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a b s t r a c t

We study the limiting behavior of singular values of a lag-τ sample auto-correlation
matrix Rϵ

τ of large dimensional vector white noise process, the error term ϵ in the
high-dimensional factor model. We establish the limiting spectral distribution (LSD) that
characterizes the global spectrum of Rϵ

τ , and derive the limit of its largest singular value.
All the asymptotic results are derived under the high-dimensional asymptotic regime
where the data dimension and sample size go to infinity proportionally. Under mild
assumptions, we show that the LSD of Rϵ

τ is the same as that of the lag-τ sample auto-
covariance matrix. Based on this asymptotic equivalence, we additionally show that the
largest singular value of Rϵ

τ converges almost surely to the right end point of the support
of its LSD. Based on these results, we further propose two estimators of total number
of factors with lag-τ sample auto-correlation matrices in a factor model. Our theoretical
results are fully supported by numerical experiments as well.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

Consider a sequence of p-dimensional stationary random vectors {yi} that has a factor structure and can be represented
s

yi = µ + Bfi + ϵi, i ∈ {1, . . . , n}, (1)

here {fi} is a sequence of k-dimensional latent factor vectors, and {ϵi} is a sequence of unobservable stochastic error
ectors of independent and identically distributed (i.i.d.) components with zero mean and unit variance, independent
ith {fi}. Determining the number of factors k is a core problem for the factor model, and it possesses many challenges

n the high-dimensional setting. Bai and Ng [2] first proposed a consistent estimator for static factor models. Hallin and
iška [14] developed an information criterion for dynamic factor models. Lam and Yao [18] studied the factor model for
igh-dimensional time series based on lagged auto-covariance matrices. Fan et al. [12] proposed an estimator based on
ample correlation matrices to overcome the issue of the heterogeneous scales of the observed variables. In this paper,
e study the lagged sample auto-correlation matrix for two reasons. On one hand, we believe that compared with the
ample covariance matrix alone, the auto-correlation matrices of different lags may contain more information on k. Our
ltimate goal is to investigate whether or not borrowing information from the auto-correlation matrices of different lags
ould make the final inference on the unknown number of factors more accurate or efficient. On the other hand, as
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ith Fan et al. [12], the lag-τ auto-correlation matrix overcomes the disadvantage of the heterogeneity among different
omponents by self-normalization.
Mathematically, given the sequence of random vectors {yi}, we denote the population covariance matrix, the lag-τ

with τ being a fixed positive integer) auto-covariance, and auto-correlation matrices of {yi} as Σ y
0 = cov(yi), Σ y

τ =

cov(yi, yi+τ ) and Ωy
τ = corr(yi, yi+τ ), respectively. Similarly, the population auto-covariance or auto-correlation matrices

can be defined for sequences {ϵi} and {fi} by way of analogy. For example, Σ f
τ = cov(fi, fi+τ ) is the lag-τ auto-covariance

of {fi}. Let the superscript ‘‘⊤’’ denote the transpose of a vector or matrix. It is known that the lag-τ auto-correlation
matrix

Ωy
τ = [diag(Σ y

0)]
−1/2Σ y

τ [diag(Σ
y
0)]

−1/2
= [diag(Σ y

0)]
−1/2(BΣ f

τB
⊤)[diag(Σ y

0)]
−1/2,

exactly has k non-null singular values. As a result, based on the i.i.d observed data sample y1, . . . , yn, the number of
factors k can be naturally estimated via the singular values of sample version of the lag-τ auto-correlation matrix

Ry
τ = [diag(Sy0)]

−1/2Syτ [diag(S
y
0)]

−1/2.

Note that, the lag-τ sample auto-covariance matrix is given by

Syτ =
1

n − 1

n∑
i=1

(yi − ȳ)(yi+τ − ȳ)⊤ = B

(
1

n − 1

n∑
i=1

(fi − f̄)(fi+τ − f̄)⊤
)
B⊤

+ B

(
1

n − 1

n∑
i=1

(fi − f̄)(ϵi+τ − ϵ̄)⊤
)

+

(
1

n − 1

n∑
i=1

(ϵi − ϵ̄)(fi+τ − f̄)⊤
)
B⊤

+
1

n − 1

n∑
i=1

(ϵi − ϵ̄)(ϵi+τ − ϵ̄)⊤ ≜ PB
τ + Sϵ

τ , (2)

where for a sequence {ai} = {yi} , {ϵi}, or {fi}, ā =
∑n

i=1 ai/n and by convention ai = an+i for i ∈ {1, . . . , τ }. Since PB
τ is

of rank k, the lag-τ sample auto-covariance matrix of {yi}, Syτ , can be treated as a finite rank perturbation of the lag-τ
sample auto-covariance matrix of {ϵi}, Sϵ

τ , which is of rank p ≫ k. Consequently, under certain circumstances, the lag-τ
sample auto-correlation matrix of {yi}, Ry

τ , is also a finite rank perturbation of the lag-τ sample auto-correlation matrix
of {ϵi}, Rϵ

τ , where

Rϵ
τ = [diag(Sϵ

0)]
−1/2Sϵ

τ [diag(S
ϵ
0)]

−1/2.

Hence Ry
τ follows the spike model pattern which is well studied in the random matrix theory (RMT), see, Johnstone

[17], Baik and Silverstein [9], Bai and Yao [4] and Benaych-Georges and Nadakuditi [10]. In fact, based on these
observations, we proposed two estimators of total number of factors using sample auto-correlation matrices in the
application section. Simulation experiments show that both estimators have satisfactory numerical performances.

In order to estimate total number of factors k, a clear picture is needed for the asymptotic behavior of the singular
values of Ry

τ , which are effected by the finite rank matrix and Rϵ
τ . As a result, studying the sample auto-correlation matrix

f {ϵi}, Rϵ
τ , takes the first step to identify the number of factors in factor analysis. In this paper, we study the limiting

ingular value distribution and the limit of the largest singular value of Rϵ
τ under the high-dimensional setting where the

imension p and sample size n are assumed to be of the same order.
Because the eigenvalues of certain large random matrices play a critical role in many multivariate statistical analyses,

imiting spectral properties of various matrix models has been widely studied using the RMT. In this paper, we use the
ools of RMT to study the limiting spectral properties of the lag-τ sample auto-correlation matrix. There is rich literature
n LSD and extreme eigenvalues of large-dimensional matrices. As a pioneering work, Wigner [27,28] discovered LSD for a
arge dimensional Wigner matrix and the limiting distribution is known as the semicircle law. Marčenko and Pastur [21]
ound that the empirical spectral distribution of sample covariance matrix converges to the Marčenko–Pastur law under
ild conditions. Considering the product of random matrices, Yin and Krishnaiah [32], and Yin [29] investigated the LSD of

nA, where Sn is sample covariance matrix and A is a positive definite matrix. Bai et al. [1] exhibited the existence of LSD of
nH where H is an arbitrary Hermitian matrix, and also investigated the LSD of SnW where W is a Wigner matrix. Yin et al.

[30] and Bai et al. [7] showed the existence of the LSD of multivariate F-matrix. Bai et al. [8], Wachter [25] and Silverstein
[22] derived the explicit form of the LSD of multivariate F-matrix. The form of H+XDX⊤, where H is a Hermitian matrix, D
s diagonal, and X contains independent columns, has been studied by Silverstein and Bai [23]. Bose and Mitra [11] derived
he LSD of a circulant matrix. The limiting distributions of eigenvalues of sample correlation matrices were discovered
y Jiang [16]. For a high-dimensional time series structure, Li et al. [19] investigated the limiting singular value distribution
f sample auto-covariance matrices. Most results are derived via the tools of the Stieltjes transform and moment method.
As for the limiting behavior of extreme eigenvalues, the first known result was established by Geman [13], who showed

hat the largest eigenvalue of a sample covariance matrix convergences to a limit almost surely under a growth condition
n all the moments. Yin et al. [31] improved this result under the existence of the fourth moment. For the Wigner
atrix, Bai and Yin [5] found the sufficient and necessary conditions for the almost sure convergence of the largest
igenvalue. Jiang [16] showed the largest eigenvalue of a sample correlation almost surely convergences to the right edge
2
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f its LSD support. Vu [24] derived the upper bound for the spectral norm of symmetric randommatrices with independent
ntries. Wang and Yao [26] established the convergence of the largest singular value of a sample auto-covariance matrix
ased on graph theory.
The results derived in this paper heavily rely on the pioneer work of Jiang [16] and Li et al. [19]. In particular, Jiang [16]

howed that LSD for the sample correlation matrix Rϵ
0 is the same as that for the sample covariance matrix Sϵ

