Psi_{j j}^{2}}}+o(1)\right)\right\} \mathbf{b}_{i}^{\top} \mathbf{b}_{j} \\
= & \mathbb{E}\left\{\frac{w^{f}}{\sqrt{w_{i}^{e}+\widetilde{w}_{i}^{e}} \sqrt{w_{j}^{e}+\widehat{w}_{j}^{e}}}\right\} \frac{\mathbf{b}_{i}^{\top} \mathbf{b}_{j}}{\Psi_{i i} \Psi_{j j}}+o\left(p^{-1}\right) .
\end{aligned}
$$

By using the above estimations, we obtain

$$
\begin{equation*}
\Sigma_{\rho}=\operatorname{diag}\left(\mathbf{I}_{p}-\gamma \boldsymbol{\Psi}^{-1} \mathbf{B} \mathbf{B}^{\top} \boldsymbol{\Psi}^{-1}\right)+\gamma \boldsymbol{\Psi}^{-1} \mathbf{B} \mathbf{B}^{\top} \boldsymbol{\Psi}^{-1}+\mathbf{E}_{n}, \tag{32}
\end{equation*}
$$

where $\mathbf{E}_{n}:=\Sigma_{\rho}-\operatorname{diag}\left(\mathbf{I}_{p}-\gamma \boldsymbol{\Psi}^{-1} \mathbf{B} \mathbf{B}^{\top} \boldsymbol{\Psi}^{-1}\right)-\gamma \boldsymbol{\Psi}^{-1} \mathbf{B} \mathbf{B}^{\top} \boldsymbol{\Psi}^{-1}$ with $\left\|\mathbf{E}_{n}\right\|_{\max }=o\left(p^{-1}\right)$ and

$$
\begin{equation*}
\gamma:=\frac{6}{\pi} \mathbb{E}\left[w^{f} /\left\{\left(w_{i}^{e}+\widetilde{w}_{i}^{e}\right)\left(w_{j}^{e}+\widehat{w}_{j}^{e}\right)\right\}^{1 / 2}\right] . \tag{33}
\end{equation*}
$$

By the basic norm inequality $\|\mathbf{A}\|_{2} \leqslant p\|\mathbf{A}\|_{\max }$ for any $p \times p$ matrix \mathbf{A}, we have

$$
\begin{equation*}
\left\|\mathbf{E}_{n}\right\|_{2} \leqslant p \cdot o\left(p^{-1}\right)=o(1) . \tag{34}
\end{equation*}
$$

Since $\left(\widetilde{w}_{i}^{e}, \widehat{w}_{j}^{e}\right)$ is an independent copy of $\left(w_{i}^{e}, w_{j}^{e}\right)$ for $i \neq j$ and random variables $\left\{w_{i}^{e}\right\}_{i=1}^{p}$ are i.i.d., we can replace $w_{i}^{e}, w_{j}^{e}, \widetilde{w}_{i}^{e}, \widehat{w}_{j}^{e}$ in (33) by $w_{1}^{e}, w_{2}^{e}, w_{3}^{e}, w_{4}^{e}$, respectively. This, together with (32) and (34), completes the proof of Lemma 2.3.

B. 3 Proof of Lemma A. 6

From the definition of \mathbf{Q} in (13), we obtain $\mathbf{Q} \mid\left(W_{X}, W_{Y_{1}}, W_{Y_{2}}\right) \sim \mathcal{N}_{2}(\mathbf{0}, \Sigma)$, where

$$
\Sigma=\left(\begin{array}{cc}
W_{X} \sigma_{X_{1}}^{2}+W_{Y_{1}} \sigma_{Y_{1}}^{2} & \gamma W_{X} \\
\gamma W_{X} & W_{X} \sigma_{X_{2}}^{2}+W_{Y_{2}} \sigma_{Y_{2}}^{2}
\end{array}\right) .
$$

For \widetilde{Q}_{1} and \widetilde{Q}_{2}, they have the following stochastic representations:

$$
\widetilde{Q}_{1} \stackrel{d}{=} \sqrt{\widetilde{W}_{X_{1}}} \widetilde{X}_{1}+\sqrt{\widetilde{W}_{Y_{1}}} \widetilde{Y}_{1}, \quad \widetilde{Q}_{2} \stackrel{d}{=} \sqrt{\widetilde{W}_{X_{2}}} \widetilde{X}_{2}+\sqrt{\widetilde{W}_{Y_{2}}} \widetilde{Y}_{2},
$$

where $\left(\widetilde{W}_{X_{1}}, \widetilde{W}_{Y_{1}}\right),\left(\widetilde{W}_{X_{2}}, \widetilde{W}_{Y_{2}}\right),\left(\widetilde{X}_{1}, \widetilde{Y}_{1}\right)$, and $\left(\widetilde{X}_{2}, \widetilde{Y}_{2}\right)$ are independent copies of $\left(W_{X}, W_{Y_{1}}\right),\left(W_{X}, W_{Y_{2}}\right)$, $\left(X_{1}, Y_{1}\right)$, and $\left(X_{2}, Y_{2}\right)$, respectively. Note that \widetilde{X}_{1} and \widetilde{X}_{2} are independent. Two random vectors \mathbf{Q}
and $\widetilde{\mathbf{Q}}=\left(\widetilde{Q}_{1}, \widetilde{Q}_{2}\right)^{\top}$ are independent, and $\widetilde{\mathbf{Q}} \mid\left(\widetilde{W}_{X_{1}}, \widetilde{W}_{X_{2}}, \widetilde{W}_{Y_{1}}, \widetilde{W}_{Y_{2}}\right) \sim \mathcal{N}_{2}(\mathbf{0}, \widetilde{\Sigma})$, where

$$
\widetilde{\Sigma}=\left(\begin{array}{cc}
\widetilde{W}_{X_{1}} \sigma_{X_{1}}^{2}+\widetilde{W}_{Y_{1}} \sigma_{Y_{1}}^{2} & 0 \\
0 & \widetilde{W}_{X_{2}} \sigma_{X_{2}}^{2}+\widetilde{W}_{Y_{2}} \sigma_{Y_{2}}^{2}
\end{array}\right)
$$

Comnbining \mathbf{Q} and $\widetilde{\mathbf{Q}}$ into a vector $\mathcal{Q}:=\binom{\mathbf{Q}}{\widetilde{\mathbf{Q}}}$, then we have $\mathcal{Q} \mid \mathbf{W} \sim \mathcal{N}_{4}(\mathbf{0}, \boldsymbol{\Omega})$, where $\mathbf{W}:=$ $\left(W_{X}, W_{Y_{1}}, W_{Y_{2}}, \widetilde{W}_{X_{1}}, \widetilde{W}_{X_{2}}, \widetilde{W}_{Y_{1}}, \widetilde{W}_{Y_{2}}\right)$, and $\boldsymbol{\Omega}=\left(\begin{array}{cc}\Sigma & O \\ 0 & \widetilde{\Sigma}\end{array}\right)$. From

$$
\binom{Q_{1}-\widetilde{Q}_{1}}{Q_{2}-\widetilde{Q}_{2}}=\left(\mathbf{I}_{2},-\mathbf{I}_{2}\right) \mathcal{Q}=: \mathbf{B}_{0} \mathcal{Q},
$$

we obtain $\left.\binom{Q_{1}-\widetilde{Q_{1}}}{Q_{2}-\widetilde{Q}_{2}} \right\rvert\, \mathbf{W} \sim \mathcal{N}_{2}\left(\mathbf{0}, \mathbf{B}_{0} \Omega \mathbf{B}_{0}^{\top}\right)$, where

$$
\mathbf{B}_{0} \boldsymbol{\Omega} \mathbf{B}_{0}^{\top}=\left(\begin{array}{cc}
\left(W_{X}+\widetilde{W}_{X_{1}}\right) \sigma_{X_{1}}^{2}+\left(W_{Y_{1}}+\widetilde{W}_{Y_{1}}\right) \sigma_{Y_{1}}^{2} & \gamma W_{X} \\
\gamma W_{X} & \left(W_{X}+\widetilde{W}_{X_{2}}\right) \sigma_{X_{2}}^{2}+\left(W_{Y_{2}}+\widetilde{W}_{Y_{2}}\right) \sigma_{Y_{2}}^{2}
\end{array}\right) .
$$

Given \mathbf{W}, the Pearson correlation coefficient between $Q_{1}-\widetilde{Q}_{1}$ and $Q_{2}-\widetilde{Q}_{2}$ is

$$
r=\frac{\gamma W_{X}}{\sqrt{\left(W_{X}+\widetilde{W}_{X_{1}}\right) \sigma_{X_{1}}^{2}+\left(W_{Y_{1}}+\widetilde{W}_{Y_{1}}\right) \sigma_{Y_{1}}^{2}} \sqrt{\left(W_{X}+\widetilde{W}_{X_{2}}\right) \sigma_{X_{2}}^{2}+\left(W_{Y_{2}}+\widetilde{W}_{Y_{2}}\right) \sigma_{Y_{2}}^{2}}} .
$$

By Lemma A.5, we conclude that

$$
\mathbb{E}\left\{\operatorname{sign}\left(Q_{1}-\widetilde{Q}_{1}\right) \operatorname{sign}\left(Q_{2}-\widetilde{Q}_{2}\right)\right\}=\mathbb{E}\left[\mathbb{E}\left\{\operatorname{sign}\left(Q_{1}-\widetilde{Q}_{1}\right) \operatorname{sign}\left(Q_{2}-\widetilde{Q}_{2}\right) \mid \mathbf{W}\right\}\right]=\frac{2}{\pi} \mathbb{E}\{\arcsin (r)\}
$$

This completes the proof of Lemma A. 6 .

