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1. Introduction

Consider a sequence of p-dimensional stationary random vectors {y;} that has a factor structure and can be represented
as

Vi=p+Bfit+e, ie{l,...,n} (M

where {f;} is a sequence of k-dimensional latent factor vectors, and {¢;} is a sequence of unobservable stochastic error
vectors of independent and identically distributed (i.i.d.) components with zero mean and unit variance, independent
with {f;}. Determining the number of factors k is a core problem for the factor model, and it possesses many challenges
in the high-dimensional setting. Bai and Ng [2] first proposed a consistent estimator for static factor models. Hallin and
Liska [14] developed an information criterion for dynamic factor models. Lam and Yao [18] studied the factor model for
high-dimensional time series based on lagged auto-covariance matrices. Fan et al. [12] proposed an estimator based on
sample correlation matrices to overcome the issue of the heterogeneous scales of the observed variables. In this paper,
we study the lagged sample auto-correlation matrix for two reasons. On one hand, we believe that compared with the
sample covariance matrix alone, the auto-correlation matrices of different lags may contain more information on k. Our
ultimate goal is to investigate whether or not borrowing information from the auto-correlation matrices of different lags
would make the final inference on the unknown number of factors more accurate or efficient. On the other hand, as
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with Fan et al. [12], the lag-t auto-correlation matrix overcomes the disadvantage of the heterogeneity among different
components by self-normalization.

Mathematically, given the sequence of random vectors {y;}, we denote the population covariance matrix, the lag-t
(with 7 being a fixed positive integer) auto-covariance, and auto-correlation matrices of {y;} as 2(’; = cov(y;), ¥ =
cov(yi, Vi) and 29 = corr(y;, yi4: ), respectively. Similarly, the population auto-covariance or auto-correlation matrices
can be defined for sequences {¢;} and {f;} by way of analogy. For example, 25 = cov(f;, fi, ;) is the lag-t auto-covariance
of {f;}. Let the superscript “T” denote the transpose of a vector or matrix. It is known that the lag-t auto-correlation

matrix
Y = [diag(XZ¥)]7 "> XY [diag(Z3)]/? = [diag(X¥)]"/*(BXTB )[diag( X))/,

exactly has k non-null singular values. As a result, based on the i.i.d observed data sample yi, ..., Yy, the number of
factors k can be naturally estimated via the singular values of sample version of the lag-t auto-correlation matrix

RY = [diag(S)]~"/*SY [diag(S¥)]~ /2.

Note that, the lag-7 sample auto-covariance matrix is given by

1 <& _ _ 1 - <
= Wiy 9 =B (_1 (6 — D - f)T) B’

n—14% n °
i=1 i=1
1 <  —
+B (n—l ;(ff — e — z)T) + (n — ;(ei — &fir — f)T> B'
n
+ o e~ e 8 2RSS, )
i=
where for a sequence {a;} = {yi}, {€;}, or {fi},a = Z?Zl a;/n and by convention a; = a,y; fori € {1, ..., t}. Since P‘; is

of rank k, the lag-t sample auto-covariance matrix of {y;}, ¥, can be treated as a finite rank perturbation of the lag-t
sample auto-covariance matrix of {¢;}, S¢, which is of rank p > k. Consequently, under certain circumstances, the lag-t
sample auto-correlation matrix of {y;}, RY, is also a finite rank perturbation of the lag-r sample auto-correlation matrix
of {€}, RS, where

R¢ = [diag(S§)]~ /2S¢ [diag(S§)]~ /2.

Hence RY follows the spike model pattern which is well studied in the random matrix theory (RMT), see, Johnstone
[17], Baik and Silverstein [9], Bai and Yao [4] and Benaych-Georges and Nadakuditi [10]. In fact, based on these
observations, we proposed two estimators of total number of factors using sample auto-correlation matrices in the
application section. Simulation experiments show that both estimators have satisfactory numerical performances.

In order to estimate total number of factors k, a clear picture is needed for the asymptotic behavior of the singular
values of RY, which are effected by the finite rank matrix and R¢. As a result, studying the sample auto-correlation matrix
of {€;}, R¢, takes the first step to identify the number of factors in factor analysis. In this paper, we study the limiting
singular value distribution and the limit of the largest singular value of R¢ under the high-dimensional setting where the
dimension p and sample size n are assumed to be of the same order.

Because the eigenvalues of certain large random matrices play a critical role in many multivariate statistical analyses,
limiting spectral properties of various matrix models has been widely studied using the RMT. In this paper, we use the
tools of RMT to study the limiting spectral properties of the lag-t sample auto-correlation matrix. There is rich literature
on LSD and extreme eigenvalues of large-dimensional matrices. As a pioneering work, Wigner [27,28] discovered LSD for a
large dimensional Wigner matrix and the limiting distribution is known as the semicircle law. Mar¢enko and Pastur [21]
found that the empirical spectral distribution of sample covariance matrix converges to the Marcenko-Pastur law under
mild conditions. Considering the product of random matrices, Yin and Krishnaiah [32], and Yin [29] investigated the LSD of
SnA, where S, is sample covariance matrix and A is a positive definite matrix. Bai et al. [ 1] exhibited the existence of LSD of
S;H where H is an arbitrary Hermitian matrix, and also investigated the LSD of S,W where W is a Wigner matrix. Yin et al.
[30] and Bai et al. [7] showed the existence of the LSD of multivariate F-matrix. Bai et al. [8], Wachter [25] and Silverstein
[22] derived the explicit form of the LSD of multivariate F-matrix. The form of H4-XDX", where H is a Hermitian matrix, D
is diagonal, and X contains independent columns, has been studied by Silverstein and Bai [23]. Bose and Mitra [11] derived
the LSD of a circulant matrix. The limiting distributions of eigenvalues of sample correlation matrices were discovered
by Jiang [ 16]. For a high-dimensional time series structure, Li et al. [ 19] investigated the limiting singular value distribution
of sample auto-covariance matrices. Most results are derived via the tools of the Stieltjes transform and moment method.