0 and also
stablished the convergence of the largest eigenvalue of Rϵ

0. Indeed, inspired by Jiang [16], we try to relate the asymptotic
results of singular values of Rϵ

τ to Sϵ
τ for fixed τ ≥ 1. Since Rϵ

τ is not symmetric, we equivalently investigate the limiting
behavior of eigenvalues of R∗

τ = Rϵ
τ (Rϵ

τ )
⊤. We show that LSD for R∗

τ is the same as LSD for S∗
τ = Sϵ

τ (Sϵ
τ )

⊤ in Li et al. [19],
imicking the case of Rϵ

0 and Sϵ
0 as shown in Jiang [16]. Additionally, we also prove that the largest eigenvalue of R∗

τ

onverges almost surely to the right edge of its LSD support.
The rest of the paper is organized as follows. Section 2 introduces the main theoretical results in this paper, including

SD and limit of the largest singular value of Rϵ
τ . The detailed proofs of the theorems and lemmas are given in Section 3.

ection 4 describes the application of estimating total number of factors based on our theoretical results. Simulation
xperiments are carried out to check the performance of the proposed estimators.

. Main results

.1. Preliminary

Let µ be a finite measure on the real line, the Stieltjes transform of µ is defined by

mµ (z) =

∫
1

x − z
µ (dx) , z ∈ C \ Γµ,

where Γµ is the support of the finite measure µ on the real line R.
Let An be a p × p Hermitian matrix with eigenvalues λ1, λ2, . . . , λp, the empirical spectral distribution (ESD) of An is

FAn (x) =
1
p

p∑
j=1

I
{
λj ≤ x

}
, x ∈ R.

LSD is the limiting distribution of
{
FAn
}
n≥1 for a sequence of randommatrices {An}n≥1. By the definition of FAn , the Stieltjes

ransform of ESD FAn is

mAn (z) =

∫
1

x − z
FAn (dx) =

1
p
tr
(
An − zIp

)−1
,

here tr(·) denotes the trace function and Ip is the p-dimensional identity matrix. With mAn (z), the density function of
he LSD of An can be obtained by inversion formula,

f (u) = lim
ϵ→0+

Im m (u + iϵ) ,

here z is substituted by u + iϵ and m (u + iϵ) is the limit of mAn (u + iϵ) as n → ∞.

.2. Limiting spectral distribution

Recall that yi = µ + Bfi + ϵi, i ∈ {1, . . . , n}, we first focus on the limiting singular value distribution of the lag-τ
uto-correlation matrix Rϵ

τ . Equivalently, we consider LSD of the symmetric matrix R∗
τ = Rϵ

τ (Rϵ
τ )

⊤.

• Assumption A. ϵi =
(
ϵi,1, . . . , ϵi,p

)⊤, i ∈ {1, 2, . . . , n} are independent p-dimensional random vectors with
independent entries satisfying

E
(
ϵi,j
)

= 0, E
(
ϵ2
i,j

)
= 1, sup

1≤i≤n,1≤j≤p
E
(⏐⏐ϵi,j⏐⏐4+δ

)
< M,

for constant M and positive δ.
• Assumption B. As p → ∞, n → ∞ and p/n → y ∈ (0, ∞).

heorem 1. Under Assumptions A and B, as p, n → ∞, for fixed τ ≥ 1, almost surely the empirical distribution of FR∗
τ

onverges to a deterministic probability function F whose Stieltjes transform m = m (z), z ∈ C \ R, and satisfies the following
quation

z2y2m3
+ zy (y − 1)m2

− zm − 1 = 0.

The density function of F , f (u), is given by

f (u) =
1
{
−u −

5 (y − 1)2
+

24/3
(
3u + (y − 1)2

)
(y − 1)

1/3 +
22/3 (y − 1) d (u)1/3
yπu 3 3d (u) 3
3
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Fig. 1. The histogram of the sample eigenvalues of R∗
τ with τ = 1 and the theoretical limiting spectral density function f (u). In all panels, the sample

size n is fixed at n = 500, and the ratio of the dimensionality to the sample size is set as y ∈ {0.5, 1, 1.5, 2} from top to bottom and left to right,
espectively.

+
1
48

[
−8 (y − 1) +

24/3
(
3u + (y − 1)2

)
d (u)1/3

+ 22/3d (u)1/3
]2}1/2

, (3)

here

d(u) = −2 (y − 1)3 + 9 (1 + 2y) u + 3
√
3
√
u
(
−4u2 + (−1 + 4y (5 + 2y)) u − 4y (y − 1)3

)
.

ere, the support of f (u) is (0, b] for 0 < y < 1, and [a, b] for y ≥ 1, where

a =
1
8

(
−1 + 20y + 8y2 − (1 + 8y)3/2

)
, b =

1
8

(
−1 + 20y + 8y2 + (1 + 8y)3/2

)
. (4)

or the latter case with y ≥ 1, the density function f (u) has an additional point mass
(
1 −

1
y

)
at the origin.

Fig. 1 contrasts the ESD of R∗
τ (histogram) with τ = 1 and the theoretical limiting density function f (u) (solid line)

based on i.i.d. samples from the standard normal distribution with y ∈ {0.5, 1, 2, 2.5} and n = 500. It can be seen that the
empirical histogram of eigenvalues of R∗

τ is consistent with the limiting density function (3) for all (p, n) combinations.

Remark 1. By comparing Theorem 1 with Theorem 2.1 in Li et al. [19], we can see that R∗

1 and S∗

1 have the same LSDs,
which is consistent with the results on sample correlation and covariance matrices Jiang [16]. In addition, as shown by Li
et al. [19] the singular value distribution of Sϵ

τ is the same as that of Sϵ
1 for any fixed τ > 1. Such results also hold for the

singular value distribution of Rϵ
τ .

2.3. Limiting behavior of the largest eigenvalue

Next, we study the limiting behavior of the largest eigenvalue of R∗
τ . The following theorem shows that the largest

eigenvalue converges to the right edge of the support of LSD of R∗
τ , mimicking the limiting behavior of the largest

eigenvalue of S∗
τ .

Theorem 2. Suppose that Assumptions A and B hold. Let λmax(R∗
τ ) be the largest eigenvalue of R∗

τ , then for fixed τ ≥ 1 almost
surely,

λmax(R∗

τ ) → b, as p, n → ∞,

where b =
1
8

(
−1 + 20y + 8y2 + (1 + 8y)3/2

)
is the right edge of the support of the LSD of R∗

τ .

emark 2. The limit of the largest eigenvalue of R∗ is equal to that of S∗ .
τ τ

4
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Fig. 2. Boxplot of the largest eigenvalue of lag-1 sample auto-correlation matrices R∗

1 = Rϵ
1(R

ϵ
1)

⊤ based on 1000 standard normal samples. In all
panels, the horizontal line indicates the right end point of its LSD, and the ratio of the dimensionality to the sample size is set as y ∈ {0.5, 1, 2, 2.5}
rom top to bottom and left to right, respectively.

Fig. 2 displays the boxplot of the largest eigenvalues of R∗
τ with τ = 1 based on 1000 replications of independent

nd identically distributed samples from the standard normal distribution. We consider four values for the dimension,
.e., p ∈ {100, 500, 1000, 2000}, and vary the value of y, i.e., the ratio of the dimensionality to the sample size, from 0.5
o 2.5 in the four panels. In each panel, the horizontal line corresponds to the theoretical right end point b of LSD. From
ig. 2, we can see that the largest eigenvalue of R∗

τ converges to the right end point b as both the dimension p and the
ample size n increase proportionally.

.4. Comparison with sample correlation matrix

In the previous sections, we study the lag-τ sample auto-correlation matrix for fixed τ ≥ 1. These asymptotic results
annot be directly extended to the case of R∗

0. Because LSD for R∗

0 is no longer the same as in Theorem 1. Unlike Rϵ
τ for

ixed τ ≥ 1, Rϵ
0 is a symmetric matrix. The limiting behavior can be directly derived based on the sample correlation

atrix Rϵ
0, and there is no need to consider the eigenvalues of the transformation R∗

0 = Rϵ
0(R

ϵ
0)

⊤. Although Jiang [16]
lready has shown that ESD for Rϵ

0 converges to the well-known Marčenko–Pastur law, for completeness, we copy the
esults of Rϵ

0 below.

roposition 1 ([16]). Suppose ϵi =
(
ϵ1i, . . . , ϵpi

)⊤, i ∈ {1, 2, . . . , n} are independent p-dimensional random vectors with
entries satisfying E(ϵij) = 0, E

(
|ϵji|

2) < ∞. Let p/n → y ∈ (0, ∞), then, almost surely, FRϵ
0 converges to a deterministic

probability distribution with density function

fy (u) =

{
1

2πuy

√
(b − u) (u − a), if a ≤ u ≤ b,

0, otherwise,

nd a point mass with value 1 − 1/y at x = 0 if y > 1,where a =
(
1 −

√
y
)2 and b =

(
1 +

√
y
)2.