B. 4 Proof of Lemma A. 7

The convergence of $\beta_{i 0}$ can be proven by using the same argument in the proof of Lemma C. 3 of Jiang and Bai (2021b). The conclusion $\varepsilon_{i} \rightarrow 0$ follows from (17). First, we prove that $\mathbb{E} \varepsilon_{i}^{2}=o(1)$. Since $\|\boldsymbol{\Gamma}\|_{2}$ is bounded and the variable λ (spiked eigenvalue) stays away from the bulk eigenvalues of $n^{-1} \boldsymbol{\Gamma}^{1 / 2} \mathbf{X}_{i 0}^{\top} \mathbf{X}_{i 0} \boldsymbol{\Gamma}^{1 / 2}$, the spectral norm of $\mathbf{B}:=\boldsymbol{\Gamma}^{1 / 2}\left(\lambda \mathbf{I}-n^{-1} \boldsymbol{\Gamma}^{1 / 2} \mathbf{X}_{i 0}^{\top} \mathbf{X}_{i 0} \boldsymbol{\Gamma}^{1 / 2}\right)^{-1} \boldsymbol{\Gamma}^{1 / 2}$ is bounded. By Assumptions (A1) and (B3), we have

$$
\mathbb{E} \varepsilon_{i}^{2}=\frac{1}{n^{2}} \mathbb{E}\left|\mathbf{x}_{i}^{\top} \mathbf{B} \mathbf{x}_{i}-\operatorname{tr} \mathbf{B}\right|^{2}=o(1) .
$$

Second, we prove $\mathbb{E} \varepsilon_{i}^{4}=o\left(n^{-1}\right)$. From Assumption (B4), we can apply Lemma A. 2 to estimating moments of ε_{i}. For $\delta>0$, let $t_{n}(\delta)=(p / n)(\log p)^{1+\delta} / \sqrt{p c(p)}$, where $c(p)$ is defined in Assumption (B4). Define an event

$$
\mathcal{F}_{n}(\delta)=\left\{\mathbf{x}_{i}: n^{-1}\left(\mathbf{x}_{i}^{\top} \mathbf{B x}_{i}-\operatorname{tr} \mathbf{B}\right)<t_{n}(\delta)\right\} .
$$

From Lemma A. 2 and the fact $\mathbb{E}\left(\mathbf{x}_{1} \mathbf{x}_{1}^{\top}\right)=\mathbf{I}_{p}$ (see Assumption (B2)), we have $\mathbb{P}\left(\mathcal{F}_{n}^{c}(\delta)\right)=o\left(n^{-1}\right)$. By
the elementary inequality $|a+b|^{r} \leqslant 2^{r-1}\left(|a|^{r}+|b|^{r}\right)$ for $r>1$, we have

$$
\begin{equation*}
\mathbb{E} \varepsilon_{i}^{4}=\mathbb{E}\left|\varepsilon_{i} \mathbb{1}_{\left\{\mathcal{F}_{n}(\delta)\right\}}+\varepsilon_{i} \mathbb{1}_{\left\{\mathcal{F}_{n}^{c}(\delta)\right\}}\right|^{4} \leqslant 8\left[\mathbb{E}_{i}^{4} \mathbb{1}_{\left\{\mathcal{F}_{n}(\delta)\right\}}+\mathbb{E} \varepsilon_{i}^{4} \mathbb{1}_{\left\{\mathcal{F}_{n}^{c}(\delta)\right\}}\right] . \tag{35}
\end{equation*}
$$

For the first term, we have

$$
\begin{equation*}
\mathbb{E} \varepsilon_{i}^{4} \mathbb{1}_{\left\{\mathcal{F}_{n}(\delta)\right\}}=\int_{0}^{\infty} 4 t^{3} \mathbb{P}\left(\left|\varepsilon_{i} \mathbb{1}_{\left\{\mathcal{F}_{n}(\delta)\right\}}\right|>t\right) \mathrm{d} t \leqslant \int_{0}^{t_{n}(\delta)} 4 t^{3} \mathrm{~d} t=o\left(n^{-1}\right) . \tag{36}
\end{equation*}
$$

For the second term, by the fact that $\left|\varepsilon_{i}\right|=\left|n^{-1}\left(\mathbf{x}_{i}^{\top} \mathbf{B} \mathbf{x}_{i}-\operatorname{tr} \mathbf{B}\right)\right| \leqslant C\|\mathbf{B}\|_{2}$ (using Assumption (B2) and the Courant-Fischer principle) and $\|\mathbf{B}\|_{2}=O(1)$, we obtain

$$
\mathbb{E} \varepsilon_{i}^{4} \mathbb{1}_{\left\{\mathcal{F}_{n}^{c}(\delta)\right\}} \leqslant C^{4}\|\mathbf{B}\|_{2}^{4} \mathbb{P}\left(\mathcal{F}_{n}^{c}(\delta)\right)=o\left(n^{-1}\right) .
$$

This, together with (35) and (36), implies that $\mathbb{E} \varepsilon_{i}^{4}=o\left(n^{-1}\right)$.
Finally, we prove (18). The proofs of $\mathbb{E}\left\{\operatorname{tr}\left(\mathbf{W} \boldsymbol{\tau}_{i}\right)\right\}^{2}=O(1)$ and $\mathbb{E}\left\{\operatorname{tr}\left(\mathbf{W} \boldsymbol{\tau}_{i 0}\right)\right\}^{2}=O(1)$ are similar, and thus we only prove the first conclusion. Let

$$
\begin{aligned}
& \boldsymbol{\tau}_{i 1}=n^{-1}\left(\mathbf{x}_{i}^{\top} \mathbf{H}_{2} \mathbf{x}_{i}-\operatorname{tr} \mathbf{H}_{2}\right) \mathbf{I}_{K}, \\
& \boldsymbol{\tau}_{i 2}=\mathbf{U}_{1}^{\top}\left(\mathbf{I}_{p}+\mathbf{H}_{1}\right)\left(\mathbf{x}_{i} \mathbf{x}_{i}^{\top}-\mathbf{I}_{p}\right)\left(\mathbf{I}_{p}+\mathbf{H}_{1}\right)^{\top} \mathbf{U}_{1},
\end{aligned}
$$

then we can write $\boldsymbol{\tau}_{i}=\boldsymbol{\tau}_{i 1}-\boldsymbol{\tau}_{i 2}$. To prove $\mathbb{E}\left\{\operatorname{tr}\left(\mathbf{W} \boldsymbol{\tau}_{i}\right)\right\}^{2}=O(1)$, it suffices to show that $\mathbb{E}\left\{\operatorname{tr}\left(\mathbf{W} \boldsymbol{\tau}_{i 2}\right)\right\}^{2}=$ $O(1)$, since

$$
\mathbb{E}\left\{\operatorname{tr}\left(\mathbf{W} \boldsymbol{\tau}_{i}\right)\right\}^{2}=\mathbb{E}\left\{\operatorname{tr} \mathbf{W}\left(\boldsymbol{\tau}_{i 1}-\boldsymbol{\tau}_{i 2}\right)\right\}^{2} \leqslant 2 \mathbb{E}\left\{\operatorname{tr}\left(\mathbf{W} \boldsymbol{\tau}_{i 1}\right)\right\}^{2}+2 \mathbb{E}\left\{\operatorname{tr}\left(\mathbf{W} \boldsymbol{\tau}_{i 2}\right)\right\}^{2},
$$

and

$$
\mathbb{E}\left\{\operatorname{tr}\left(\mathbf{W} \boldsymbol{\tau}_{i 1}\right)\right\}^{2}=n^{-2} \mathbb{E}\left(\mathbf{x}_{i}^{\top} \mathbf{H}_{2} \mathbf{x}_{i}-\operatorname{tr} \mathbf{H}_{2}\right)^{2} \cdot(\operatorname{tr} \mathbf{W})^{2}=o(1),
$$

which follows from Assumption (B3) and the fact $\left\|\mathbf{H}_{2}\right\|_{2}=O(1)$. Let

$$
\Delta=\left(\mathbf{I}_{p}+\mathbf{H}_{1}^{\top}\right) \mathbf{U}_{1} \mathbf{W} \mathbf{U}_{1}^{\top}\left(\mathbf{I}_{p}+\mathbf{H}_{1}\right),
$$

then we have

$$
\mathbb{E}\left[\operatorname{tr}\left(\mathbf{W} \boldsymbol{\tau}_{i 2}\right)\right]^{2}=\mathbb{E}\left|\mathbf{x}_{i}^{\top} \Delta \mathbf{x}_{i}-\operatorname{tr} \Delta\right|^{2} \leqslant 2 \mathbb{E}\left|\mathbf{x}_{i}^{\top} \Delta \mathbf{x}_{i}\right|^{2}+2 \mathbb{E}|\operatorname{tr} \Delta|^{2}
$$

Note that

$$
\begin{aligned}
\operatorname{tr}(\boldsymbol{\Delta}) & =\operatorname{tr}\left\{\mathbf{W} \mathbf{U}_{1}^{\top}\left(\mathbf{I}_{p}+\mathbf{H}_{1}\right)\left(\mathbf{I}_{p}+\mathbf{H}_{1}^{\top}\right) \mathbf{U}_{1}\right\} \\
& \leqslant K\left\|\mathbf{W} \mathbf{U}_{1}^{\top}\left(\mathbf{I}_{p}+\mathbf{H}_{1}\right)\left(\mathbf{I}_{p}+\mathbf{H}_{1}^{\top}\right) \mathbf{U}_{1}\right\|_{2}=O(1),
\end{aligned}
$$

and similarly, $(\operatorname{tr} \Delta)^{2}=O(1)$. Thus, we need only to show $\mathbb{E}\left|\mathbf{x}_{i}^{\top} \Delta \mathbf{x}_{i}\right|^{2}=O(1)$. Let $\Delta_{k \ell}$ denote the $(k, \ell)-$ th entry of Δ. From Lemma A.4, we obtain $\sum_{k=1}^{p} \Delta_{k k}^{2} \leqslant \operatorname{tr}\left(\Delta^{2}\right)=O(1)$. By using Cauchy-Schwarz inequality, we obtain

$$
\sum_{k \neq \ell} \Delta_{k k} \Delta_{\ell \ell} \leqslant\left(\sum_{k} \Delta_{k k}\right)\left(\sum_{\ell} \Delta_{\ell \ell}\right)=(\operatorname{tr} \Delta)^{2}=O(1),
$$

$$
\begin{gathered}
\sum_{k \neq \ell \neq s} \Delta_{k \ell} \Delta_{k s} \asymp \sum_{k \neq \ell \neq s} \Delta_{k k} \Delta_{\ell s} \leqslant\left(\sum_{k} \Delta_{k k}\right) \cdot\left(\sum_{\ell \neq s} \Delta_{\ell s}\right) \leqslant(\operatorname{tr} \Delta) \cdot p\left(\operatorname{tr} \Delta^{2}\right)^{1 / 2}=O(p) \\
\sum_{k \neq \ell \neq s \neq t} \Delta_{k \ell} \Delta_{s t} \leqslant\left(\sum_{k \neq \ell} \Delta_{k \ell}\right)\left(\sum_{s \neq t} \Delta_{s t}\right) \leqslant p^{2} \operatorname{tr}\left(\Delta^{2}\right)=O\left(p^{2}\right)
\end{gathered}
$$