As for the limiting behavior of extreme eigenvalues, the first known result was established by Geman [13], who showed
that the largest eigenvalue of a sample covariance matrix convergences to a limit almost surely under a growth condition
on all the moments. Yin et al. [31] improved this result under the existence of the fourth moment. For the Wigner
matrix, Bai and Yin [5] found the sufficient and necessary conditions for the almost sure convergence of the largest
eigenvalue. Jiang [ 16] showed the largest eigenvalue of a sample correlation almost surely convergences to the right edge
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of its LSD support. Vu [24] derived the upper bound for the spectral norm of symmetric random matrices with independent
entries. Wang and Yao [26] established the convergence of the largest singular value of a sample auto-covariance matrix
based on graph theory.

The results derived in this paper heavily rely on the pioneer work of Jiang [16] and Li et al. [ 19]. In particular, Jiang [16]
showed that LSD for the sample correlation matrix R{ is the same as that for the sample covariance matrix Sy and also
established the convergence of the largest eigenvalue of Rj. Indeed, inspired by Jiang [16], we try to relate the asymptotic
results of singular values of R¢ to S¢ for fixed v > 1. Since R¢ is not symmetric, we equivalently investigate the limiting
behavior of eigenvalues of R* = R¢(R¢)T. We show that LSD for R* is the same as LSD for S* = S¢(S¢)" in Li et al. [19],
mimicking the case of R§ and Sj as shown in Jiang [16]. Additionally, we also prove that the largest eigenvalue of R
converges almost surely to the right edge of its LSD support.

The rest of the paper is organized as follows. Section 2 introduces the main theoretical results in this paper, including
LSD and limit of the largest singular value of R¢. The detailed proofs of the theorems and lemmas are given in Section 3.
Section 4 describes the application of estimating total number of factors based on our theoretical results. Simulation
experiments are carried out to check the performance of the proposed estimators.

2. Main results
2.1. Preliminary

Let u be a finite measure on the real line, the Stieltjes transform of w is defined by

1
m,, () zfﬁu(dX),z € C\ I,
where I, is the support of the finite measure p on the real line R.
Let A, be a p x p Hermitian matrix with eigenvalues A1, A, ..., A,, the empirical spectral distribution (ESD) of A, is

p
Fin (x) = %Zl{xj <x}.xeR
j=1

LSD is the limiting distribution of {FA“ }n>1 for a sequence of random matrices {A,},-. By the definition of FAn, the Stieltjes
transform of ESD FAr is -

1 1 _
ma, (2) = f — M (dx) = —tr (A, —21,) ",
X—z p
where tr(-) denotes the trace function and I, is the p-dimensional identity matrix. With ma, (z), the density function of
the LSD of A, can be obtained by inversion formula,

f @ = lim Jm m (u+ie),

e—=>04

where z is substituted by u + ie and m (u + ie) is the limit of ma, (u + i€) as n — oo.
2.2. Limiting spectral distribution

Recall thaty; = u + Bf; + ¢, i € {1,...,n}, we first focus on the limiting singular value distribution of the lag-t
auto-correlation matrix R¢. Equivalently, we consider LSD of the symmetric matrix R} = R¢(R¢ )T

e Assumption A. ¢ = (e,—71,...,ei,p)T, i € {1,2,...,n} are independent p-dimensional random vectors with
independent entries satisfying

E(a)=0. E(f)=1. s E(al™)<m.

for constant M and positive 3.
e Assumption B. As p — oo, n — oo and p/n — y € (0, 00).

Theorem 1. Under Assumptions A and B, as p,n — oo, for fixed T > 1, almost surely the empirical distribution of FX
converges to a deterministic probability function F whose Stieltjes transform m = m (z), z € C\ R, and satisfies the following
equation

2ym +zyy—1m? —zm—1=0.

The density function of F, f (u), is given by

5= 2P (Buto-1) -1 L2Py-Ddw™
3 3d (w)'/? 3

1
fw=— { —u
ymu
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Fig. 1. The histogram of the sample eigenvalues of R? with 7 = 1 and the theoretical limiting spectral density function f(u). In all panels, the sample
size n is fixed at n = 500, and the ratio of the dimensionality to the sample size is set as y € {0.5, 1, 1.5, 2} from top to bottom and left to right,
respectively.

1 22 (Bu+ (- 1°) |, 1/32 12
+48|:—8(y—1)+ T +223d ) } , 3)

where

du)=-2@-13+901+2y)u +3f3\/u (42 + (=1+4yG+2y)u—4y @y —1)°).

Here, the support of f (u) is (0, b] for 0 <y < 1, and [a, b] for y > 1, where
1

1
a=2 (—1+20y+8y> — (1+8y)°?), b= 3 (=14 20y + 8y* + (1 + 8y)*?). (4)

For the latter case with y > 1, the density function f (u) has an additional point mass (1 - )%) at the origin.

Fig. 1 contrasts the ESD of R% (histogram) with = 1 and the theoretical limiting density function f(u) (solid line)
based on i.i.d. samples from the standard normal distribution with y € {0.5, 1, 2, 2.5} and n = 500. It can be seen that the
empirical histogram of eigenvalues of R} is consistent with the limiting density function (3) for all (p, n) combinations.