Fig. 3 contrasts LSD for R∗
τ (solid red curve) versus LSD for the sample correlation matrix Rϵ

0 (solid blue curve), and ESD
or R∗

τ (light red histogram) with τ = 1 versus ESD for Rϵ
0 (light blue histogram) based on i.i.d. samples from the standard

ormal distribution with y ∈ {0.5, 1, 2, 2.5} and n = 500. Clearly, the figure shows that LSD (or ESD) of R∗
τ has different

hapes with that of Rϵ
0 for all (p, n) combinations.

. Proofs

In this section, we provide the proofs of Theorems 1 and 2. Actually, our results rely on the results of the lag-τ sample
uto-covariance matrix, which has been derived by Li et al. [19]. The strategy of our LSD proof is to show that LSD for
∗
τ is the same as LSD for S∗

τ . Meanwhile, since the largest eigenvalue of S∗
τ has been studied by Wang and Yao [26], we

how that the largest eigenvalues of R∗ and S∗ converge to the same limit.
τ τ

5
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Fig. 3. Histograms of the sample eigenvalues of the lag-1 sample auto-correlation matrix R∗
τ with τ = 1 (light red) and the sample correlation

matrix Rϵ
0 (light blue). Theoretical density functions of the LSDs of R∗

τ (red) and Rϵ
0 (blue) are exhibited in lines. In all panels, the sample size n is

fixed at n = 500, and the ratio of the dimensionality to the sample size is set as y ∈ {0.5, 1, 1.5, 2} from top to bottom and left to right, respectively.

3.1. Standardization

We first introduce a standardization procedure. It is known that, for the sample covariance matrix

Sϵ
0 =

1
N

n∑
i=1

(ϵi − ϵ̄)(ϵi − ϵ̄)⊤

here N = n − 1 is the adjusted sample size, if we consider the non-centered sample covariance matrix

S̃ϵ
0 =

1
n

n∑
i=1

ϵiϵ
⊤

i ,

with E(ϵi) = 0, the asymptotic results for eigenvalues of Sϵ
0 partially hold for matrix S̃ϵ

0. Specifically, as for the first
order result, Sϵ

0 and S̃ϵ
0 share the same LSD, i.e., the Marčenko–Pastur distribution Fy with index y = lim p/n. We found

hat similar results apply for sample auto-covariance and auto-correlation matrices. Specifically, denote the non-centered
ample auto-correlation and auto-covariance matrices as

R̃ϵ
τ = [diag(S̃ϵ

0)]
−1/2S̃ϵ

τ [diag(S̃
ϵ
0)]

−1/2, S̃ϵ
τ =

1
n

n∑
i=1

ϵiϵ
⊤

i+τ

and

R̃∗

τ = R̃ϵ
τ (R̃

ϵ
τ )

⊤, S̃∗

τ = S̃ϵ
τ (S̃

ϵ
τ )

⊤.

We first show in the following lemmas that the centered sample auto-covariance and auto-correlation matrices, S∗
τ , R∗

τ

and their corresponding non-centered versions S̃∗
τ , R̃∗

τ , share same first-order results, including LSD and limit of the largest
eigenvalue.

Lemma 1. Under the assumptions in Theorem 1, for fixed τ ≥ 1, as p, n → ∞, the empirical spectral distribution F S̃∗τ almost
S∗τ
surely converges to the same LSD as F .

6
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emma 2. Under the assumptions in Theorem 1, for fixed τ ≥ 1, as p, n → ∞, the largest eigenvalue of S̃∗
τ , λmax(S̃∗

τ ) almost
surely converges to the same limit as that of λmax(S∗

τ ).

Lemma 3. Under the assumptions in Theorem 1, for fixed τ ≥ 1, as p, n → ∞, the empirical spectral distribution F R̃∗
τ almost

urely converges to the same LSD as FR∗
τ , the distribution with a density function given by (3).

emma 4. Under the assumptions in Theorem 1, for fixed τ ≥ 1, as p, n → ∞, the largest eigenvalue of R̃∗
τ , λmax(R̃∗

τ ) almost
surely converges to the same limit as that of λmax(R∗

τ ).

The proof of these four lemmas are provided in Section 3.2. Based on these asymptotic equivalence results, we
only need to study the non-centered lag-τ sample auto-covariance matrix S̃ϵ

τ and the non-centered lag-τ sample
auto-correlation matrix R̃ϵ

τ to complete the proofs of Theorems 1 and 2.

3.2. Proofs of theorems and lemmas

Proof of Theorem 1. Theorem 1 follows from Lemmas 1 and 3 and the following Lemma 5.

Lemma 5. Under the assumptions in Theorem 1, let L (·, ·) be the Levy distance, for fixed τ ≥ 1, as p, n → ∞, we have

L4
(
F R̃∗

τ , F S̃∗τ
)

→ 0, a.s.

roof. First we consider the case τ = 1. Suppose ϵ0j =
(
ϵ1,j, . . . , ϵn,j

)⊤, ϵ1j =
(
ϵ2,j, . . . , ϵn+1,j

)⊤, then we can define the
on-centered sample auto-correlation matrix R̃ϵ

1 and the non-centered sample auto-covariance matrix S̃ϵ
1 as follows:

R̃ϵ
1 = X⊤

0 X1, S̃ϵ
1 =

1
n
E⊤

0 E1,

here X0 =

(
ϵ01

∥ϵ01∥
, . . . ,

ϵ0p

∥ϵ0p∥

)
, X1 =

(
ϵ11

∥ϵ01∥
, . . . ,

ϵ1p

∥ϵ0p∥

)
, E0 =

(
ϵ01, . . . , ϵ

0
p

)
and E1 =

(
ϵ11, . . . , ϵ

1
p

)
.

By the difference inequality, we have

L4
(
F R̃∗

1 , F S̃∗1
)

≤
2
p
tr
((

R̃ϵ
1 − S̃ϵ

1

)(
R̃ϵ
1 − S̃ϵ

1

)⊤
)

·
1
p
tr
(
R̃∗

1 + S̃∗

1

)
:= 2 · W1 · W2.

For W2 =
1
p tr
(
R̃∗

1 + S̃∗

1

)
, we need to prove W2 → C1 a.s., where C1 is a positive constant. Note that

1
p
tr
(
S̃∗

1

)
=

1
p

p∑
j=1

p∑
k=1

ϵ0j
⊤
ϵ1kϵ

1
k
⊤
ϵ0j

n2 =
1
p

p∑
j=1

p∑
k=1

(∑n
i=1 ϵi,jϵi+1,k

)2
n2

=
1
p

p∑
j=1

p∑
k=1

∑n
i=1 ϵ2

i,jϵ
2
i+1,k

n2 +
1
p

p∑
j=1

p∑
k=1

∑n
i1 ̸=i2

ϵi1,jϵi1+1,kϵi2,jϵi2+1,k

n2 := Q1 + Q2.

or the term Q1, if p/n → y > 0 we have

Q1 =
p
n

·
1

np2

p∑
j=1

p∑
k=1

n∑
i=1

ϵ2
i,jϵ

2
i+1,k → y, a.s.