It follows from the above inequalities and Assumption (B2) that

$$
\begin{aligned}
\mathbb{E}\left|\mathbf{x}_{i}^{\top} \Delta \mathbf{x}_{i}\right|^{2}= & \sum_{k=1}^{p} \mathbb{E} \Delta_{k k}^{2} \cdot \mathbb{E} X_{i k}^{4}+\sum_{k \neq \ell} \mathbb{E}\left(\Delta_{k k} \Delta_{\ell \ell}+2 \Delta_{k \ell}^{2}\right) \cdot \mathbb{E} X_{i k}^{2} X_{i \ell}^{2} \\
& +\sum_{k \neq \ell \neq s} \mathbb{E}\left(2 \Delta_{k k} \Delta_{\ell s}+4 \Delta_{k \ell} \Delta_{k s}\right) \cdot \mathbb{E} X_{i k}^{2} X_{i \ell} X_{i s} \\
& +\sum_{k \neq \ell \neq s \neq t} \mathbb{E} \Delta_{k \ell} \Delta_{s t} \cdot \mathbb{E} X_{i k} X_{i \ell} X_{i s} X_{i t} \\
= & O(1) .
\end{aligned}
$$

This completes the proof of Lemma A.7.

B. 5 Proof of Lemma A. 9

From Lemma 2.2, ρ_{n} and \mathbf{W}_{n} share the same LSD, thus we only need to derive the LSD of \mathbf{W}_{n}. Since the vectors $\left\{\mathbf{A}_{i}\right\}_{i=1}^{n}$ are i.i.d., by Theorem 1.1 of Bai and Zhou (2008), we can prove Lemma A. 9 by verifying that the elements of \mathbf{A}_{1} are weakly dependent in the following sense: for any non-random $p \times p$ matrix \mathbf{D} with bounded spectral norm,

$$
\begin{equation*}
\operatorname{Var}\left(\mathbf{A}_{1}^{\top} \mathbf{D} \mathbf{A}_{1}\right)=o\left(p^{2}\right) \tag{37}
\end{equation*}
$$

From the Corollary 1.1 in Bai and Zhou (2008), (37) holds true if

$$
\begin{align*}
& \sum_{\Lambda}\left\{\mathbb{E}\left(A_{1 i} A_{1 j}-\sigma_{i j}\right)\left(A_{1 i^{\prime}} A_{1 j^{\prime}}-\sigma_{i^{\prime} j^{\prime}}\right)\right\}^{2}=o\left(p^{2}\right), \tag{38}\\
& \max _{i \neq j} \mathbb{E}\left|A_{1 i} A_{1 j}-\sigma_{i j}\right|^{2}=o(p) \tag{39}
\end{align*}
$$

where $A_{1 i}$ is the i-th component of $\mathbf{A}_{1}, \sigma_{i j}:=\mathbb{E} A_{1 i} A_{1 j}$, and

$$
\Lambda=\left\{\left(i, j, i^{\prime}, j^{\prime}\right): i, j, i^{\prime}, j^{\prime} \in[p]\right\} \backslash\left\{\left(i, j, i^{\prime}, j^{\prime}\right): i=i^{\prime} \neq j=j^{\prime} \text { or } i=j^{\prime} \neq j=i^{\prime}\right\} .
$$

Now, we prove (38) and (39). From (26), we have $A_{1 i} \sim \operatorname{Uniform}(-1,1)$ for any $i \in[p]$, and thus

$$
\begin{equation*}
\mathbb{E} A_{1 i}^{4}=\frac{1}{5}, \quad \sigma_{i i}=\mathbb{E} A_{1 i}^{2}=\frac{1}{3} \tag{40}
\end{equation*}
$$

Two moment conditions (38) and (39) follow from (40) and the following estimations:

$$
\begin{gather*}
\sigma_{i j}=O\left(p^{-1}\right), \quad \mathbb{E} A_{1 i} A_{1 j} A_{1 i^{\prime}} A_{1 j^{\prime}}=O\left(p^{-2}\right), \quad \mathbb{E} A_{1 i}^{2} A_{1 i^{\prime}} A_{1 j^{\prime}}=O\left(p^{-1}\right) \tag{41}\\
\mathbb{E} A_{1 i}^{3} A_{1 j}=O\left(p^{-1}\right), \quad \mathbb{E}\left(A_{1 i}^{2}-\sigma_{i i}\right)\left(A_{1 j}^{2}-\sigma_{j j}\right)=O\left(p^{-2}\right) \tag{42}
\end{gather*}
$$

where $i, j, i^{\prime}, j^{\prime} \in[p]$ and $i \neq j \neq i^{\prime} \neq j^{\prime}$. Proofs of (41) and (42) are provided in Section B.5.1. From (40) - (42), we obtain

$$
\max _{i \neq j} \mathbb{E}\left|A_{1 i} A_{1 j}-\sigma_{i j}\right|^{2}=O(1),
$$

and

$$
\begin{aligned}
& \sum_{\Lambda}\left\{\mathbb{E}\left(A_{1 i} A_{1 j}-\sigma_{i j}\right)\left(A_{1 i^{\prime}} A_{1 j^{\prime}}-\sigma_{i^{\prime} j^{\prime}}\right)\right\}^{2} \\
&= \sum_{i \neq j \neq i^{\prime} \neq j^{\prime}}\left(\mathbb{E} A_{1 i} A_{1 j} A_{1 i^{\prime}} A_{1 j^{\prime}}-\sigma_{i j} \sigma_{i^{\prime} j^{\prime}}\right)^{2}+2 \sum_{i \neq i^{\prime} \neq j^{\prime}}\left(\mathbb{E} A_{1 i}^{2} A_{1 i^{\prime}} A_{1 j^{\prime}}-\sigma_{i i} \sigma_{i^{\prime} j^{\prime}}\right)^{2} \\
&+2 \sum_{i \neq j \neq j^{\prime}}\left(\mathbb{E} A_{1 i}^{2} A_{1 j} A_{1 j^{\prime}}-\sigma_{i j} \sigma_{i j^{\prime}}\right)^{2}+2 \sum_{i \neq j}\left(\mathbb{E} A_{1 i}^{3} A_{1 j}-\sigma_{i j} \sigma_{i i}\right)^{2} \\
& \quad+\sum_{i \neq j}\left(\mathbb{E} A_{1 i}^{2} A_{1 j}^{2}-\sigma_{i i} \sigma_{j j}\right)^{2}+\sum_{i}\left(\mathbb{E} A_{1 i}^{4}-\sigma_{i i}^{2}\right)^{2} \\
&= O\left(p^{4}\right) \cdot O\left(p^{-4}\right)+O\left(p^{3}\right) \cdot O\left(p^{-2}\right)+O\left(p^{3}\right) \cdot O\left(p^{-2}\right)+O\left(p^{2}\right) \cdot O\left(p^{-2}\right) \\
& \quad \quad+O\left(p^{2}\right) \cdot O\left(p^{-4}\right)+O(p) \cdot O(1)
\end{aligned}
$$

This implies (38) and (39), completing the proof of Lemma A.9.

B.5.1 Proofs of (41) and (42)

In this section, we provide the proofs of some moment estimations (41) and (42), which are used in the proof of Lemma A.9.

From equations (26), (31), and Assumption (A3), we have

$$
\begin{aligned}
\mathbb{E} A_{1 i} & =2 \mathbb{E} F_{i}\left(\mathbf{b}_{i}^{\top} \mathbf{f}_{1}+\Psi_{i i} e_{1 i}\right)-1 \\
& =\mathbb{E}\left\{2 F_{i}\left(\Psi_{i i} e_{1 i}\right)-1\right\}+O\left(p^{-1 / 2}\right)=: \mathbb{E} \tilde{A}_{1 i}+O\left(p^{-1 / 2}\right) .
\end{aligned}
$$

Since $\mathbb{E} A_{1 i}=0$, we obtain that $\mathbb{E} \tilde{A}_{1 i}=O\left(p^{-1 / 2}\right)$. By using the same argument, we obtain

$$
\mathbb{E} \tilde{A}_{1 i}^{2}=\mathbb{E} A_{1 i}^{2}+O\left(p^{-1}\right), \quad \mathbb{E} \tilde{A}_{1 i}^{3}=O\left(p^{-1 / 2}\right)
$$

Since $\tilde{A}_{1 i}$ and $\tilde{A}_{1 j}$ are independent for $i \neq j$, we have

$$
\sigma_{i j}=\mathbb{E} A_{1 i} A_{1 j}=\mathbb{E} \tilde{A}_{1 i} \cdot \mathbb{E} \tilde{A}_{1 j}+O\left(p^{-1}\right)=O\left(p^{-1}\right) .
$$