Remark 1. By comparing Theorem 1 with Theorem 2.1 in Li et al. [19], we can see that R} and S} have the same LSDs,
which is consistent with the results on sample correlation and covariance matrices Jiang [16]. In addition, as shown by Li
et al. [19] the singular value distribution of S¢ is the same as that of §{ for any fixed > 1. Such results also hold for the
singular value distribution of R¢.

2.3. Limiting behavior of the largest eigenvalue

Next, we study the limiting behavior of the largest eigenvalue of R%. The following theorem shows that the largest
eigenvalue converges to the right edge of the support of LSD of R}, mimicking the limiting behavior of the largest
eigenvalue of S}.

Theorem 2. Suppose that Assumptions A and B hold. Let Anm.«(R%) be the largest eigenvalue of R%, then for fixed © > 1 almost
surely,
Amax(RE) — b, asp,n— oo,

where b = 1 (—1+ 20y + 8y + (1 + 8y)*?) is the right edge of the support of the LSD of R.

Remark 2. The limit of the largest eigenvalue of R} is equal to that of S}.
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Fig. 2. Boxplot of the largest eigenvalue of lag-1 sample auto-correlation matrices R} = R$(RS)" based on 1000 standard normal samples. In all
panels, the horizontal line indicates the right end point of its LSD, and the ratio of the dimensionality to the sample size is set as y € {0.5, 1, 2, 2.5}
from top to bottom and left to right, respectively.

Fig. 2 displays the boxplot of the largest eigenvalues of R? with T = 1 based on 1000 replications of independent
and identically distributed samples from the standard normal distribution. We consider four values for the dimension,
i.e.,, p € {100, 500, 1000, 2000}, and vary the value of y, i.e,, the ratio of the dimensionality to the sample size, from 0.5
to 2.5 in the four panels. In each panel, the horizontal line corresponds to the theoretical right end point b of LSD. From
Fig. 2, we can see that the largest eigenvalue of R converges to the right end point b as both the dimension p and the
sample size n increase proportionally.

2.4. Comparison with sample correlation matrix

In the previous sections, we study the lag-r sample auto-correlation matrix for fixed t > 1. These asymptotic results
cannot be directly extended to the case of Rf. Because LSD for Rj is no longer the same as in Theorem 1. Unlike R for
fixed © > 1, R} is a symmetric matrix. The limiting behavior can be directly derived based on the sample correlation
matrix R{, and there is no need to consider the eigenvalues of the transformation R§ = Rg(Rg)T. Although Jiang [16]
already has shown that ESD for Rf converges to the well-known Marcenko-Pastur law, for completeness, we copy the
results of R below.

Proposition 1 ([16]). Suppose €; = (61,», cee, ep,»)T, i € {1,2,...,n} are independent p-dimensional random vectors with
entries satisfying E(e;) = 0, E (|e;il*) < oo. Let p/n — y € (0, 00), then, almost surely, FRS converges to a deterministic
probability distribution with density function

l .
Vb —w@Ww—a, fa<uc<b,
0, otherwise,

Sy =

and a point mass with value 1 — 1/y at x =0 if y > 1,where a = (1 — ﬁ)z and b = (l + ﬂ)z

Fig. 3 contrasts LSD for R (solid red curve) versus LSD for the sample correlation matrix R§ (solid blue curve), and ESD
for R} (light red histogram) with T = 1 versus ESD for R (light blue histogram) based on i.i.d. samples from the standard
normal distribution with y € {0.5, 1, 2, 2.5} and n = 500. Clearly, the figure shows that LSD (or ESD) of R} has different
shapes with that of Rf for all (p, n) combinations.

3. Proofs

In this section, we provide the proofs of Theorems 1 and 2. Actually, our results rely on the results of the lag-t sample
auto-covariance matrix, which has been derived by Li et al. [19]. The strategy of our LSD proof is to show that LSD for
R is the same as LSD for S}. Meanwhile, since the largest eigenvalue of S has been studied by Wang and Yao [26], we
show that the largest eigenvalues of R¥ and S} converge to the same limit.
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Fig. 3. Histograms of the sample eigenvalues of the lag-1 sample auto-correlation matrix R¥ with v = 1 (light red) and the sample correlation
matrix Rj (light blue). Theoretical density functions of the LSDs of R} (red) and R{ (blue) are exhibited in lines. In all panels, the sample size n is
fixed at n = 500, and the ratio of the dimensionality to the sample size is set as y € {0.5, 1, 1.5, 2} from top to bottom and left to right, respectively.

3.1. Standardization

We first introduce a standardization procedure. It is known that, for the sample covariance matrix

1w i} ,
8o = N Z(Gi —&e—e)
i=1

where N = n — 1 is the adjusted sample size, if we consider the non-centered sample covariance matrix

n
~ 1
So=-— E eie;r,
n
i=1

with E(¢;) = 0, the asymptotic results for eigenvalues of S§ partially hold for matrix 55. Specifically, as for the first
order result, S§ and 58 share the same LSD, i.e., the Marcenko-Pastur distribution F, with index y = limp/n. We found
that similar results apply for sample auto-covariance and auto-correlation matrices. Specifically, denote the non-centered
sample auto-correlation and auto-covariance matrices as

U 1
R¢ = [diag(S$)]™ /2S¢ [diag(S§)] /2, St = - X;eielrr
i=

and
Rf =RERS)T,  SF =SS .

We first show in the following lemmas that the centered sample auto-covariance and auto-correlation matrices, S7, R}
and their corresponding non-centered versions S}, R¥, share same first-order results, including LSD and limit of the largest
eigenvalue.

Lemma 1. Under the assumptions in Theorem 1, for fixed T > 1, as p, n — oo, the empirical spectral distribution FSt almost
ok
surely converges to the same LSD as F5.
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Lemma 2. Under the assumptions in Theorem 1, for fixed t > 1, as p, n — oo, the largest eigenvalue of §f, kmax(gf) almost
surely converges to the same limit as that of Amax(S%).