based on the law of large numbers.
For the term Q2,

E (Q2) =
1

pn2 E
p∑

j=1

p∑
k=1

n∑
i1 ̸=i2

ϵi1,jϵi1+1,kϵi2,jϵi2+1,k

=
1

pn2

p∑
j̸=k

n∑
i1 ̸=i2

E
(
ϵi1,j

)
E
(
ϵi1+1,k

)
E
(
ϵi2,j

)
E
(
ϵi2+1,k

)
+

1
pn2 E

p∑
j=k

n∑
i1 ̸=i2

ϵi1,jϵi1+1,kϵi2,jϵi2+1,k

=
1

pn2 E
p∑

j=1

n∑
i1 ̸=i2

i1 ̸=i2+1

ϵi1,jϵi1+1,jϵi2,jϵi2+1,j + 2
1

pn2 E
p∑

j=1

n∑
i1=i2+1

ϵi1,jϵi1+1,jϵi2,jϵi2+1,j

= 2
1

pn2 E
p∑ n∑

ϵ2
i1,jϵi1+1,jϵi2,j = 0.
j=1 i1=i2+1

7
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Var (Q2) =
1

p2n4 E

⎛⎝ p∑
j=1

p∑
k=1

n∑
i1 ̸=i2

ϵi1,jϵi1+1,kϵi2,jϵi2+1,k

⎞⎠2

=
1

p2n4 E
p∑

j=1

p∑
k=1

n∑
i1 ̸=i2

ϵ2
i1,jϵ

2
i1+1,kϵ

2
i2,jϵ

2
i2+1,k

=
1

p2n4

p∑
j̸=k

n∑
i1 ̸=i2

E
(
ϵ2
i1,j

)
E
(
ϵ2
i1+1,k

)
E
(
ϵ2
i2,j

)
E
(
ϵ2
i2+1,k

)
+

1
p2n4 E

p∑
j=k

n∑
i1 ̸=i2

ϵ2
i1,jϵ

2
i1+1,kϵ

2
i2,jϵ

2
i2+1,k

= O
(

1
n2

)
+

1
p2n4

p∑
j=1

n∑
i1 ̸=i2

i1 ̸=i2+1

E
(
ϵ2
i1,j

)
E
(
ϵ2
i1+1,j

)
E
(
ϵ2
i2,j

)
E
(
ϵ2
i2+1,j

)
+ 2

1
p2n4 E

p∑
j=1

n∑
i1=i2+1

ϵ4
i1,jϵ

2
i1+1,jϵ

2
i2,j

= O
(

1
n2

)
+ O

(
1

pn2

)
+ O

(
1

pn3

)
= O

(
1
n2

)
.

ccording to Chebyshev’s inequality, for any ϵ > 0

P(|Q2| > ϵ) ≤
Var (Q2)

ϵ2 = O
(

1
n2

)
,

which is summable. Hence, based on Borel–Cantelli lemma, Q2 → 0, a.s. Thus, we have

1
p
tr
(
S̃∗

1

)
→ y, a.s.

For 1
p tr
(
R̃∗

1

)
, we obtain that

⏐⏐⏐⏐1p tr(R̃∗

1

)
−

1
p
tr
(
S̃∗

1

)⏐⏐⏐⏐ =

⏐⏐⏐⏐⏐⏐1p
p∑

j=1

p∑
k=1

ϵ0j
⊤
ϵ1kϵ

1
k
⊤
ϵ0j

∥ϵ0j ∥
2∥ϵ0k∥

2
−

1
p

p∑
j=1

p∑
k=1

ϵ0j
⊤
ϵ1kϵ

1
k
⊤
ϵ0j

n2

⏐⏐⏐⏐⏐⏐
≤

1
p

p∑
j=1

p∑
k=1

ϵ0j
⊤
ϵ1kϵ

1
k
⊤
ϵ0j

n2

⏐⏐⏐⏐⏐ n2

∥ϵ0j ∥
2∥ϵ0k∥

2
− 1

⏐⏐⏐⏐⏐
=

1
p

p∑
j=1

p∑
k=1

ϵ0j
⊤
ϵ1kϵ

1
k
⊤
ϵ0j

n2

⏐⏐⏐⏐⏐
(

n
∥ϵ0j ∥

2
− 1

)(
n

∥ϵ0k∥
2

− 1
)

+
n

∥ϵ0j ∥
2

− 1 +
n

∥ϵ0k∥
2

− 1

⏐⏐⏐⏐⏐
≤

1
p

p∑
j=1

p∑
k=1

ϵ0j
⊤
ϵ1kϵ

1
k
⊤
ϵ0j

n2

[⏐⏐⏐⏐⏐
(

n
∥ϵ0j ∥

2
− 1

)(
n

∥ϵ0k∥
2

− 1
)⏐⏐⏐⏐⏐+

⏐⏐⏐⏐⏐ n
∥ϵ0j ∥

2
− 1

⏐⏐⏐⏐⏐+
⏐⏐⏐⏐ n
∥ϵ0k∥

2
− 1

⏐⏐⏐⏐
]

≤
1
p
tr
(
S̃∗

1

)
·

⎡⎣(max
1≤j≤p

⏐⏐⏐⏐⏐ n
∥ϵ0j ∥

2
− 1

⏐⏐⏐⏐⏐
)2

+ 2 max
1≤j≤p

⏐⏐⏐⏐⏐ n
∥ϵ0j ∥

2
− 1

⏐⏐⏐⏐⏐
⎤⎦ .

ince E|ϵ1,1|4 < ∞, by the Lemma 2 from Bai and Yin [6], we know

max
1≤j≤p

⏐⏐⏐⏐⏐
∑n

i=1 ϵ2
i,j

n
− 1

⏐⏐⏐⏐⏐ → 0, a.s.,

nd this implies that

max
1≤j≤p

⏐⏐⏐⏐⏐ n∑n
i=1 ϵ2

i,j
− 1

⏐⏐⏐⏐⏐ → 0, a.s. (5)

Since 1
p tr
(
S̃∗

1

)
converges to a constant y which has been shown above, we have⏐⏐⏐⏐1p tr(R̃∗

1

)
−

1
p
tr
(
S̃∗

1

)⏐⏐⏐⏐ → 0, a.s.

It follows that 1
p tr
(
R̃∗

1

)
→ y a.s., and then

W2 =
1
tr
(
R̃∗

1

)
+

1
tr
(
S̃∗

1

)
→ 2y, a.s.
p p
8
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F

F

A

or the term of W1, we have

W1 =
1
p
tr
((

R̃ϵ
1 − S̃ϵ

1

)(
R̃ϵ
1 − S̃ϵ

1

)⊤
)

=
1
p

p∑
j=1

p∑
k=1

ϵ0j
⊤
ϵ1kϵ

1
k
⊤
ϵ0j

n2

−
2
p

p∑
j=1

p∑
k=1

ϵ0j
⊤
ϵ1kϵ

1
k
⊤
ϵ0j

n · ∥ϵ0j ∥∥ϵ
0
k∥

+
1
p

p∑
j=1

p∑
k=1

ϵ0j
⊤
ϵ1kϵ

1
k
⊤
ϵ0j

∥ϵ0j ∥
2∥ϵ0k∥

2
:= Q3 − 2Q4,

where

Q3 =
1
p

p∑
j=1

p∑
k=1

ϵ0j
⊤
ϵ1kϵ

1
k
⊤
ϵ0j

∥ϵ0j ∥
2∥ϵ0k∥

2
−

1
p

p∑
j=1

p∑
k=1

ϵ0j
⊤
ϵ1kϵ

1
k
⊤
ϵ0j

n2 , Q4 =
1
p

p∑
j=1

p∑
k=1

ϵ0j
⊤
ϵ1kϵ

1
k
⊤
ϵ0j

n · ∥ϵ0j ∥∥ϵ
0
k∥

−
1
p

p∑
j=1

p∑
k=1

ϵ0j
⊤
ϵ1kϵ

1
k
⊤
ϵ0j

n2 .

or Q4, ⏐⏐⏐⏐⏐⏐1p
p∑

j=1

p∑
k=1

ϵ0j
⊤
ϵ1kϵ

1
k
⊤
ϵ0j

n · ∥ϵ0j ∥∥ϵ
0
k∥

−
1
p

p∑
j=1

p∑
k=1

ϵ0j
⊤
ϵ1kϵ

1
k
⊤
ϵ0j

n2

⏐⏐⏐⏐⏐⏐ ≤
1
p

p∑
j=1

p∑
k=1

ϵ0j
⊤
ϵ1kϵ

1
k
⊤
ϵ0j

n2

⏐⏐⏐⏐⏐ n
∥ϵ0j ∥∥ϵ

0
k∥

− 1

⏐⏐⏐⏐⏐
=

1
p

p∑
j=1

p∑
k=1

ϵ0j
⊤
ϵ1kϵ

1
k
⊤
ϵ0j

n2

⏐⏐⏐⏐⏐⏐
⎛⎝ √

n√
∥ϵ0j ∥

2
− 1

⎞⎠⎛⎝ √
n√

∥ϵ0k∥
2

− 1

⎞⎠+

√
n√

∥ϵ0j ∥
2

− 1 +

√
n√

∥ϵ0k∥
2

− 1

⏐⏐⏐⏐⏐⏐
≤

1
p
tr
(
S̃∗

1

)
·

⎡⎢⎣
⎛⎝max

1≤j≤p

⏐⏐⏐⏐⏐⏐
√
n√

∥ϵ0j ∥
2

− 1

⏐⏐⏐⏐⏐⏐
⎞⎠2

+ 2 max
1≤j≤p

⏐⏐⏐⏐⏐⏐
√
n√

∥ϵ0j ∥
2

− 1

⏐⏐⏐⏐⏐⏐
⎤⎥⎦ .