By using the above estimations, for $i \neq j \neq i^{\prime} \neq j^{\prime}$, we have

$$
\begin{gathered}
\mathbb{E} A_{1 i} A_{1 j} A_{1 i^{\prime}} A_{1 j^{\prime}}=\mathbb{E} \tilde{A}_{1 i} \cdot \mathbb{E} \tilde{A}_{1 j} \cdot \mathbb{E} \tilde{A}_{1 i^{\prime}} \cdot \mathbb{E} \tilde{A}_{1 j^{\prime}}+O\left(p^{-2}\right)=O\left(p^{-2}\right), \\
\mathbb{E} A_{1 i}^{2} A_{1 i^{\prime}} A_{1 j^{\prime}}=\mathbb{E}\left[A_{1 i}^{2}\left\{\tilde{A}_{1 i^{\prime}}+O\left(p^{-1 / 2}\right)\right\}\left\{\tilde{A}_{1 j^{\prime}}+O\left(p^{-1 / 2}\right)\right\}\right]
\end{gathered}
$$

$$
\begin{aligned}
& =\mathbb{E} A_{1 i}^{2} \cdot \mathbb{E} \tilde{A}_{1 i^{\prime}} \cdot \mathbb{E} \tilde{A}_{1 j^{\prime}}+O\left(p^{-1}\right)=O\left(p^{-1}\right), \\
& \\
& \quad \mathbb{E} A_{1 i}^{3} A_{1 j}=\mathbb{E}\left[\left\{\tilde{A}_{1 i}+O\left(p^{-1 / 2}\right)\right\}^{3}\left\{\tilde{A}_{1 j}+O\left(p^{-1 / 2}\right)\right\}\right] \\
& =\mathbb{E}\left[\left\{\tilde{A}_{1 i}^{3}+O\left(p^{-1 / 2}\right) \cdot \tilde{A}_{1 i}^{2}+O\left(p^{-1}\right) \cdot \tilde{A}_{1 i}+O\left(p^{-3 / 2}\right)\right\}\left\{\tilde{A}_{1 j}+O\left(p^{-1 / 2}\right)\right\}\right] \\
& =O\left(p^{-1}\right), \\
& \\
& \mathbb{E}\left(A_{1 i}^{2}-\sigma_{i i}\right)\left(A_{1 j}^{2}-\sigma_{j j}\right) \\
& =\mathbb{E}\left[\left\{\tilde{A}_{1 i}^{2}-\sigma_{i i}+O\left(p^{-1 / 2}\right) \cdot \tilde{A}_{1 i}+O\left(p^{-1}\right)\right\}\left\{\tilde{A}_{1 j}^{2}-\sigma_{j j}+O\left(p^{-1 / 2}\right) \cdot \tilde{A}_{1 j}+O\left(p^{-1}\right)\right\}\right] \\
& =O\left(p^{-2}\right) .
\end{aligned}
$$

These equations complete the proofs of (41) and (42).

B. 6 Proof of Lemma A. 10

Throughout this proof, $\Omega_{K}(\lambda, \mathbf{X})$ is simply denoted as $\boldsymbol{\Omega}_{K}(\mathbf{X})$ if no confusion. Recall that $\mathbf{X}=$ $\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)^{\top}$ and $\mathbf{Y}=\left(\mathbf{y}_{1}, \ldots, \mathbf{y}_{n}\right)^{\top}$. We denote

$$
\mathbf{X}_{i}=\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{i}, \mathbf{y}_{i+1}, \ldots, \mathbf{y}_{n}\right)^{\top}, \quad \mathbf{X}_{i 0}=\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{i-1}, \mathbf{y}_{i+1}, \ldots, \mathbf{y}_{n}\right)^{\top},
$$

with convention $\mathbf{X}=\mathbf{X}_{n}$ and $\mathbf{Y}=\mathbf{X}_{0}$. Using the Sherman-Morrison formula, we obtain

$$
\begin{aligned}
& \boldsymbol{\Omega}_{K}\left(\mathbf{X}_{i}\right)-\boldsymbol{\Omega}_{K}\left(\mathbf{X}_{i 0}\right) \\
= & \frac{1}{\beta_{i} \sqrt{n}}\left\{\left(1+n^{-1} \mathbf{x}_{i}^{\top} \mathbf{H}_{2} \mathbf{x}_{i}\right) \mathbf{I}_{K}-\mathbf{U}_{1}^{\top}\left(\mathbf{I}_{p}+\mathbf{H}_{1}\right) \mathbf{x}_{i} \mathbf{x}_{i}^{\top}\left(\mathbf{I}_{p}+\mathbf{H}_{1}\right)^{\top} \mathbf{U}_{1}\right\} \\
= & \frac{1}{\beta_{i 0} \sqrt{n}}\left(\boldsymbol{\tau}_{i 0}+\boldsymbol{\tau}_{i}\right)-\frac{\varepsilon_{i}}{\beta_{i 0}^{2} \sqrt{n}}\left(\boldsymbol{\tau}_{i 0}+\boldsymbol{\tau}_{i}\right)+\frac{\varepsilon_{i}^{2}}{\beta_{i 0}^{2} \beta_{i} \sqrt{n}}\left(\boldsymbol{\tau}_{i 0}+\boldsymbol{\tau}_{i}\right),
\end{aligned}
$$

where β_{i} and $\beta_{i 0}$ are defined in (14) and (15), and

$$
\begin{align*}
\mathbf{H}_{1} & =n^{-1} \mathbf{X}_{i 0}^{\top}\left(\lambda \mathbf{I}_{n-1}-n^{-1} \mathbf{X}_{i 0} \boldsymbol{\Gamma} \mathbf{X}_{i 0}^{\top}\right)^{-1} \mathbf{X}_{i 0} \boldsymbol{\Gamma}, \\
\mathbf{H}_{2} & =n^{-1} \boldsymbol{\Gamma} \mathbf{X}_{i 0}^{\top}\left(\lambda \mathbf{I}_{n-1}-n^{-1} \mathbf{X}_{i 0} \boldsymbol{\Gamma} \mathbf{X}_{i 0}^{\top}\right)^{-2} \mathbf{X}_{i 0} \boldsymbol{\Gamma}, \\
\boldsymbol{\tau}_{i 0} & =\left(1+n^{-1} \operatorname{tr} \mathbf{H}_{2}\right) \mathbf{I}_{K}-\mathbf{U}_{1}^{\top}\left(\mathbf{I}_{p}+\mathbf{H}_{1}\right)\left(\mathbf{I}_{p}+\mathbf{H}_{1}\right)^{\top} \mathbf{U}_{1}, \tag{43}\\
\boldsymbol{\tau}_{i} & =n^{-1}\left(\mathbf{x}_{i}^{\top} \mathbf{H}_{2} \mathbf{x}_{i}-\operatorname{tr}_{\mathbf{H}}^{2}\right) \mathbf{I}_{K}-\mathbf{U}_{1}^{\top}\left(\mathbf{I}_{p}+\mathbf{H}_{1}\right)\left(\mathbf{x}_{i} \mathbf{x}_{i}^{\top}-\mathbf{I}_{p}\right)\left(\mathbf{I}_{p}+\mathbf{H}_{1}\right)^{\top} \mathbf{U}_{1} . \tag{44}
\end{align*}
$$

Similarly, we have

$$
\begin{aligned}
& \boldsymbol{\Omega}_{K}\left(\mathbf{X}_{i-1}\right)-\boldsymbol{\Omega}_{K}\left(\mathbf{X}_{i 0}\right) \\
= & \frac{1}{\beta_{i 0} \sqrt{n}}\left(\boldsymbol{\tau}_{i 0}+\boldsymbol{\tau}_{i y}\right)-\frac{\varepsilon_{i y}}{\beta_{i 0}^{2} \sqrt{n}}\left(\boldsymbol{\tau}_{i 0}+\boldsymbol{\tau}_{i y}\right)+\frac{\varepsilon_{i y}^{2}}{\beta_{i 0}^{2} \beta_{i y} \sqrt{n}}\left(\boldsymbol{\tau}_{i 0}+\boldsymbol{\tau}_{i y}\right),
\end{aligned}
$$

where $\beta_{i y}, \boldsymbol{\tau}_{i y}$, and $\varepsilon_{i y}$ are similarly defined as $\beta_{i}, \boldsymbol{\tau}_{i}$, and ε_{i} with \mathbf{x}_{i} replaced by \mathbf{y}_{i}.
Now, we begin to prove that $\boldsymbol{\Omega}_{K}(\mathbf{X})$ and $\Omega_{K}(\mathbf{Y})$ have the same limiting distribution. To this end, we show that the difference between the characteristic functions tends to zero, that is, for any $K \times K$ deterministic symmetric matrix \mathbf{W},

$$
\mathbb{E}\left(\exp \left[\operatorname{itr}\left\{\mathbf{W} \boldsymbol{\Omega}_{K}(\mathbf{X})\right\}\right]\right)-\mathbb{E}\left(\exp \left[\operatorname{itr}\left\{\mathbf{W} \boldsymbol{\Omega}_{K}(\mathbf{Y})\right\}\right]\right) \rightarrow 0
$$

where $\mathrm{i}=\sqrt{-1}$. Using the notations we introduced above, we can write