Lemma 3. Under the assumptions in T*heorem 1, for fixed T > 1, as p, n — oo, the empirical spectral distribution FR: almost
surely converges to the same LSD as FRz, the distribution with a density function given by (3).

Lemma 4. Under the assumptions in Theorem 1, for fixed T > 1, as p, n — oo, the largest eigenvalue of RT, Amax( ) almost
surely converges to the same limit as that of Amax(RY).

The proof of these four lemmas are provided in Section 3.2. Based on these asymptotic equivalence results, we
only need to study the non-centered lag-t sample auto-covariance matrix S¢ and the non-centered lag-t sample
auto-correlation matrix R¢ to complete the proofs of Theorems 1 and 2.

3.2. Proofs of theorems and lemmas
Proof of Theorem 1. Theorem 1 follows from Lemmas 1 and 3 and the following Lemma 5.
Lemma 5. Under the assumptions in Theorem 1, let L (-, -) be the Levy distance, for fixed T > 1, as p, n — 00, we have

4 (F""?, F5?> >0, as.

T T
Proof. First we consider the case t = 1. Suppose e (e”, .. e,,]) , e} = (62], .. €n+1]) then we can define the

non-centered sample auto-correlation matrix R‘ and the non- centered sample auto-covariance matrix Se as follows:

8 s 1
RE=X]X;, S5= EEJE],

0 0 1 1

where Xg = [ -2, ..., -2 ) Xy = (-2, ...,-2 ) Eg = (€% ...,€%) and E; = (€], ..., €)).

0 €91 |e8|> 1= (ne o) T A (¢ ) 1=(4 )
By the difference inequality, we have

R* 33 2 ~ ~ ~ ~ T 1 ~ ~
L4 (F“1,F51) < Etr((Rﬁ —sq) (R§ —sq) > o (R’; +s>;) =2 W, W

For W, = %tr (f(’l‘ + 5’{), we need to prove W, — C; a.s., where C; is a positive constant. Note that

1 Q¥
I;tr (Sl) =

1T 0 p

0T 1 2
€ €€ € _1 ZZ > 161]€,+1 k)
n? p

=1 k=1

o
M=

-
Il
-
=
Il
-

.

n
> €’ 1 iy €i1.j€i1+1,k€ip j€ir+1.k

i=1 1] 1+1 k 11;&12 1151+ 1LkS S+ 1k
=2 § =Qi + Q.

n2
1 j=1 k=1

1
-BM:
M'n
+

=~
Il

1

.
Il

For the term Q,, if p/n — y > 0 we have

1= E E 566 -y a.s.
n np2 ijvi+1,k ’

j=1 k=1 i=1

based on the law of large numbers.
For the term Q,

n

1 p P
E(Qy) = WEZ Z Z €i;.j€i1+1,kEiy j€ir+1,k

=1 k=1 i1 20
1 o
— E 6111 €i1+1.k) E(€i,j) E (€41, k E €iy j€i1+1,kEiy j€ir+1.k
~ pn?
J#k i1#£iy Jj=k i1#iy
1 &
) E E E €i.j€i1+1,j€iy j€i+1,j T 2 E E E €iy,j€i14+1,j€ip,j€ip+1,j
j=1 ij#ip Jj=1 ij=ir+1
ip#ip+1
p n
1 2 €. =0
2 €y j€i1+1,j€hnj = V-
=1 i1=iy+1
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n n

p p 1 p p
Var (Q) = E €i, i€i €i, i€i = ——E e € €2
i1,j€i1+1,k€ip,j€i+1,k = p2né i1.j€i14+1,k%i2,j € +1,k

Jj=1 k=1 i1#iy Jj=1 k=1 ij#iy

=

1 p
TZZ 11] l1+1 k)E( lz])E( lz+1k p n4EZZGHJ i1+1, kelzj 12+1k
iy £iy

j=k i1#iy

ik
1
= (7) p2n4Z Z '11 11+1])E(6121) (lz+11 +2p2n4EZ Z 6111 '1+1J 12]

j=1 171;&111 j=1 ij=ip+1
i1#ip

-0() o) room) =o(7)

According to Chebyshev’s inequality, for any € > 0

P(|Qz|>s)svare—(2(b)=o<i),

n2

which is summable. Hence, based on Borel-Cantelli lemma, Q; — 0, a.s. Thus, we have
1 o*
—tr (51) -y, as.
p

For Jtr <f{>{> we obtain that

p p 1,17 p p LT _ 1,170
NGBS 3p it LS o) Jhati A
" 1) = |y 2 p T2
p p P o 1€ P n
p p 0T _ 1,170
Sy ddadl e
= 0 0
P w2 |I€PIEP

I
'l\‘ﬁ:
M-u

-,
Il
_
=
1l
_-

T T
g as g n ( n 1)+ A R
02 02 02 02
n? lle11? lexll? ll€;'l1? lexll?

p p o7 11T o
1 € €6 € n < n ) n ‘ n ‘
=->) —1) 5 - 1)+ |5 -1+ |55 — 1
2 n? i ||€JQ||2 €212 ||€](4J||2 llepl?

2
1 = n
§ftr(Sl)- max T_] + 2 max -1
p 1=j=p | [|€;']|? 1<i=p | || €] €012
Since Eleq 4 |* < o0, by the Lemma 2 from Bai and Yin [6], we know
no 2
PN
max @ -1, —>0, as.,
1<sj=<p n
and this implies that
ik 1| >0 (5)
max |——— — 1| - 0, a.s.
1<j<p Z?:l efj

Since %tr <§T> converges to a constant y which has been shown above, we have

1 D 1 e
e (&) - S (3)
p p

It follows that %tr (ﬁ”{) — y a.s., and then

— 0, a.s.