ccording to Lemma 2 of Bai and Yin [6], we have

max
1≤j≤p

⏐⏐⏐⏐⏐⏐
√
n√∑n

i=1 ϵ2
i,j

− 1

⏐⏐⏐⏐⏐⏐ → 0, a.s. (6)

Therefore Q4 → 0 a.s. Given that the following result

Q3 =
1
p
tr
(
R̃∗

1

)
−

1
p
tr
(
S̃∗

1

)
→ 0, a.s.

has been proved, we have

W1 =
1
p
tr
((

R̃ϵ
1 − S̃ϵ

1

)(
R̃ϵ
1 − S̃ϵ

1

)⊤
)

→ 0, a.s.

Together with W1,W2, we obtain

L4
(
F R̃∗

1 , F S̃∗1
)

→ 0, a.s.

The procedure of the proof will not change for any given positive integer τ . Therefore, we have

L4
(
F R̃∗

τ , F S̃∗τ
)

→ 0, a.s. □

Proof of Theorem 2. Theorem 2 follows from Lemmas 2, 4, 6 and Theorem 4.1 from Wang and Yao [26].

Lemma 6. Under the assumptions in Theorem 1, let λmax(S̃∗
τ ) and λmax(R̃∗

τ ) be the largest eigenvalues of S̃∗
τ and R̃∗

τ , respectively.
As p, n → ∞, we have⏐⏐⏐⏐√λmax(R̃∗

τ ) −

√
λmax(S̃∗

τ )
⏐⏐⏐⏐ → 0, a.s.

Proof. Denote ϵ0j =
(
ϵ1,j, . . . , ϵn,j

)⊤, ϵτ
j =

(
ϵτ ,j, . . . , ϵn+τ ,j

)⊤. Rewrite

R̃ϵ
τ =

1
n
DE⊤

0 EτD, S̃ϵ
τ =

1
n
E⊤

0 Eτ ,

where D = diag
(

√
n
0 , . . . ,

√
n
0

)
, E0 =

(
ϵ01, . . . , ϵ

0
p

)
and Eτ =

(
ϵτ
1, . . . , ϵ

τ
p

)
.

∥ϵ1∥ ∥ϵp∥

9
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Under the conditions of Theorem 1, according to Theorem 4.1 from Wang and Yao [26], we have

λmax(S̃∗

τ ) → b, a.s., (7)

where b =
1
8

(
−1 + 20y + 8y2 + (1 + 8y)3/2

)
is the right end point of the support of the LSD of R∗

τ . Our target is to show
hat ⏐⏐⏐⏐√λmax(R̃∗

τ ) −

√
λmax(S̃∗

τ )
⏐⏐⏐⏐ → 0, a.s. (8)

For any matrix A, we denote ∥A∥2 as the spectrum norm of A, which is defined as the square root of the largest eigenvalue
of AA⊤. By Corollary 7.3.8 from Horn and Johnson [15], we have⏐⏐⏐⏐√λmax(R̃∗

τ ) −

√
λmax(S̃∗

τ )
⏐⏐⏐⏐ ≤ ∥R̃ϵ

τ − S̃ϵ
τ∥2. (9)

Meanwhile the spectrum norm satisfies the triangle inequality and ∥AC∥2 ≤ ∥A∥2 · ∥C∥2 for any A and C, then we have

∥R̃ϵ
τ − S̃ϵ

τ∥2 =

1nDE⊤

0 EτD −
1
n
E⊤

0 Eτ


2

=

1nDE⊤

0 EτD −
1
n
DE⊤

0 Eτ +
1
n
DE⊤

0 Eτ −
1
n
E⊤

0 Eτ


2

≤

1nDE⊤

0 EτD −
1
n
DE⊤

0 Eτ


2
+

1nDE⊤

0 Eτ −
1
n
E⊤

0 Eτ


2

=

1n (D − I + I) E⊤

0 Eτ (D − I)

2
+

1n (D − I) E⊤

0 Eτ


2

≤

1n (D − I) E⊤

0 Eτ (D − I)

2
+ 2

1n (D − I) E⊤

0 Eτ


2

≤

1nE⊤

0 Eτ


2
· ∥D − I∥2

2 + 2
1nE⊤

0 Eτ


2
· ∥D − I∥2 . (10)

ince E|ϵ1,1|4 < ∞, by Lemma 2 of Bai and Yin [6], we know that

max
1≤j≤p

⏐⏐⏐⏐⏐∥ϵ0j ∥2

n
− 1

⏐⏐⏐⏐⏐ → 0, a.s.,

which implies

∥D − I∥2 = max
1≤j≤p

⏐⏐⏐⏐⏐
√
n

∥ϵ0j ∥
− 1

⏐⏐⏐⏐⏐ → 0, a.s. (11)

his together with (7) and (10) proves (8). □

roof of Lemma 1. By using the fact S̃ϵ
τ = Sϵ

τ + ϵ̄ϵ̄⊤ and Theorem A.44 in Bai and Silverstein [3], we haveF S̃∗τ − F S∗τ
 =

F S̃ϵτ (S̃ϵτ )⊤ − F Sϵτ (Sϵτ )⊤
 ⩽

1
p
rank

(
S̃ϵ

τ − Sϵ
τ

)
=

1
p

→ 0,

where ∥f ∥ = supx |f (x)|. Hence, F S̃∗τ almost surely converges to F S∗τ . □

roof of Lemma 2. Let s1(A) denote the largest singular value of matrix A. By Corollary 7.3.8 from Horn and Johnson [15]
nd the strong law of large number, we have⏐⏐s1(S̃ϵ

τ ) − s1(Sϵ
τ )
⏐⏐ ⩽ S̃ϵ

τ − Sϵ
τ

2 = ∥ϵ̄ϵ̄⊤
∥2 =

√
ϵ̄⊤ϵ̄ → 0, a.s. (12)

y this equation and (7) imply that⏐⏐s1(S̃ϵ
τ ) + s1(Sϵ

τ )
⏐⏐ → 2

√
b, a.s.

Hence,⏐⏐λmax(S̃∗

τ ) − λmax(S∗

τ )
⏐⏐ ⩽ ⏐⏐s1(S̃ϵ

τ ) − s1(Sϵ
τ )
⏐⏐ · ⏐⏐s1(S̃ϵ

τ ) + s1(Sϵ
τ )
⏐⏐ → 0, a.s.

This completes the proof of Lemma 2. □

Proof of Lemma 3. Recall that D = [diag(Sϵ
0)]

−1/2. Denote D̃ = [diag(Sϵ
0 + ϵ̄ϵ̄⊤)]−1/2. By definition, we can write

R̃ϵ
= D̃(Sϵ

+ ϵ̄ϵ̄⊤)D̃ = R̂ϵ
+ D̃(ϵ̄ϵ̄⊤)D̃,
τ τ τ

10
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here R̂ϵ
τ = D̃Sϵ

τ D̃. By Theorem A.44 in Bai and Silverstein [3], we haveF R̃∗
τ − F R̂ϵ

τ (R̂ϵ
τ )

⊤ ⩽
1
p
rank(D̃ϵ̄ϵ̄⊤D̃) =

1
p

→ 0.

It suffices to prove that

L
(
F R̂ϵ

τ (R̂ϵ
τ )

⊤

, FRϵ
τ (Rϵ

τ )
⊤
)

→ 0, a.s. (13)

By Theorem A.47 in Bai and Silverstein [3], we have

L
(
F R̂ϵ

τ (R̂ϵ
τ )

⊤

, FRϵ
τ (Rϵ

τ )
⊤
)
⩽ 2∥Rϵ

τ∥2 · ∥Rϵ
τ − R̂ϵ

τ∥2 + ∥Rϵ
τ − R̂ϵ

τ∥
2
2.