$$
\begin{array}{rl}
& \mathbb{E}\left(\exp \left[\operatorname{itr}\left\{\mathbf{W} \boldsymbol{\Omega}_{K}(\mathbf{X})\right\}\right]\right)-\mathbb{E}\left(\exp \left[\mathrm{itr}\left\{\mathbf{W} \boldsymbol{\Omega}_{K}(\mathbf{Y})\right\}\right]\right) \\
=\sum_{i=1}^{n} & \mathbb{E} \exp \left(\operatorname{itr}\left[\mathbf{W}\left\{\boldsymbol{\Omega}_{K}\left(\mathbf{X}_{i 0}\right)+\frac{\boldsymbol{\tau}_{i 0}}{\beta_{i 0} \sqrt{n}}\right\}\right]\right)\left\{\mathbb{E}_{i} \exp \left(\operatorname{itr}\left[\mathbf{W}\left\{\frac{\boldsymbol{\tau}_{i}}{\beta_{i 0} \sqrt{n}}-\frac{\left(\boldsymbol{\tau}_{i 0}+\boldsymbol{\tau}_{i}\right) \varepsilon_{i}}{\beta_{i 0}^{2} \sqrt{n}}\right\}\right]\right)\right. \\
& \left.\quad-\mathbb{E}_{i} \exp \left(\mathrm{i} \operatorname{tr}\left[\mathbf{W}\left\{\frac{\boldsymbol{\tau}_{i y}}{\beta_{i 0} \sqrt{n}}-\frac{\left(\boldsymbol{\tau}_{i 0}+\boldsymbol{\tau}_{i y}\right) \varepsilon_{i y}}{\beta_{i 0}^{2} \sqrt{n}}\right\}\right]\right)\right\} \\
+ & \sum_{i=1}^{n} \mathbb{E} \exp \left(\mathrm{itr}\left[\mathbf{W}\left\{\boldsymbol{\Omega}_{K}\left(\mathbf{X}_{i 0}\right)+\frac{\boldsymbol{\tau}_{i 0}}{\beta_{i 0} \sqrt{n}}\right\}\right]\right) \\
& \left\{\mathbb{E}_{i} \exp \left(\operatorname{itr}\left[\mathbf{W}\left\{\frac{\boldsymbol{\tau}_{i}}{\beta_{i 0} \sqrt{n}}-\frac{\left(\boldsymbol{\tau}_{i 0}+\boldsymbol{\tau}_{i}\right) \varepsilon_{i}}{\beta_{i 0}^{2} \sqrt{n}}\right\}\right]\right)\left(\exp \left[\operatorname{itr}\left\{\frac{\mathbf{W}\left(\boldsymbol{\tau}_{i 0}+\boldsymbol{\tau}_{i}\right) \varepsilon_{i}^{2}}{\beta_{i 0}^{2} \beta_{i} \sqrt{n}}\right\}\right]-1\right)\right. \\
& \left.\quad \mathbb{E}_{i} \exp \left(\mathrm{itr}\left[\mathbf{W}\left\{\frac{\boldsymbol{\tau}_{i y}}{\beta_{i 0} \sqrt{n}}-\frac{\left(\boldsymbol{\tau}_{i 0}+\boldsymbol{\tau}_{i y}\right) \varepsilon_{i y}}{\beta_{i 0}^{2} \sqrt{n}}\right\}\right]\right)\left(\exp \left[\mathrm{itr}\left\{\frac{\mathbf{W}\left(\boldsymbol{\tau}_{i 0}+\boldsymbol{\tau}_{i y}\right) \varepsilon_{i y}^{2}}{\beta_{i 0}^{2} \beta_{i y} \sqrt{n}}\right\}\right]-1\right)\right\},
\end{array}
$$

where $\mathbb{E}_{i}(\cdot):=\mathbb{E}\left(\cdot \mid \mathbf{X}_{i 0}\right)$ denotes the conditional expectation given $\mathbf{X}_{i 0}$. The second term on the RHS of the above identity can be shown to be negligible by using the same argument as in (Jiang and Bai, 2021b, p. 16) and our Lemma A.7. Hence, we have

$$
\begin{array}{rl}
& \mathbb{E}\left(\exp \left[\operatorname{itr}\left\{\mathbf{W} \boldsymbol{\Omega}_{K}(\mathbf{X})\right\}\right]\right)-\mathbb{E}\left(\exp \left[\mathrm{i} \operatorname{tr}\left\{\mathbf{W} \boldsymbol{\Omega}_{K}(\mathbf{Y})\right\}\right]\right) \\
=\sum_{i=1}^{n} & \mathbb{E} \exp \left(\operatorname{itr}\left[\mathbf{W}\left\{\boldsymbol{\Omega}_{K}\left(\mathbf{X}_{i 0}\right)+\frac{\boldsymbol{\tau}_{i 0}}{\beta_{i 0} \sqrt{n}}\right\}\right]\right) \cdot\left\{\mathbb{E}_{i} \exp \left(\operatorname{itr}\left[\mathbf{W}\left\{\frac{\boldsymbol{\tau}_{i}}{\beta_{i 0} \sqrt{n}}-\frac{\left(\boldsymbol{\tau}_{i 0}+\boldsymbol{\tau}_{i}\right) \varepsilon_{i}}{\beta_{i 0}^{2} \sqrt{n}}\right\}\right]\right)\right. \\
& \left.-\mathbb{E}_{i} \exp \left(\operatorname{itr}\left[\mathbf{W}\left\{\frac{\boldsymbol{\tau}_{i y}}{\beta_{i 0} \sqrt{n}}-\frac{\left(\boldsymbol{\tau}_{i 0}+\boldsymbol{\tau}_{i y}\right) \varepsilon_{i y}}{\beta_{i 0}^{2} \sqrt{n}}\right\}\right]\right)\right\}+o(1) .
\end{array}
$$

Moreover, by using the same argument, we obtain

$$
\begin{array}{rl}
& \mathbb{E}\left(\exp \left[\operatorname{itr}\left\{\mathbf{W} \boldsymbol{\Omega}_{K}(\mathbf{X})\right\}\right]\right)-\mathbb{E}\left(\exp \left[i \operatorname{tr}\left\{\mathbf{W} \boldsymbol{\Omega}_{K}(\mathbf{Y})\right\}\right]\right) \\
=\sum_{i=1}^{n} & \mathbb{E} \exp \left(\operatorname{itr}\left[\mathbf{W}\left\{\boldsymbol{\Omega}_{K}\left(\mathbf{X}_{i 0}\right)+\frac{\boldsymbol{\tau}_{i 0}}{\beta_{i 0} \sqrt{n}}\right\}\right]\right) \cdot\left(\mathbb{E}_{i} \exp \left[\operatorname{itr}\left\{\mathbf{W}\left(\frac{\boldsymbol{\tau}_{i}}{\beta_{i 0} \sqrt{n}}-\frac{\boldsymbol{\tau}_{i 0} \varepsilon_{i}}{\beta_{i 0}^{2} \sqrt{n}}\right)\right\}\right]\right. \\
& \left.-\mathbb{E}_{i} \exp \left[\operatorname{itr}\left\{\mathbf{W}\left(\frac{\boldsymbol{\tau}_{i y}}{\beta_{i 0} \sqrt{n}}-\frac{\boldsymbol{\tau}_{i 0} \varepsilon_{i y}}{\beta_{i 0}^{2} \sqrt{n}}\right)\right\}\right]\right)+o(1) .
\end{array}
$$

This, together with Taylor's expansion, gives us

$$
\begin{aligned}
& \mathbb{E}\left(\exp \left[\operatorname{itr}\left\{\mathbf{W} \boldsymbol{\Omega}_{K}(\mathbf{X})\right\}\right]\right)-\mathbb{E}\left(\exp \left[\operatorname{itr}\left\{\mathbf{W} \boldsymbol{\Omega}_{K}(\mathbf{Y})\right\}\right]\right) \\
\leqslant & \left\lvert\, \sum_{i=1}^{n} \mathbb{E} \exp \left(\operatorname{itr}\left[\mathbf{W}\left\{\boldsymbol{\Omega}_{K}\left(\mathbf{X}_{i 0}\right)+\frac{\boldsymbol{\tau}_{i 0}}{\beta_{i 0} \sqrt{n}}\right\}\right]\right) \times\right. \\
& C\left\{\mathbb{E}_{i}\left(1+\operatorname{itr}\left\{\mathbf{W}\left(\frac{\boldsymbol{\tau}_{i}}{\beta_{i 0} \sqrt{n}}-\frac{\boldsymbol{\tau}_{i 0} \varepsilon_{i}}{\beta_{i 0}^{2} \sqrt{n}}\right)\right\}-\frac{1}{2}\left[\operatorname{tr}\left\{\mathbf{W}\left(\frac{\boldsymbol{\tau}_{i}}{\beta_{i 0} \sqrt{n}}-\frac{\boldsymbol{\tau}_{i 0} \varepsilon_{i}}{\beta_{i 0}^{2} \sqrt{n}}\right)\right\}\right]^{2}+o\left(n^{-1}\right)\right)\right. \\
& \left.\quad-\mathbb{E}_{i}\left(1+\operatorname{itr}\left\{\mathbf{W}\left(\frac{\boldsymbol{\tau}_{i y}}{\beta_{i 0} \sqrt{n}}-\frac{\boldsymbol{\tau}_{i 0} \varepsilon_{i y}}{\beta_{i 0}^{2} \sqrt{n}}\right)\right\}-\frac{1}{2}\left[\operatorname{tr}\left\{\mathbf{W}\left(\frac{\boldsymbol{\tau}_{i y}}{\beta_{i 0} \sqrt{n}}-\frac{\boldsymbol{\tau}_{i 0} \varepsilon_{i y}}{\beta_{i 0}^{2} \sqrt{n}}\right)\right\}\right]^{2}+o\left(n^{-1}\right)\right)\right\} \mid \\
= & o(1),
\end{aligned}
$$

where we use some facts as follows:

$$
\begin{align*}
& \mathbb{E}_{i} \operatorname{tr}\left\{\mathbf{W}\left(\frac{\boldsymbol{\tau}_{i}}{\beta_{i 0} \sqrt{n}}-\frac{\boldsymbol{\tau}_{i 0} \varepsilon_{i}}{\beta_{i 0}^{2} \sqrt{n}}\right)\right\}=\mathbb{E}_{i} \operatorname{tr}\left\{\mathbf{W}\left(\frac{\boldsymbol{\tau}_{i y}}{\beta_{i 0} \sqrt{n}}-\frac{\boldsymbol{\tau}_{i 0} \varepsilon_{i y}}{\beta_{i 0}^{2} \sqrt{n}}\right)\right\}=0, \\
& \mathbb{E}_{i}\left[\operatorname{tr}\left\{\mathbf{W}\left(\frac{\boldsymbol{\tau}_{i}}{\beta_{i 0} \sqrt{n}}-\frac{\boldsymbol{\tau}_{i 0} \varepsilon_{i}}{\beta_{i 0}^{2} \sqrt{n}}\right)\right\}\right]^{2}-\mathbb{E}_{i}\left[\operatorname{tr}\left\{\mathbf{W}\left(\frac{\boldsymbol{\tau}_{i y}}{\beta_{i 0} \sqrt{n}}-\frac{\boldsymbol{\tau}_{i 0} \varepsilon_{i y}}{\beta_{i 0}^{2} \sqrt{n}}\right)\right\}\right]^{2}=o\left(n^{-1}\right) . \tag{45}
\end{align*}
$$