1 /=, 1/,
Wy = —tr (R]> + —tr (Sl) — 2y, as.
p p
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For the term of W, we have

p 0T 1,17 0
- - N 1 € €€ €
— € € € € _ j k%k %j
Wi = 7tr<(R1 -5) (R - 5) )_ D IPIEE
j=1 k=1
T 14T T 14T
2 € elel €1 P €& elel €
j j i Sk i
_722 0110 +7Z ooz = 8 2%
et AL redeA CARC
where
T 14T T 14T T 14T T 14T
o 1Xp:Xp: € e € 1€ €6 € Temn € 66 € 1€ €6 €
=7 0)2 02_722 2 ’ 4:722 0011120 _722 2
p =D g led® Pl n i e lellled P n
For Qq,
T 14T T 14T T 14T
DS LAY S L TP T MU
1E011€0 2 - 2 0110
P dllgl pSe n P [N
p p 0T _1,.1T_0
1 € €€ € n n n n
:7221 = j Vvn 1 Vvn Y Vvn 1 Jn 1
- 0 0
L P> leg11? lef11? leg11?
2
1 ~ n n
sftr<’{)- max v -1 + 2 max v -1/ 1.
15j5 0 15j5 0
P == €2 == | 1€
According to Lemma 2 of Bai and Yin [6], we have
Jn
max |———— 1| - 0, a.s. (6)

1<j<p n 2
. > e €ij

Therefore Q4 — 0 a.s. Given that the following result
1 ~ 1 ~
Q3 = —tr <RT> — —tr (S’{) — 0, a.s.
p p
has been proved, we have
1 ~ - ~ ~\NT
W= ((Rﬁ - si) (R§ -§9) ) -0, as.
Together with Wy, W,, we obtain
L4 (FﬁT, Fg’f) -0, as.
The procedure of the proof will not change for any given positive integer 7. Therefore, we have

L4 (Fﬁ’?, Fg’v?) -0, as. O
Proof of Theorem 2. Theorem 2 follows from Lemmas 2, 4, 6 and Theorem 4.1 from Wang and Yao [26].

Lemma 6. Under the assumptions in Theorem 1, let Amax(§j) and kmax(ﬁj) be the largest eigenvalues of §j and li’;, respectively.
As p, n — oo, we have

‘\/)hmax(ﬁj) - \/)Lmax(gf) - 07 as.
0 T T T .
Proof. Denote ¢ = (€140 - -+ €nj) € = (€rs - -+ €nsrj) - Rewrite
~ 1 ~ 1
R = EDEJETD, S = HEJEI,
— N NG _ (0 0 _
where D = diag <HT1’H e m) Eo= (€3, ..., ep) and E; = (€], e;)
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Under the conditions of Theorem 1, according to Theorem 4.1 from Wang and Yao [26], we have
Amax(SY) = b, as., (7)

where b = } (=14 20y + 8y* + (14 8y)*?) is the right end point of the support of the LSD of R¥. Our target is to show
that

\/Amax(ftr)— \/Amax(s»;) -0, as. (8)

For any matrix A, we denote ||A||, as the spectrum norm of A, which is defined as the square root of the largest eigenvalue
of AAT. By Corollary 7.3.8 from Horn and Johnson [15], we have

\/)\max(ﬁr) - \/)\max(gj) = ||ﬁ; - §§ ”2 (9)

Meanwhile the spectrum norm satisfies the triangle inequality and ||AC||; < ||A||; - ||C||; for any A and C, then we have

1

~ _ 1 1 1
IR <12 = | DEGED — _DE(E. + - DEJE. — _EjE:
n n n n

1 1
~DEJE.D — —EJE,
n n

2 2

1 1
—DE.E, — -E.E
n ot 0T

IA

1 1
-DE,E.D — -DE E,| +
n n

2 2

1 . 1 .
= |- ®—1+DEE ®-D| + | (D-DEE
2

2

1 T
<|-®-DEE.®-D
n

1 T
+2|-D-DEE,
n

2 2

1
=< EEJET DS ([P (10)

2

1
D1+ 2 Hnaga

2

Since Eleq 1 |* < oo, by Lemma 2 of Bai and Yin [6], we know that

Il 1>
4 1| =0, as,
1<sj<p n
which implies
ID—Ill2 = max | =~ — 0, a.s. (11)
1555 | €]

This together with (7) and (10) proves (8). O
Proof of Lemma 1. By using the fact §¢ = S¢ + &' and Theorem A.44 in Bai and Silverstein [3], we have

|5 - Fs

Q€ (QE € (€ ‘l - 1

= ||st(s,)T _ pSEs)T ” < frank(si B Si) 1,
p p

where [|f || = sup, |f(x)|. Hence, FS: almost surely converges to FS:. [

Proof of Lemma 2. Let s;(A) denote the largest singular value of matrix A. By Corollary 7.3.8 from Horn and Johnson [15]
and the strong law of large number, we have

|s1(SE) — 51(8¢)| < 8¢ —S¢||2 = llee" |, = Ve e — 0, as. (12)
By this equation and (7) imply that
|s1(8¢) + 51(S)| — 2vb, ass.

Hence,

Aomax(87) = Amax(S7)] < [51(58) = 51(S)| - [s1(S8) +51(85)| > 0, as.