In view of this inequality, to prove (13), we need to show that ∥Rϵ
τ∥2 is bounded and ∥Rϵ

τ − R̂ϵ
τ∥2 converges to zero almost

surely.
First, we consider ∥Rϵ

τ∥2. By basic norm inequality, we have ∥Rϵ
τ∥2 = ∥DSϵ

τD∥2 ⩽ ∥Sϵ
τ∥2 · ∥D∥

2
2. It follows from (7) and

(12) that

∥Sϵ
τ∥2 →

√
b, a.s. (14)

y using (6), we have

∥D∥2 = max
1⩽j⩽p

⏐⏐⏐⏐⏐⏐
√
n√∑n

i=1 ϵ2
i,j

⏐⏐⏐⏐⏐⏐ ⩽ max
1⩽j⩽p

⏐⏐⏐⏐⏐⏐
√
n√∑n

i=1 ϵ2
i,j

− 1

⏐⏐⏐⏐⏐⏐+ 1 → 1, a.s. (15)

Hence, we conclude that ∥Rϵ
τ∥2 is bounded almost surely.

Next, we consider ∥Rϵ
τ − R̂ϵ

τ∥2. By definition, we write

∥Rϵ
τ − R̂ϵ

τ∥2 =

DSϵ
τD − D̃Sϵ

τ D̃

2

=

DSϵ
τD − DSϵ

τ D̃ + DSϵ
τ D̃ − D̃Sϵ

τ D̃

2
⩽ (∥D∥2 + ∥D̃∥2) · ∥Sϵ

τ∥2 · ∥D − D̃∥2.

rom the estimation (15) and the fact ∥D̃∥2 ⩽ ∥D∥2, we obtain that both ∥D∥2 and ∥D̃∥2 are bounded almost surely. Note
hat

∥D − D̃∥2 = max
1⩽j⩽p

⎛⎝ 1√
(Sϵ

0)jj
−

1√
(Sϵ

0)jj + (ϵ̄ϵ̄⊤)jj

⎞⎠ ⩽ max
1⩽j⩽p

⎛⎝
√
(Sϵ

0)jj + (ϵ̄ϵ̄⊤)jj −
√
(Sϵ

0)jj

(Sϵ
0)jj

⎞⎠
⩽ max

1⩽j⩽p

√
(ϵ̄ϵ̄⊤)jj

(Sϵ
0)jj

= max
1⩽j⩽p

√
(
∑n

i=1 ϵi,j)2∑n
i=1 ϵ2

i,j
,

where the second inequality follows from
√
x + y ⩽

√
x+

√
y for any x, y ⩾ 0. This shows that ∥D−D̃∥2 → 0 is equivalent

to max1⩽j⩽p[(
∑n

i=1 ϵi,j)/(
∑n

i=1 ϵ2
i,j)]

2
→ 0. By the triangular inequality, we have

max
1⩽j⩽p

(∑n
i=1 ϵi,j∑n
i=1 ϵ2

i,j

)2

⩽ max
1⩽j⩽p

⏐⏐⏐⏐⏐ 1∑n
i=1 ϵ2

i,j

⏐⏐⏐⏐⏐+ max
1⩽j⩽p

⏐⏐⏐⏐⏐⏐⏐
∑

i̸=i′ ϵi,jϵi′,j(∑n
i=1 ϵ2

i,j

)2
⏐⏐⏐⏐⏐⏐⏐ . (16)

From (5), we obtain the first term on the RHS of (16) converges to zero almost surely. By Lemma 2 in Bai and Yin [6], we
have

max
1⩽j⩽p

⏐⏐⏐⏐⏐1n
n∑

i=1

ϵi,j

⏐⏐⏐⏐⏐
2

→ 0, a.s., max
1⩽j⩽p

⏐⏐⏐⏐⏐ 1n2

n∑
i=1

ϵ2
i,j

⏐⏐⏐⏐⏐ → 0, a.s.,

which imply that

max
1⩽j⩽p

⏐⏐⏐⏐⏐⏐ 1n2

∑
i̸=i′

ϵi,jϵi′,j

⏐⏐⏐⏐⏐⏐ → 0, a.s.

This estimation, together with

max
1⩽j⩽p

⏐⏐⏐⏐⏐⏐⏐
1
n2
∑

i̸=i′ ϵi,jϵi′,j(
1 ∑n

ϵ2
)2 −

1
n2

∑
i̸=i′

ϵi,jϵi′,j

⏐⏐⏐⏐⏐⏐⏐ ⩽ max
1⩽j⩽p

⏐⏐⏐⏐⏐⏐⏐
1(

1 ∑n
ϵ2
)2 − 1

⏐⏐⏐⏐⏐⏐⏐ · max
1⩽j⩽p

⏐⏐⏐⏐⏐⏐ 1n2

∑
i̸=i′

ϵi,jϵi′,j

⏐⏐⏐⏐⏐⏐

n i=1 i,j n i=1 i,j

11
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w
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C

nd (5), implies that the second term on the RHS of (16) also converges to zero almost surely. Hence, we conclude that
Rϵ

τ − R̂ϵ
τ∥2 → 0 a.s. This completes the proof of Lemma 3. □

roof of Lemma 4. By Weyl’s theorem and the norm inequality ∥AA⊤
− BB⊤

∥2 ⩽ 2∥A∥2 · ∥A− B∥2 + ∥A− B∥
2
2, we have⏐⏐λmax(R∗

τ ) − λmax(R̂∗

τ )
⏐⏐ ⩽ R∗

τ − R̂∗

τ

2 ⩽ 2∥Rϵ
τ∥2 · ∥Rϵ

τ − R̂ϵ
τ∥2 + ∥Rϵ

τ − R̂ϵ
τ∥

2
2. (17)

In the proof of Lemma 3, we show that the RHS of this inequality converges to zero almost surely. Thus,⏐⏐λmax(R∗

τ ) − λmax(R̂∗

τ )
⏐⏐ → 0, a.s. (18)

An argument similar to the one used in (17) shows that⏐⏐λmax(R̂∗

τ ) − λmax(R̃∗

τ )
⏐⏐ ⩽ R̂∗

τ − R̃∗

τ

2 ⩽ 2∥R̂ϵ
τ∥2 · ∥R̂ϵ

τ − R̃ϵ
τ∥2 + ∥R̂ϵ

τ − R̃ϵ
τ∥

2
2.

By definition of R̂ϵ
τ , we obtain

∥R̂ϵ
τ∥2 ⩽ ∥Sϵ

τ∥2 · ∥D̃∥
2
2 ⩽ ∥Sϵ

τ∥2 · ∥D∥
2
2,

which, together with (14) and (15), implies that ∥R̂ϵ
τ∥2 is bounded almost surely. Since R̃ϵ

τ = R̂ϵ
τ + D̃(ϵ̄ϵ̄⊤)D̃, we have

∥R̂ϵ
τ − R̃ϵ

τ∥2 ⩽ ∥ϵ̄ϵ̄⊤
∥2 · ∥D̃∥

2
2 ⩽

√
ϵ̄⊤ϵ̄ · ∥D∥

2
2.

y the strong law of large number and (15), we obtain that ∥R̂ϵ
τ − R̃ϵ

τ∥2 converges to zero almost surely. Hence,⏐⏐λmax(R̂∗

τ ) − λmax(R̃∗

τ )
⏐⏐ → 0, a.s.,

which, together with (18), completes the proof. □

3.3. Conjecture about the smallest eigenvalue of R∗
τ

We conjecture that the smallest eigenvalue of R∗
τ has similar asymptotic behavior to the largest eigenvalue in

Theorem 2. Specifically, we conjecture that, under the same assumptions as in Theorem 2, λmin(R∗
τ ), namely

λmin(R∗

τ ) =

{
the smallest eigenvalue of R∗

τ , if p ⩽ n,
the (p − n + 1)th smallest eigenvalue of R∗

τ , if p > n,

ill converge to the left edge of the support of the LSD of R∗
τ .