Finally, it remains to prove (45). Note that

$$
\begin{aligned}
& {\left[\operatorname{tr}\left\{\mathbf{W}\left(\frac{\boldsymbol{\tau}_{i}}{\beta_{i 0} \sqrt{n}}-\frac{\boldsymbol{\tau}_{i 0} \varepsilon_{i}}{\beta_{i 0}^{2} \sqrt{n}}\right)\right\}\right]^{2} } \\
= & \frac{1}{n}\left[\frac{1}{\beta_{i 0}^{2}}\left\{\operatorname{tr}\left(\mathbf{W} \boldsymbol{\tau}_{i}\right)\right\}^{2}-\frac{2 \varepsilon_{i}}{\beta_{i 0}^{3}} \operatorname{tr}\left(\mathbf{W} \boldsymbol{\tau}_{i}\right) \operatorname{tr}\left(\mathbf{W} \boldsymbol{\tau}_{i 0}\right)+\frac{\varepsilon_{i}^{2}}{\beta_{i 0}^{4}}\left\{\operatorname{tr}\left(\mathbf{W} \boldsymbol{\tau}_{i 0}\right)\right\}^{2}\right],
\end{aligned}
$$

and from Lemma A.7, we have

$$
\begin{aligned}
& \frac{1}{\beta_{i 0}^{3}} \mathbb{E}\left\{\operatorname{tr}\left(\mathbf{W} \boldsymbol{\tau}_{i}\right) \operatorname{tr}\left(\mathbf{W} \boldsymbol{\tau}_{i 0} \varepsilon_{i}\right)\right\} \asymp \mathbb{E} \varepsilon_{i}=o(1), \\
& \frac{1}{\beta_{i 0}^{4}} \mathbb{E}\left[\left\{\operatorname{tr}\left(\mathbf{W} \boldsymbol{\tau}_{i 0}\right)\right\}^{2} \varepsilon_{i}^{2}\right] \asymp \mathbb{E} \varepsilon_{i}^{2}=o(1) .
\end{aligned}
$$

Since \mathbf{X} and \mathbf{Y} satisfy (B1) - (B4), by using above estimates and Lemma A.7, we obtain

$$
\begin{aligned}
& \mathbb{E}_{i}\left[\operatorname{tr}\left\{\mathbf{W}\left(\frac{\boldsymbol{\tau}_{i}}{\beta_{i 0} \sqrt{n}}-\frac{\boldsymbol{\tau}_{i 0} \varepsilon_{i}}{\beta_{i 0}^{2} \sqrt{n}}\right)\right\}\right]^{2}-\mathbb{E}_{i}\left[\operatorname{tr}\left\{\mathbf{W}\left(\frac{\boldsymbol{\tau}_{i y}}{\beta_{i 0} \sqrt{n}}-\frac{\boldsymbol{\tau}_{i 0} \varepsilon_{i y}}{\beta_{i 0}^{2} \sqrt{n}}\right)\right\}\right]^{2} \\
= & \frac{1}{n} \mathbb{E}_{i}\left(\frac{1}{\beta_{i 0}^{2}}\left[\left\{\operatorname{tr}\left(\mathbf{W} \boldsymbol{\tau}_{i}\right)\right\}^{2}-\left\{\operatorname{tr}\left(\mathbf{W} \boldsymbol{\tau}_{i y}\right)\right\}^{2}\right]+o(1)\right)=o\left(n^{-1}\right),
\end{aligned}
$$

which is (45), completing the proof of Lemma A.10.

C Proofs of Theorems 2.5 and 2.8

C. 1 Proof of Theorem 2.5

From Lemma 2.2, we investigate the phase-transition theory of spiked eigenvalues of ρ_{n} by those of $\mathbf{W}_{n}=(3 / n) \sum_{i=1}^{n} \mathbf{A}_{i} \mathbf{A}_{i}^{\top}$. Recall that $\Sigma_{\rho}=\mathbb{E} \mathbf{W}_{n}$. Define the spectral decomposition of $\Sigma_{\rho}^{1 / 2}$ as

$$
\Sigma_{\rho}^{1 / 2}=\mathbf{U}\left(\begin{array}{cc}
\mathbf{D}_{1}^{1 / 2} & \mathbf{0} \\
\mathbf{0} & \mathbf{D}_{2}^{1 / 2}
\end{array}\right) \mathbf{U}^{\top},
$$

where \mathbf{U} is a $p \times p$ orthogonal matrix, \mathbf{D}_{1} is the diagonal matrix consisting of the K spiked population eigenvalues, and \mathbf{D}_{2} is the diagonal matrix consisting of the remaining $p-K$ non-spiked eigenvalues. Let $\widetilde{\mathbf{A}}_{i}:=\sqrt{3} \Sigma_{\rho}^{-1 / 2} \mathbf{A}_{i}$ denote a transformed version of $\sqrt{3} \mathbf{A}_{i}$. It is obvious that $\widetilde{\mathbf{A}}_{i}$ is isotropic, that is, $\operatorname{Cov}\left(\widetilde{\mathbf{A}}_{i}\right)=\mathbf{I}_{p}$. By using these notations and the spectral decomposition of $\Sigma_{\rho}^{1 / 2}$, we can write the characteristic equation as

$$
0=\left|\lambda \mathbf{I}_{p}-\mathbf{W}_{n}\right|=\left|\lambda \mathbf{I}_{p}-\mathbf{U}\left(\begin{array}{cc}
\mathbf{D}_{1}^{1 / 2} & \tag{46}\\
& \mathbf{D}_{2}^{1 / 2}
\end{array}\right) \mathbf{U}^{\top} \widetilde{\mathbf{W}}_{n} \mathbf{U}\left(\begin{array}{ll}
\mathbf{D}_{1}^{1 / 2} & \\
& \mathbf{D}_{2}^{1 / 2}
\end{array}\right) \mathbf{U}^{\top}\right|,
$$

where $\widetilde{\mathbf{W}}_{n}:=n^{-1} \mathcal{A}^{\top} \mathcal{A}$ with $\mathcal{A}:=\left(\widetilde{\mathbf{A}}_{1}, \ldots, \widetilde{\mathbf{A}}_{n}\right)^{\top}$. Let $\mathbf{Q}=\mathbf{U}^{\top} \widetilde{\mathbf{W}}_{n} \mathbf{U}$ and partition it as

$$
\mathbf{Q}=\left(\begin{array}{ll}
\mathbf{Q}_{11} & \mathbf{Q}_{12} \\
\mathbf{Q}_{21} & \mathbf{Q}_{22}
\end{array}\right)=\left(\begin{array}{ll}
\mathbf{U}_{1}^{\top} \widetilde{\mathbf{W}}_{n} \mathbf{U}_{1} & \mathbf{U}_{1}^{\top} \widetilde{\mathbf{W}}_{n} \mathbf{U}_{2} \\
\mathbf{U}_{2}^{\top} \widetilde{\mathbf{W}}_{n} \mathbf{U}_{1} & \mathbf{U}_{2}^{\top} \widetilde{\mathbf{W}}_{n} \mathbf{U}_{2}
\end{array}\right),
$$

where \mathbf{U}_{1} is the submatrix formed by the first K columns of \mathbf{U}, and \mathbf{U}_{2} is the remaining submatrix. Plugging this identity into (46) yields that

$$
\begin{aligned}
0= & \left|\lambda \mathbf{I}_{p}-\left(\begin{array}{ll}
\mathbf{D}_{1}^{1 / 2} \mathbf{Q}_{11} \mathbf{D}_{1}^{1 / 2} & \mathbf{D}_{1}^{1 / 2} \mathbf{Q}_{12} \mathbf{D}_{2}^{1 / 2} \\
\mathbf{D}_{2}^{1 / 2} \mathbf{Q}_{21} \mathbf{D}_{1}^{1 / 2} & \mathbf{D}_{2}^{1 / 2} \mathbf{Q}_{22} \mathbf{D}_{2}^{1 / 2}
\end{array}\right)\right| \\
= & \left|\lambda \mathbf{I}_{p-K}-\mathbf{D}_{2}^{1 / 2} \mathbf{Q}_{22} \mathbf{D}_{2}^{1 / 2}\right| \\
& \times\left|\lambda \mathbf{I}_{K}-\mathbf{D}_{1}^{1 / 2} \mathbf{Q}_{11} \mathbf{D}_{1}^{1 / 2}-\mathbf{D}_{1}^{1 / 2} \mathbf{Q}_{12} \mathbf{D}_{2}^{1 / 2}\left(\lambda \mathbf{I}_{p-K}-\mathbf{D}_{2}^{1 / 2} \mathbf{Q}_{22} \mathbf{D}_{2}^{1 / 2}\right)^{-1} \mathbf{D}_{2}^{1 / 2} \mathbf{Q}_{21} \mathbf{D}_{1}^{1 / 2}\right|,
\end{aligned}
$$

where the last equality follows from the formula $\operatorname{det}\left(\begin{array}{ll}\mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D}\end{array}\right)=\operatorname{det}\left(\mathbf{A}-\mathbf{B D}^{-1} \mathbf{C}\right) \cdot \operatorname{det}(\mathbf{D})$. Since we only consider the spiked eigenvalues, we have $\left|\lambda \mathbf{I}_{p-K}-\mathbf{D}_{2}^{1 / 2} \mathbf{Q}_{22} \mathbf{D}_{2}^{1 / 2}\right| \neq 0$, and