This completes the proof of Lemma 2. O

Proof of Lemma 3. Recall that D = [diag(S$)]~"/2. Denote D = [diag(S§ + €' )]~"/2. By definition, we can write
R¢ = D(S¢ + €€ )D = R¢ + D(e€' )D,

10
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where ﬁi = ﬁij). By Theorem A.44 in Bai and Silverstein [3], we have

[F% — FRE0T | < Lranbee by = L - o.

p p

It suffices to prove that

L(Fﬁi(ﬁi)T, FR5<R5>T) ~0, as (13)

By Theorem A.47 in Bai and Silverstein [3], we have

L(FREDT, PREEOT) < 2Re - RS — Rl + IR — RE [
In view of this inequality, to prove (13), we need to show that [[R¢ ||, is bounded and |[R¢ —R¢ ||, converges to zero almost
surely.

First, we consider [|R¢||,. By basic norm inequality, we have ||R¢|l> = [DSED||, < [|S¢ |2 - [|D]3. It follows from (7) and
(12) that

IS¢ll, — /b, as. (14)

By using (6), we have

n n
D]z = max L < max L —14+1—>1, as. (15)

1<j<p n 2 1gj<p n 2
Dic1 €y Dic1 €y

Hence, we conclude that ||R¢ ||, is bounded almost surely.
Next, we consider [|R¢ — R¢||,. By definition, we write

IRE — R‘||2_HDS‘D DS‘DH _”DS‘D DSD + DSD — DS‘DH (ID]l2 + ID12) - [IS¢1l2 - IID — Dl

From the estimation (15) and the fact ||D||2 < |ID]|2, we obtain that both ||D||; and ||]3||2 are bounded almost surely. Note
that

DB m 1 1 . (S5 + (€€ ") — v/(Sp)s
2 = Max — < Mmax
1<j<p \/(S(e))jj \/(Se jj + E@T i 1<j<p (Sé)jj
J (€N ,/ Y€
1</<p ( O)JJ B 1<] p Zl 161]

where the second inequality follows from /x +y < /x+./y for any x, y > 0. This shows that ||D—]3||2 — 0 is equivalent
to max<jep[(Y_iLy €j)/ (X1, €)I> — 0. By the trlangular inequality, we have
1
max | ———|. (16)

N 2
max D i €ij < max i
N n =X N n N
15i<p \ D1y 612;' 1Si<p | Y iy Eizj IS<p (Zn e2)2
; ; i=1€ij

From (5), we obtain the first term on the RHS of (16) converges to zero almost surely. By Lemma 2 in Bai and Yin [6], we
have

Dz €€l

— 0, a.s., max

1g<p

as.,

2
n
1
max | — Zei‘j
) n 4
i=1

1<j<p

n
1
—22 eizj — 0
ne 4 "

i=1

which imply that

1
max |— E €jerj| — 0, as.
1<j<p | N2 4=
il

This estimation, together with

n2 2,75,/ 61]61 1 1
max [I——"—— = E €ijei | < max | —————— — 1| -max | = > e,

; - 2
159<p | (1 ~n 2 1<j<p 1<j<p | N? =
(E Dic 61,1 i n iz

_.
'ﬂ" =
-

M
N
N—
[3S)
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and (5), implies that the second term on the RHS of (16) also converges to zero almost surely. Hence, we conclude that
IR — R¢|l, — 0a.s. This completes the proof of Lemma 3. O
Proof of Lemma 4. By Weyl's theorem and the norm inequality [AAT —BB' ||, < 2||A|> - |[A — BJ|; + |A — BJ|3, we have
| Amax(RE) — max(RE)| < RS = R [l2 < 2/IRE Iz - RS — RE 2 + IRE — RE 13 (17)
In the proof of Lemma 3, we show that the RHS of this inequality converges to zero almost surely. Thus,
| Amax(RE) — Amax(RE)| = 0, ass. (18)
An argument similar to the one used in (17) shows that
| Amax(RE) = Amax(RY)| < |RF = RY |2 < 2IIRE[l> - IRE — RE[l + RS — RE 3.
By definition of R‘ we obtain
IRS 11> < 11S<11> - D13 < IS5 1 - D13,
which, together with (14) and (15), implies that ||ﬁ§ |l2 is bounded almost surely. Since ﬁ§ = ﬁi + ﬁ(EET)f), we have
IRS —RE |l < [l€€" |l - [DII3 < Ve e- [D]3.
By the strong law of large number and (15), we obtain that ||ﬁ§ - lii |l converges to zero almost surely. Hence,
|)\max(ﬁj) - )Lmax(ﬁt” — 0, a.s.,
which, together with (18), completes the proof. O

3.3. Conjecture about the smallest eigenvalue of R}

We conjecture that the smallest eigenvalue of R has similar asymptotic behavior to the largest eigenvalue in
Theorem 2. Specifically, we conjecture that, under the same assumptions as in Theorem 2, Apin(R}), namely

the smallest eigenvalue of R, ifp<n
the (p — n + 1)th smallest eigenvalue of R}, ifp > n,

)\min(Rt ) = {

will converge to the left edge of the support of the LSD of R}.
First of all, the standardization procedure applies for Amin(R%). Lemmas 2 and 4 can be extended to the smallest

eigenvalue case, which means that we can turn our attention to the non-centered sample auto-correlation matrix Amln(R ).

Secondly, mm(R*) shares the same limit with that of the non-centered sample auto-covariance matrix Amln(S*) By
Corollary 7.3.8 from Horn and Johnson [15], we have a stronger result than (9):

VH(RE) =/ 2i(S%)

which, together with (7), (10) and (11), implies that

\/)\‘lTlll'l \/)"mln

where and Amm(S*) is defined in the same way. This together with (7) shows that ‘k

surely. Hence,
\/)\mm R*

By estimations above, we conclude that
|Amin(RE) — Amin(S)| = 0, as.,

that is, Amin(R¥) and Amin(S?) share the same limit.