First of all, the standardization procedure applies for λmin(R∗
τ ). Lemmas 2 and 4 can be extended to the smallest

igenvalue case, which means that we can turn our attention to the non-centered sample auto-correlation matrix λmin(R̃∗
τ ).

econdly, λmin(R̃∗
τ ) shares the same limit with that of the non-centered sample auto-covariance matrix λmin(S̃∗

τ ). By
orollary 7.3.8 from Horn and Johnson [15], we have a stronger result than (9):

max
1⩽i⩽p

⏐⏐⏐⏐√λi(R̃∗
τ ) −

√
λi(S̃∗

τ )
⏐⏐⏐⏐ ⩽ ∥R̃ϵ

τ − S̃ϵ
τ∥2,

which, together with (7), (10) and (11), implies that⏐⏐⏐⏐√λmin(R̃∗
τ ) −

√
λmin(S̃∗

τ )
⏐⏐⏐⏐ → 0, a.s.,

where and λmin(S̃∗
τ ) is defined in the same way. This together with (7) shows that

⏐⏐⏐λ1/2
min(R̃

∗
τ ) + λ

1/2
min(S̃

∗
τ )
⏐⏐⏐ is bounded almost

surely. Hence,⏐⏐⏐λmin(R̃∗

τ ) − λmin(S̃∗

τ )
⏐⏐⏐ =

⏐⏐⏐⏐√λmin(R̃∗
τ ) −

√
λmin(S̃∗

τ )
⏐⏐⏐⏐ · ⏐⏐⏐⏐√λmin(R̃∗

τ ) +

√
λmin(S̃∗

τ )
⏐⏐⏐⏐ → 0, a.s.

By estimations above, we conclude that⏐⏐λmin(R∗

τ ) − λmin(S∗

τ )
⏐⏐ → 0, a.s.,

that is, λmin(R∗
τ ) and λmin(S∗

τ ) share the same limit.
To the best of our knowledge, the asymptotic limit of λmin(S∗

τ ) has not been rigorously derived in the current literature.
In the spirit of the well-known Bai–Yin Law (Bai and Yin [6], the smallest and largest eigenvalues of large-dimensional
sample covariance matrix converge to the left and right endpoint of the Marcěnko–Pastur law, respectively), we conjecture
that λmin(S∗

τ ) (also λmin(R∗
τ )) will converge to the left endpoint of the support of LSD of S∗

τ , which is 0 for 0 < y < 1 and
(−1+ 20y+ 8y2 − (1+ 8y)3/2)/8 for y ⩾ 1. Fig. 4 compares the boxplot of smallest singular value with its corresponding
limit, i.e. the left endpoint of the LSD. Empirical evidence in Fig. 4 convinces us of the correctness of this conjecture. The
potential route to prove this result is through the moment method used in Bai and Yin [6] and Wang and Yao [26]. We

will leave it for future study.

12
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Fig. 4. Boxplot of the smallest eigenvalue of R∗

1 = Rϵ
1(R

ϵ
1)

⊤ based on 1000 Gaussian samples. In all panels, the horizontal line indicates the left
endpoint of its LSD, and the ratio of the dimension to the sample size is set as y ∈ {1, 1.5, 2, 2.5} from top to bottom and left to right, respectively.

. Application

.1. Estimation of total number of factors

High-dimensional factor models have met a large success in data analysis across many scientific fields such as
sychology, economics and signal processing, to name a few. Their appeal mainly relies on their capability to reduce the
enerally high dimensionality of data to much lower-dimensional common factor components. Determining total number
f factors is a central problem in high dimensional factor modeling.
Consider a factor model for high-dimensional time series proposed by Lam and Yao [18]: for 1 ⩽ i ⩽ n, let yi denote

he p-dimensional vector observed at time i. It consists of two parts, a low-dimensional common latent factor sequence
i and an idiosyncratic component ϵi:

yi = Bfi + ϵi, i ∈ {1, 2, . . . , n}. (19)

ere B is a p × k factor loading matrix satisfying B⊤B = Ik, {ϵi} is a p-dimensional white noise with E(ϵi) = 0,
ar(ϵi) = σ 2Ip. The k-dimensional factor sequence {fi} is a time sequence which is temporally correlated.
Our goal is to develop an estimator of the number of factors k in the model (19) using sample auto-correlation matrix of

he observed sequence {yi, 1 ≤ i ≤ n}. In the current literature, there are some other estimators of k using different sample
ovariance/correlation matrices . To name a few, Li et al. [20] proposed an estimator based on eigenvalues of the lag-1
ample auto-covariance matrix Sy1. Denote the eigenvalue ratios (ER) between consecutive eigenvalues of M = Sy1(S

y
1)

⊤ as

θj = λj+1(M)/λj(M), j ∈ {1, 2, . . . , p − 1},

i et al. [20] proposed the following estimator:

k̂ERacov =
{
first j ⩾ 1 such that θj > 1 − dn

}
− 1,

here 0 < dn < 1 is a positive constant. They proved that k̂ERacov is a consistent estimator for k under certain mild
onditions. It is possible that two consecutive spike eigenvalues are very close to each other and their ratio exceeds the
hreshold 1−dn, which may lead to underestimation. For the sake of robustness, Li et al. [20] also proposed an equivalent
einforced estimator

k̂∗
=
{
first j ⩾ 1 such that θ > 1 − d and θ > 1 − d

}
− 1. (20)
ERacov j n j+1 n

13
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ore recently, Fan et al. [12] developed a tuning-free scale-invariant adjusted correlation thresholding (ACT) method
ased on the sample correlation matrix Ry

0. For any given 1 ⩽ j ⩽ p, define

mn,j(z) =
1

p − j

[ p∑
ℓ=j+1

1
λℓ(R

y
0) − z

+
1

(3λj(R
y
0) + λj+1(R

y
0))/4 − z

]
,

mn,j(z) = −(1 − cj,n−1)z−1
+ cj,n−1mn,j(z), λC

j (R
y
0) = −1/mn,j

(
λj(R

y
0)
)
,

here cj,n−1 = (p − j)/(n − 1). Fan et al. [12] developed the following estimator of total number of factors:

k̂ACT = max
{
j : λC

j (R
y
0) > 1 +

√
p/(n − 1)

}
. (21)

Now we aim to develop an estimator of k using sample auto-correlation matrix. As mentioned in the introduction, the
sample auto-correlation matrix Ry

τ of yi is a finite rank perturbation of Rϵ
τ of ϵi. Take τ = 1, then we can use the eigenvalues

f M̃ = Ry
1(R

y
1)

⊤ to estimate the number of factors k. The basic idea is to count the number of spike eigenvalues of M̃
hich are larger than the bulk eigenvalues of Rϵ

1(R
ϵ
1)

⊤. Specifically, take the canonical form where B =

(
Ik

0p−k

)
as an

xample. Since

Sy0 =
1

n − 1

n∑
i=1

(yi − ȳ)(yi − ȳ)⊤ = B

(
1

n − 1

n∑
i=1

(fi − f̄)(fi − f̄)⊤
)
B⊤

+ B

(
1

n − 1

n∑
i=1

(fi − f̄)(ϵi − ϵ̄)⊤
)

+

(
1

n − 1

n∑
i=1

(ϵi − ϵ̄)(fi − f̄)⊤
)
B⊤

+
1

n − 1

n∑
i=1

(ϵi − ϵ̄)(ϵi − ϵ̄)⊤ ≜ PB
0 + Sϵ

0,

only the first k diagonal elements of diag(PB
0) are non-zero. Then diag(PB

0) = diag(Sy0)−diag(Sϵ
0) is a rank-k diagonal matrix.

This implies that the difference ∆ := Dy − Dϵ has finite rank k, where Dϵ = [diag(Sϵ
0)]

−1/2 and Dy = [diag(Sy0)]
−1/2.

Similarly, Sy1 = PB
1 + Sϵ

1 and only the first k diagonal elements of diag(PB
1) are non-zero. Therefore, the lag-1 sample

auto-correlation matrix

Ry
1 = DyPB

1Dy + (Dϵ + ∆)Sϵ
1(Dϵ + ∆) = DyPB

1Dy + DϵSϵ
1∆ + ∆Sϵ

1Dϵ + ∆Sϵ
1∆  

finite rank

+DϵSϵ
1Dϵ,

is a finite rank perturbation of Rϵ
1 = DϵSϵ

1Dϵ. Thus M̃ = Ry
1(R

y
1)

⊤ and R∗

1 = Rϵ
1(R

ϵ
1)

⊤ share the same LSD while asymptotically
M̃ has k extra spike eigenvalues. We can use the right endpoint of this LSD as a threshold for filtering these spike
eigenvalues. The right endpoint is determined by our Theorem 2.

In this way, we introduce our estimator of total number of factors:

k̂RE = max
{
j : λj(R∗

1) > bcn + hn

}
, (22)

where bcn =
(
−1+ 20cn + 8c2n + (1+ 8cn)3/2

)
/8 (see Theorems 1 and 2) with cn = p/n and hn > 0 is a tuning parameter

dealing with the fluctuation of the largest bulk (non-spike) eigenvalue. The subscript of k̂RE represents the abbreviation
of Right Endpoint.