$$
\begin{align*}
0 & =\left|\lambda \mathbf{D}_{1}^{-1}-\mathbf{Q}_{11}-\mathbf{Q}_{12} \mathbf{D}_{2}^{1 / 2}\left(\lambda \mathbf{I}_{p-K}-\mathbf{D}_{2}^{1 / 2} \mathbf{Q}_{22} \mathbf{D}_{2}^{1 / 2}\right)^{-1} \mathbf{D}_{2}^{1 / 2} \mathbf{Q}_{21}\right| \\
& =\left|\lambda \mathbf{D}_{1}^{-1}-\frac{1}{n} \mathbf{U}_{1}^{\top} \mathcal{A}^{\top}\left[\mathbf{I}_{n}+\frac{1}{n} \mathcal{A} \mathbf{U}_{2} \mathbf{D}_{2}^{1 / 2}\left(\lambda \mathbf{I}_{p-K}-\frac{1}{n} \mathbf{D}_{2}^{1 / 2} \mathbf{U}_{2}^{\top} \mathcal{A}^{\top} \mathcal{A} \mathbf{U}_{2} \mathbf{D}_{2}^{1 / 2}\right)^{-1} \mathbf{D}_{2}^{1 / 2} \mathbf{U}_{2}^{\top} \mathcal{A}^{\top}\right] \mathcal{A} \mathbf{U}_{1}\right| \\
& =\left|\lambda \mathbf{D}_{1}^{-1}-\frac{\lambda}{n} \mathbf{U}_{1}^{\top} \mathcal{A}^{\top}\left(\lambda \mathbf{I}_{n}-\frac{1}{n} \mathcal{A} \mathbf{U}_{2} \mathbf{D}_{2} \mathbf{U}_{2}^{\top} \mathcal{A}^{\top}\right)^{-1} \mathcal{A} \mathbf{U}_{1}\right| \\
& =\left|\lambda \mathbf{D}_{1}^{-1}-\frac{\lambda}{n} \operatorname{tr}\left\{\left(\lambda \mathbf{I}_{n}-\frac{1}{n} \mathcal{A} \boldsymbol{\Gamma} \mathcal{A}^{\top}\right)^{-1}\right\} \mathbf{I}_{K}+n^{-1 / 2} \mathbf{\Omega}_{K}(\lambda, \mathcal{A})\right|, \tag{47}
\end{align*}
$$

where $\boldsymbol{\Gamma}=\mathbf{U}_{2} \mathbf{D}_{2} \mathbf{U}_{2}^{\top}$ and

$$
\begin{equation*}
\mathbf{\Omega}_{K}(\lambda, \mathcal{A})=\frac{\lambda}{\sqrt{n}}\left[\operatorname{tr}\left\{\left(\lambda \mathbf{I}_{n}-\frac{1}{n} \mathcal{A} \boldsymbol{\Gamma} \mathcal{A}^{\top}\right)^{-1}\right\} \mathbf{I}_{K}-\mathbf{U}_{1}^{\top} \mathcal{A}^{\top}\left(\lambda \mathbf{I}_{n}-\frac{1}{n} \mathcal{A} \Gamma \mathcal{A}^{\top}\right)^{-1} \mathcal{A} \mathbf{U}_{1}\right] \tag{48}
\end{equation*}
$$

From Lemma A. 10 and Remark A.11, if $\widetilde{\mathbf{A}}_{i}$ satisfies Assumptions (B1) - (B4), we can replace entries of \mathcal{A} in (47) by the standard Gaussian entries without changing the phase-transition theory of the spiked eigenvalues. Then, our Theorem 2.5 follows from Lemma 3.1 and Theorems 4.1 - 4.2 in Bai and Yao (2012).

It remains to prove that random vector $\widetilde{\mathbf{A}}_{i}$ satisfies Assumptions (B1) - (B4), which shows that our Lemma A. 10 applies. It is obvious that $\widetilde{\mathbf{A}}_{i}$ satisfies Assumption (B1). By using Lemma 2.3, we conclude that $\liminf _{p \rightarrow \infty} \lambda_{p}\left(\Sigma_{\rho}^{1 / 2}\right)>0$, and thus $\Sigma_{\rho}^{-1 / 2}$ is bounded in spectral norm. Combining this information and the fact that each component of the random vector \mathbf{A}_{i} follows Uniform($-1,1$) distribution, we conclude that each component of the random vector $\widetilde{\mathbf{A}}_{i}$ has bounded fourth moment. This, together with Lemma 2.3 and similar calculations in Section B.5.1, implies that $\widetilde{\mathbf{A}}_{i}$ satisfies the moment condition (B2). From (37) and the fact that $\left\|\Sigma_{\rho}^{-1 / 2}\right\|_{2}=O(1)$, we have, for any $p \times p$ symmetry matrix \mathbf{T} with bounded spectral norm, $\operatorname{Var}\left(\widetilde{\mathbf{A}}_{i}^{\top} \mathbf{T} \widetilde{\mathbf{A}}_{i}\right)=\operatorname{Var}\left(3 \mathbf{A}_{i}^{\top} \boldsymbol{\Sigma}_{\rho}^{-1 / 2} \mathbf{T} \boldsymbol{\Sigma}_{\rho}^{-1 / 2} \mathbf{A}_{i}\right)=o\left(p^{2}\right)$. Hence, $\widetilde{\mathbf{A}}_{i}$ satisfies Assumption (B3). By Assumptions (A3) and (A4), Lemma 2.3, and the fact that each component of \mathbf{A}_{i} follows Uniform($-1,1$), we conclude that each component of $\widetilde{\mathbf{A}}_{i}$ is bounded, and thus satisfies the concentration assumption (B4), according to Lemma A.3. Therefore, the random vector $\widetilde{\mathbf{A}}_{i}$ satisfies Assumptions (B1) - (B4), which shows that our Lemma A. 10 applies. This completes the proof of Theorem 2.5.

C. 2 Proof of Theorem 2.8

From Theorem 2.5, we have, with probability one,

$$
\begin{aligned}
\widehat{m}_{n, j}^{\prime}\left(\lambda_{j}\left(\boldsymbol{\rho}_{n}\right)\right) & =\frac{1}{p-j} \sum_{\ell=j+1}^{p} \frac{1}{\left\{\lambda_{j}\left(\boldsymbol{\rho}_{n}\right)-\lambda_{\ell}\left(\boldsymbol{\rho}_{n}\right)\right\}^{2}} \\
& \leqslant \frac{1}{\left\{\lambda_{j}\left(\boldsymbol{\rho}_{n}\right)-\lambda_{j+1}\left(\boldsymbol{\rho}_{n}\right)\right\}^{2}} \rightarrow\left\{\psi\left(\lambda_{j}\left(\Sigma_{\rho}\right)\right)-\psi\left(\lambda_{j+1}\left(\Sigma_{\rho}\right)\right)\right\}^{-2} \asymp 1,
\end{aligned}
$$

for any $j \in\left[K_{0}\right]$, where the function $\psi(\cdot)$ is defined in Theorem 2.5. Thus,

$$
\begin{equation*}
\frac{\widehat{m}_{n, j+1}^{\prime}\left(\lambda_{j+1}\left(\rho_{n}\right)\right)}{\widehat{m}_{n, j}^{\prime}\left(\lambda_{j}\left(\rho_{n}\right)\right)} \asymp 1, \quad \text { for } j \in\left[K_{0}-1\right] \tag{49}
\end{equation*}
$$

The eigenvalues $\left\{\lambda_{j}\left(\boldsymbol{\rho}_{n}\right), K_{0}+1 \leqslant j \leqslant K_{\max }\right\}$ are bulk eigenvalues, and then we have $\lambda_{j}\left(\boldsymbol{\rho}_{n}\right)$ -$\lambda_{j+1}\left(\boldsymbol{\rho}_{n}\right)=O\left(p^{-1}\right)$. Thus, for $K_{0}+1 \leqslant j \leqslant K_{\max }$, we obtain

$$
\widehat{m}_{n, j}^{\prime}\left(\lambda_{j}\left(\boldsymbol{\rho}_{n}\right)\right)=\frac{1}{p-j} \sum_{\ell=j+1}^{p} \frac{1}{\left\{\lambda_{j}\left(\boldsymbol{\rho}_{n}\right)-\lambda_{\ell}\left(\boldsymbol{\rho}_{n}\right)\right\}^{2}} \geqslant \frac{1}{p-j} \frac{1}{\left\{\lambda_{j}\left(\boldsymbol{\rho}_{n}\right)-\lambda_{j+1}\left(\boldsymbol{\rho}_{n}\right)\right\}^{2}}=O(p) .
$$

Therefore,

$$
\begin{equation*}
\frac{\widehat{m}_{n, K_{0}+1}^{\prime}\left(\lambda_{K_{0}+1}\left(\rho_{n}\right)\right)}{\widehat{m}_{n, K_{0}}^{\prime}\left(\lambda_{K_{0}}\left(\rho_{n}\right)\right)} \rightarrow \infty . \tag{50}
\end{equation*}
$$

Moreover, for $K_{0}+1 \leqslant j \leqslant K_{\max }$, we have

$$
\begin{align*}
\frac{\widehat{m}_{n, j+1}^{\prime}\left(\lambda_{j+1}\left(\rho_{n}\right)\right)}{\widehat{m}_{n, j}^{\prime}\left(\lambda_{j}\left(\rho_{n}\right)\right)} & =\frac{p-j}{p-j-1} \frac{\sum_{\ell=j+2}^{p}\left\{\lambda_{j+1}\left(\boldsymbol{\rho}_{n}\right)-\lambda_{\ell}\left(\boldsymbol{\rho}_{n}\right)\right\}^{-2}}{\sum_{\ell=j+1}^{p}\left\{\lambda_{j}\left(\rho_{n}\right)-\lambda_{\ell}\left(\rho_{n}\right)\right\}^{-2}} \\
& \asymp \frac{\sum_{\ell=j+2}^{p}\left\{\lambda_{j+1}\left(\boldsymbol{\rho}_{n}\right)-\lambda_{\ell}\left(\rho_{n}\right)\right\}^{-2}}{\sum_{\ell=j+1}^{p}\left\{\lambda_{j}\left(\boldsymbol{\rho}_{n}\right)-\lambda_{\ell}\left(\rho_{n}\right)\right\}^{-2}} \asymp 1 . \tag{51}
\end{align*}
$$

Combining (49) - (51), we complete the proof of Theorem 2.8.