To the best of our knowledge, the asymptotic limit of Anin(S}) has not been rigorously derived in the current literature.
In the spirit of the well-known Bai-Yin Law (Bai and Yin [6], the smallest and largest eigenvalues of large-dimensional
sample covariance matrix converge to the left and right endpoint of the Marcénko-Pastur law, respectively), we conjecture
that Amin(S7) (also Amin(R%)) will converge to the left endpoint of the support of LSD of S}, which is 0 for 0 <y < 1 and
(—1420y+8y> —(1+ 8y)3/2)/8 for y > 1. Fig. 4 compares the boxplot of smallest smgular value with its corresponding
limit, i.e. the left endpoint of the LSD. Empirical evidence in Fig. 4 convinces us of the correctness of this conjecture. The
potential route to prove this result is through the moment method used in Bai and Yin [6] and Wang and Yao [26]. We
will leave it for future study.

max
1<i<p

< IIR? = S¢1l2,

0, as.,

1 /2
min

‘\/xm RY) + Amin(82)| > 0

1/2 .
mln(S*) is bounded almost

(R*) + A

‘)\mm ) )‘«mm a.s.

12
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Fig. 4. Boxplot of the smallest eigenvalue of R} = R¢(R)" based on 1000 Gaussian samples. In all panels, the horizontal line indicates the left
endpoint of its LSD, and the ratio of the dimension to the sample size is set as y € {1, 1.5, 2, 2.5} from top to bottom and left to right, respectively.

4. Application
4.1. Estimation of total number of factors

High-dimensional factor models have met a large success in data analysis across many scientific fields such as
psychology, economics and signal processing, to name a few. Their appeal mainly relies on their capability to reduce the
generally high dimensionality of data to much lower-dimensional common factor components. Determining total number
of factors is a central problem in high dimensional factor modeling.

Consider a factor model for high-dimensional time series proposed by Lam and Yao [18]: for 1 < i < n, let y; denote
the p-dimensional vector observed at time i. It consists of two parts, a low-dimensional common latent factor sequence
f; and an idiosyncratic component ¢;:

yvi=Bfi+¢, ic{1,2,...,n}. (19)

Here B is a p x k factor loading matrix satisfying B'B = I, {¢;} is a p-dimensional white noise with E(¢;) = O,
Var(e;) = ozlp. The k-dimensional factor sequence {f;} is a time sequence which is temporally correlated.

Our goal is to develop an estimator of the number of factors k in the model (19) using sample auto-correlation matrix of
the observed sequence {y;, 1 <i < n}. In the current literature, there are some other estimators of k using different sample
covariance/correlation matrices . To name a few, Li et al. [20] proposed an estimator based on eigenvalues of the lag-1
sample auto-covariance matrix S‘]'. Denote the eigenvalue ratios (ER) between consecutive eigenvalues of M = S‘{(S’{)T as

0 = Aj+1(M)/2;(M), jef{1,2,...,p—1},
Li et al. [20] proposed the following estimator:
Keryeo, = {first j > 1 such that §; > 1 —d,} — 1,

where 0 < d, < 1 is a positive constant. They proved that IAcERamv is a consistent estimator for k under certain mild
conditions. It is possible that two consecutive spike eigenvalues are very close to each other and their ratio exceeds the
threshold 1—d,,, which may lead to underestimation. For the sake of robustness, Li et al. [20] also proposed an equivalent
reinforced estimator

kin.., = {firstj > 1such that ¢ > 1 —d, and 61 > 1 —dy} — 1. (20)

13
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More recently, Fan et al. [12] developed a tuning-free scale-invariant adjusted correlation thresholding (ACT) method
based on the sample correlation matrix Rz. For any given 1 < j < p, define

1 [ 1 !
mie) =55\ 2 S )
m,(z) = —(1 = Ga1)z" "+ Gaamaiz),  Af(RY) = —1/m, ;(A(RY)),

where ¢ ,—1 = (p —j)/(n — 1). Fan et al. [ 12] developed the following estimator of total number of factors:

kACT_max{] )f )>14/p/(n—1) ] (21)

Now we aim to develop an estimator of k using sample auto-correlation matrix. As mentioned in the introduction, the
sample auto-correlation matrix RY of y; is a finite rank perturbation of R of €;. Take T = 1, then we can use the eigenvalues
of M = RI(R})" to estimate the number of factors k. The basic idea is to count the number of spike eigenvalues of M
which are larger than the bulk eigenvalues of Rj(Rj )T. Specifically, take the canonical form where B = (0:’1 k) as an
example. Since

n

1 _ _ 1 < . . 1 < _
S =72 Wi-Vy-9 =B ( — (i Dt - f)T> B +B (n_] > (i — e — E)T)

i=1

1 n _ _ 1 n . .
* (n -1 PBCEDIG —f)T) BT + — D (ei—&Xei— &) £ Pf 4S5,

i=1 i=1

only the first k diagonal elements of diag(Pg) are non-zero. Then diag(Pg) = diag(Sg)—diag(Sg) is a rank-k diagonal matrix.
This implies that the difference A := Dy — D, has finite rank k, where D, = [diag(S§)]~"/? and Dy = [diag(S})]~"/%.
Similarly, 8§ = P% + S¢ and only the first k diagonal elements of diag(P%) are non-zero. Therefore, the lag-1 sample
auto-correlation matrix

RY = DyP5Dy + (D + A)S(D, + A) = DyP5Dy + DS A + ASD, + AS5A +DS¢D,,

finite rank

is a finite rank perturbation of R§ = D.S¢D. Thus M = R(R’)" and R} = R¢(R¢)" share the same LSD while asymptotically
M has k extra spike eigenvalues. We can use the right endpoint of thls LSD as a threshold for filtering these spike
eigenvalues. The right endpoint is determined by our Theorem 2.