Remark 3 (Calibration of Tuning Parameter hn). Practically, we need to choose an appropriate tuning parameter hn. It is
very likely that the asymptotic distribution of n2/3(λk+1(M̃) − bcn ) is the same as that of n2/3(λ1(R∗

1) − bcn ). Using the
imilarity, we propose an a priori calibration of hn:

(i) For any given pair (p, n), the empirical distribution of n2/3(λ1(R∗

1)−bcn ) is obtained by sampling a large number (say
2000) of independent replications of standard Gaussian vectors ϵi ∼ Np(0, Ip). Its lower 99.5% quantile qp,n,99.5% is
obtained from this empirical distribution.

(ii) Using the approximation

Pr
{
n2/3(λk+1(M̃) − bcn ) ⩽ qp,n,99.5%

}
≈ Pr

{
n2/3(λ1(R∗

1) − bcn ) ⩽ qp,n,99.5%

}
= 99.5%,

we calibrate hn at the value hn = n−2/3
· qp,n,99.5%.

his tuned value of hn is used for all given pairs of (p, n) in the simulation studies in Section 4.2.

Moreover, we propose another ratio-based estimator of total number of factors k. Denote

θ̃j = λj+1(M̃)/λj(M̃), j ∈ {1, 2, . . . , p − 1}.

s the sequence of ratios between consecutive eigenvalues of M̃, we propose

k̂ =
{
first j ⩾ 1 such that θ̃ > 1 − d̃

}
− 1,
ERacor j n

14
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here 0 < d̃n < 1 is a positive constant. The subscript of k̂ERacor represents the abbreviation of Eigenvalue Ratio of sample
uto-correlation matrix. A robust version of this estimator is given by

k̂∗

ERacor =
{
first j ⩾ 1 such that θ̃j > 1 − d̃n and θ̃j+1 > 1 − d̃n

}
− 1. (23)

Remark 4 (Calibration of the Tuning Parameter dn and d̃n). Similarly with k̂RE, we need to choose tuning parameters dn
and d̃n. d̃n is the same with dn and we take the calibration of dn as an example. We use the asymptotic distribution of
n2/3

(
λ2(Mϵ)
λ1(Mϵ)

− 1
)
to approximate that of n2/3

(
λk+2(M)
λk+1(M) − 1

)
, where Mϵ = Sϵ

1(S
ϵ
1)

⊤. Specifically,

1. For any given pair (p, n), the empirical distribution of n2/3
(

λ2(Mϵ)
λ1(Mϵ)

− 1
)
is obtained by sampling a large number (say

2000) of independent replications of standard Gaussian vectors ϵi ∼ Np(0, Ip). Its lower 0.5% quantile q̃p,n,0.5% is
obtained from this empirical distribution.

2. Using the approximation

Pr
{
n2/3

(
λk+2(M)
λk+1(M)

− 1
)

⩽ q̃p,n,0.5%

}
≈ Pr

{
n2/3

(
λk+2(Mϵ)
λk+1(Mϵ)

− 1
)

⩽ q̃p,n,0.5%

}
= 0.5%,

we calibrate dn at the value dn = n−2/3
· |q̃p,n,0.5%|.

This tuned value of dn is used for all given pairs of (p, n) in the simulation studies in Section 4.2.

4.2. Numerical performance

In this section, we conduct some simulation experiments to examine the finite-sample performance of our estimators
k̂RE and k̂∗

ERacor defined in (22) and (23). We compare these two estimators with two other estimators in the current
literature, k̂∗

ERacov from Li et al. [20] and k̂ACT from Fan et al. [12], which are introduced in (20) and (21) respectively.
We adopt the same simulation settings as in Lam and Yao [18] and Li et al. [20] where the p-dimensional random

ectors {yi, 1 ≤ i ≤ n} are generated by

yi = Bfi + ϵi, ϵi ∼ Np(0, Ip), (24)
fi = Θfi−1 + et , ei ∼ Nk(0,Γ ).

Here B is a p×k factor loading matrix which can be decomposed as B = UDV⊤, where U and V are matrices of sizes p×k
and k × k with orthogonal unit columns and D is a k × k diagonal matrix. We consider the following two scenarios:

(I) k = 2:

D =

(
1 0
0 2

)
, Θ =

(
0.8 0
0 0.8

)
, Γ =

(
1 0
0 1

)
(II) k = 3:

D =

(1 0 0
0 1 0
0 0 1

)
, Θ =

(0.7 0 0
0 0.8 0
0 0 0.9

)
, Γ =

(3 0 0
0 2 0
0 0 1

)
The dimensions and sample sizes are taken to be p ∈ {100, 200, 400, 600} and n = {0.5p, 2p}. For each scenario, we
report the empirical percentages of true estimation (k̂ = k), underestimation (k̂ < k) and overestimation (k̂ > k) of
the number of factors k based on 1000 replications in Tables 1 and 2. As shown in Tables 1 and 2, our newly proposed
estimators k̂∗

ERacor and k̂RE have comparable performance with k̂∗

ERacov and k̂ACT. All estimators are consistent and converge
quickly when n = 2p and slower when n = p/2.
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Table 1
Comparison of four estimators k̂ACT , k̂∗

ERacov , k̂
∗

ERacor and k̂RE in the factor model (24). Data
is generated following scenarios (I) with true number of factors k = 2. This table reports
the empirical percentages (%) of accurate estimation (k̂ = k), underestimation (k̂ < k) and
overestimation (k̂ > k) of four estimators based on 1000 replications. Accuracy rates are
highlighted in bold letters.
p Percentages n = 2p n = p/2

ACT ER∗

acov ER∗

acor RE ACT ER∗

acov ER∗

acor RE

100
k̂ = k 98.8 98.4 98 97.3 27.4 22.3 20.2 11.1
k̂ < k 0.6 0.9 0.9 2.7 72.5 77.6 79.8 88.9
k̂ > k 0.6 0.7 1.1 0 0.1 0.1 0 0

200
k̂ = k 97.9 99.5 99.3 100 50.3 52.8 50.3 36.8
k̂ < k 0 0 0 0 48.4 47 49.4 63.2
k̂ > k 2.1 0.5 0.7 0 1.3 0.2 0.3 0

400
k̂ = k 96.5 100 99.7 100 75.1 82.4 81.6 75.3
k̂ < k 0 0 0 0 20.9 16.9 17.9 24.7
k̂ > k 3.5 0 0.3 0 4 0.7 0.5 0

600
k̂ = k 96.6 98.9 99.3 100 87.1 93.2 92.9 92.2
k̂ < k 0 0 0 0 9.4 6.5 6.8 7.8
k̂ > k 3.4 1.1 0.7 0 3.5 0.3 0.3 0

Table 2
Comparison of four estimators k̂ACT , k̂∗

ERacov , k̂
∗

ERacor and k̂RE in the factor model (24). Data
is generated following scenarios (II) with true number of factors k = 3. This table reports
the empirical percentages (%) of true estimation (k̂ = k), underestimation (k̂ < k) and
overestimation (k̂ > k) of four estimators based on 1000 replications. Accuracy rates are
highlighted in bold letters.
p Percentages n = 2p n = p/2

ACT ER∗

acov ER∗

acor RE ACT ER∗

acov ER∗

acor RE

100
k̂ = k 99.9 99.2 98.5 99.7 32.5 32 30.8 8
k̂ < k 0.1 0 0 0.3 67.5 66.7 68.1 92
k̂ > k 0 0.8 1.5 0 0 1.3 1.1 0

200
k̂ = k 100 99.4 99.4 100 77.3 80.2 79 56.8
k̂ < k 0 0 0 0 22 18.9 19.7 43.2
k̂ > k 0 0.6 0.6 0 0.7 0.9 1.3 0

400
k̂ = k 99.8 99.3 98.8 100 97 98.9 98.1 96.8
k̂ < k 0 0 0 0 1.2 0.8 1 3.2
k̂ > k 0.2 0.7 1.2 0 1.8 0.3 0.9 0

600
k̂ = k 98.7 99.5 99.3 100 98.2 98.5 99 99.6
k̂ < k 0 0 0 0 0.3 0.1 0.1 0.4
k̂ > k 1.3 0.5 0.7 0 1.5 1.4 0.9 0
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