References

S. C. Ahn and A. R. Horenstein. Eigenvalue ratio test for the number of factors. Econometrica, 81 (3):1203-1227, 2013. doi: 10.3982/ECTA8968. (cited on page 3)
L. Alessi, M. Barigozzi, and M. Capasso. Improved penalization for determining the number of factors in approximate factor models. Statistics \& Probability Letters, 80(23-24):1806-1813, 2010. doi: $10.1016 / \mathrm{j}$. spl.2010.08.005. (cited on page 2)
D. F. Andrews and C. L. Mallows. Scale mixtures of normal distributions. Journal of the Royal Statistical Society: Series B (Methodological), 36(1):99-102, 1974. doi: 10.1111/j.25176161.1974.tb00989.x. (cited on page 8)
J. Bai and K. Li. Statistical analysis of factor models of high dimension. The Annals of Statistics, 40 (1):436-465, 2012. doi: 10.1214/11-AOS966. (cited on pages 3 and 9)
J. Bai and S. Ng. Determining the number of factors in approximate factor models. Econometrica, 70(1):191-221, 2002. doi: 10.1111/1468-0262.00273. (cited on pages 2 and 3)
Z. Bai and J. Yao. Central limit theorems for eigenvalues in a spiked population model. Annales de l'IHP Probabilités et statistiques, 44(3):447-474, 2008. (cited on page 10)
Z. Bai and J. Yao. On sample eigenvalues in a generalized spiked population model. Journal of Multivariate Analysis, 106:167-177, 2012. doi: 10.1016/j.jmva.2011.10.009. (cited on pages 10 and 34)
Z. Bai and W. Zhou. Large sample covariance matrices without independence structures in columns. Statistica Sinica, 18(2):425-442, 2008. (cited on pages 5, 6, and 28)
A. S. Bandeira, A. Lodhia, and P. Rigollet. Marčenko-Pastur law for Kendall's tau. Electronic Communications in Probability, 22, 2017. doi: 10.1214/17-ecp59. (cited on page 7)
Z. Bao. Tracy-Widom limit for Spearman's rho. Technical report, The Hong Kong University of Science and Technology, 2019. (cited on page 5)
Z. Bao, L.-C. Lin, G. Pan, and W. Zhou. Spectral statistics of large dimensional Spearman's rank correlation matrix and its application. The Annals of Statistics, 43(6):2588-2623, 2015. doi: $10.1214 / 15-\mathrm{AOS} 1353$. (cited on page 5)
W. Chen and C. Lam. Rank and factor loadings estimation in time series tensor factor model by pre-averaging. The Annals of Statistics, 52(1), 2024. ISSN 0090-5364. doi: 10.1214/23-aos2350. (cited on pages 3 and 18)
N. El Karoui. Concentration of measure and spectra of random matrices: Applications to correlation matrices, elliptical distributions and beyond. The Annals of Applied Probability, 19(6):2362 2405, 2009. doi: 10.1214/08-aap548. (cited on pages 18, 20, and 21)
J. Fan, H. Liu, and W. Wang. Large covariance estimation through elliptical factor models. The Annals of statistics, 46(4):1383-1414, 2018. doi: 10.1214/17-AOS1588. (cited on page 3)
J. Fan, J. Guo, and S. Zheng. Estimating number of factors by adjusted eigenvalues thresholding. Journal of the American Statistical Association, 117(538):852-861, 2020. doi: 10.1080/01621459.2020.1825448. (cited on pages 3, 12, 13, and 14)
M. Hallin and R. Liška. Determining the number of factors in the general dynamic factor model. Journal of the American Statistical Association, 102(478):603-617, 2007. doi: 10.1198/016214506000001275. (cited on page 2)
M. Harding. Estimating the number of factors in large dimensional factor models. Technical report, University of California-Irvine, 2013. (cited on page 14)
Y. He, X. Kong, L. Yu, and X. Zhang. Large-dimensional factor analysis without moment constraints. Journal of Business \& Economic Statistics, 40(1):302-312, 2022a. (cited on page 3)
Y. He, Y. Wang, L. Yu, W. Zhou, and W.-X. Zhou. Matrix Kendall's tau in high-dimensions: A robust statistic for matrix factor model. arXiv preprint arXiv:2207.09633, 2022b. (cited on page 3)
A. Heinen and A. Valdesogo. Spearman rank correlation of the bivariate Student t and scale mixtures of normal distributions. Journal of Multivariate Analysis, 179, 2020. doi: 10.1016/j.jmva.2020.104650. (cited on page 8)
W. Hoeffding. A class of statistics with asymptotically normal distribution. The Annals of Mathematical Statistics, 19(3):293-325, 1948. doi: 10.1214/aoms/1177730196. (cited on page 7)
R. A. Horn and C. R. Johnson. Topic in matrix analysis. Cambridge University Press, 1991. (cited on page 19)
R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge University Press, 2012. (cited on page 18)
D. Jiang and Z. Bai. Generalized four moment theorem and an application to CLT for spiked eigenvalues of high-dimensional covariance matrices. Bernoulli, 27(1):274-294, 2021a. (cited on page 10)
D. Jiang and Z. Bai. Supplement to "Generalized four moment theorem and an application to CLT for spiked eigenvalues of high-dimensional covariance matrices". Bernoulli, 2021b. doi: $10.3150 / 20-$ BEJ1237SUPP. (cited on pages 20, 26, and 31)
X.-B. Kong. On the number of common factors with high-frequency data. Biometrika, 104(2): 397-410, 2017. doi: 10.1093/biomet/asx014. (cited on page 2)
C. Lam. Rank determination for time series tensor factor model using correlation thresholding. Technical report, Working paper LSE, 2021. (cited on pages 3 and 18)
C. Lam and Q. Yao. Factor modeling for high-dimensional time series: Inference for the number of factors. The Annals of Statistics, 40(2), 2012. doi: 10.1214/12-aos970. (cited on pages 3 and 18)
M. Ledoux. The concentration of measure phenomenon, volume 89. American Mathematical Society, 2001. (cited on pages 19,20 , and 21)
H. Li, Q. Li, and Y. Shi. Determining the number of factors when the number of factors can increase with sample size. Journal of Econometrics, 197(1):76-86, 2017a. doi: 10.1016/j.jeconom.2016.06.003. (cited on page 2)
Z. Li, Q. Wang, and J. Yao. Identifying the number of factors from singular values of a large sample auto-covariance matrix. The Annals of Statistics, 45(1):257-288, 2017b. doi: 10.1214/16-aos1452. (cited on pages 3 and 18)
Z. Li, C. Wang, and Q. Wang. On eigenvalues of a high-dimensional Kendall's rank correlation matrix with dependence. Science China Mathematics, 66(11):2615-2640, Sept. 2023. ISSN 1869-1862. doi: 10.1007/s11425-022-2031-2. (cited on pages 7 and 19)
H. Liu, J. Lafferty, and L. Wasserman. The nonparanormal: Semiparametric estimation of high dimensional undirected graphs. Journal of Machine Learning Research, 10(80):2295-2328, 2009. (cited on page 5)
M. W. McCracken and S. Ng. FRED-MD: A monthly database for macroeconomic research. Journal of Business \& Economic Statistics, 34(4):574-589, 2016. doi: 10.1080/07350015.2015.1086655. (cited on pages 14 and 17)
R. Nadakuditi and A. Edelman. Sample eigenvalue based detection of high-dimensional signals in white noise using relatively few samples. IEEE Transactions on Signal Processing, 56(7):2625 2638, 2008. ISSN 1941-0476. doi: 10.1109/tsp.2008.917356. (cited on pages 2 and 12)
A. Onatski. Determining the number of factors from empirical distribution of eigenvalues. Review of Economics and Statistics, 92(4):1004-1016, 2010. doi: 10.1162/rest_a_00043. (cited on pages 3 and 12)
A. Onatski. Asymptotics of the principal components estimator of large factor models with weakly influential factors. Journal of Econometrics, 168(2):244-258, 2012. ISSN 0304-4076. doi: 10.1016/j.jeconom.2012.01.034. (cited on pages 3, 12, and 14)
A. B. Owen and P. O. Perry. Bi-cross-validation of the svd and the nonnegative matrix factorization. The Annals of Applied Statistics, 3(2), 2009. ISSN 1932-6157. doi: 10.1214/08-aoas227. (cited on pages 3 and 13)
A. B. Owen and J. Wang. Bi-cross-validation for factor analysis. Statistical Science, 31(1), 2016. ISSN 0883-4237. doi: $10.1214 / 15$-sts539. (cited on pages 3,12 , and 13)
C. Spearman. The proof and measurement of association between two things. The American Journal of Psychology, 15:72-101, 1961. (cited on page 3)
R. Vershynin. High-dimensional probability: An introduction with applications in data science, volume 47. Cambridge University Press, 2018. (cited on page 19)

Z . Wu and C. Wang. Limiting spectral distribution of large dimensional Spearman's rank correlation matrices. Journal of Multivariate Analysis, 191, 2022. doi: 10.1016/j.jmva.2022.105011. (cited on pages 5, 6, and 20)
L. Yu, Y. He, and X. Zhang. Robust factor number specification for large-dimensional elliptical factor model. Journal of Multivariate analysis, 174, 2019. (cited on pages 3, 12, 13, and 17)

[^0]: *Department of Statistics and Actuarial Science, The University of Hong Kong, qiujx@connect.hku.hk
 ${ }^{\dagger}$ Department of Statistics and Data Science, Southern University of Science and Technology, liz9@sustech.edu.cn
 \ddagger School of Data Science, The Chinese University of Hong Kong (Shenzhen), jeffyao@cuhk.edu.cn