In this way, we introduce our estimator of total number of factors:

feap = max[] A(RY) > b, + by, (22)

where b, = (—1+ 20c, + 8¢ + (14 8¢;)*?) /8 (see Theorems 1 and 2) with ¢, = p/n and h, > 0 is a tuning parameter

dealing with the fluctuation of the largest bulk (non-spike) eigenvalue. The subscript of kre represents the abbreviation
of Right Endpoint.

Remark 3 (Calibration of Tuning Parameter h,). Practically, we need to choose an appropriate tuning parameter hy,. It is
very likely that the asymptotic distribution of n®3(Ax1(M) — bg,) is the same as that of n*3(14(RY) — b, ). Using the
similarity, we propose an a priori calibration of hy:

(i) For any given pair (p, n), the empirical distribution of n2/3(k1(R’§) — b,) is obtained by sampling a large number (say
2000) of independent replications of standard Gaussian vectors €; ~ N,(0, I,). Its lower 99.5% quantile qp n 9955 iS
obtained from this empirical distribution.

(ii) Using the approximation

Pr{nz/B(kkH(M) —be,) < Qp,n,995%} ~ Pr{nz/g(Al(RT) —bg,) < qp,n,99.5%} = 99.5%,

we calibrate hy, at the value hy, = n=2/3 - q, 99 54
This tuned value of h, is used for all given pairs of (p, n) in the simulation studies in Section 4.2.
Moreover, we propose another ratio-based estimator of total number of factors k. Denote
6 = A (M)/A(M),  je(1,2,...,p—1}.
as the sequence of ratios between consecutive eigenvalues of M, we propose
ReR,cor = {first j > 1 such that 6 >1-— El,,} -1,

14
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where 0 < d, < 1 is a positive constant. The subscript of IAcERm represents the abbreviation of Eigenvalue Ratio of sample
auto-correlation matrix. A robust version of this estimator is given by

kin.. = {firstj > 1suchthat 6 > 1—dy and 1 > 1 —dn} — 1. (23)

Remark 4 (Calibration of the Tuning Parameter d, and d,). Similarly with kre, we need to choose tuning parameters d,
and d,. d, is the same with d,, and we take the calibration of d,, as an example. We use the asymptotic distribution of

2/3 ( 22(Me¢) ; 2/3 ( Her2(M) _ T i
n® <ﬁ - 1) to approximate that of n?/ (m - l), where M, = S¢(S¢)". Specifically,

1. For any given pair (p, n), the empirical distribution of n®/3 % -1

2000) of independent replications of standard Gaussian vectors €; ~ N,(0,I,). Its lower 0.5% quantile Gy, n 5% is
obtained from this empirical distribution.
2. Using the approximation

A M - A M -
Pl‘{nz/3< k(M) 1) < Qp,n,os%} ~ Pr{n2/3 <M - 1) < Qp,n,oAs%} = 0.5%,
Ae1(M) Ar1(Me)

we calibrate d,, at the value d, =n~—

is obtained by sampling a large number (say

23 \Gp.n,05%-

This tuned value of d, is used for all given pairs of (p, n) in the simulation studies in Section 4.2.
4.2. Numerical performance

_ In this section, we conduct some simulation experiments to examine the finite-sample performance of our estimators
kre and k;Rmr defined in (22) and (23). We compare these two estimators with two other estimators in the current

literature, IQ;RQCOV from Li et al. [20] and I?ACT from Fan et al. [12], which are introduced in (20) and (21) respectively.
We adopt the same simulation settings as in Lam and Yao [18] and Li et al. [20] where the p-dimensional random
vectors {y;, 1 <i < n} are generated by
y; = Bf; + ¢, € ~ Np(ﬂ, lp), (24)
fi=0f_ +e, e ~ N0, IN).

Here B is a p x k factor loading matrix which can be decomposed as B = UDV", where U and V are matrices of sizes p x k
and k x k with orthogonal unit columns and D is a k x k diagonal matrix. We consider the following two scenarios:

M k=2

10 08 0 10
D=<o 2)’ @=<0 0.8)’ F=<0 1)

(I k= 3:

1 0 0 07 O 0 3 00
D=(0 1 0]}, ®@=|0 08 0], I'=(0 2 0
0 0 1 0 0 09 0 0 1

The dimensions and sample sizes are taken to be p € {100, 200, 400, 600} and n = {0.5p, 2p}. For each scenario, we
report the empirical percentages of true estimation (k = k), underestimation (k < k) and overestimation (k > k) of
the number of factors k based on 1000 replications in Tables 1 and 2. As shown in Tables 1 and 2, our newly proposed
estimators k;Racor and kg have comparable performance with kERacw and kacr. All estimators are consistent and converge
quickly when n = 2p and slower when n = p/2.
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Table 1

Comparison of four estimators l?Aq, IAc’E‘Rmv. I?;Rmr and IAcRE in the factor model (24). Data
is generated following scenarios (I) with true number of factors k = 2. This table reports
the empirical percentages (%) of accurate estimation (lAc = k), underestimation (IAc < k) and
overestimation (IA< > k) of four estimators based on 1000 replications. Accuracy rates are
highlighted in bold letters.

D Percentages n=2p n=p/2
ACT ER,, ER:, RE ACT ER,, ER!, RE
k=k 988 984 98 97.3 274 223 202 111
100 k<k 06 09 0.9 2.7 725 776 798 889
k>k 06 07 1.1 0 01 0.1 0 0
k=k 979 995 993 100 503 528 503 368
200 k<k 0 0 0 0 484 47 494 632
k>k 21 05 0.7 0 13 02 0.3 0
k=k 965 100 99.7 100 751 824 816 753
400 k<k 0 0 0 0 209 169 179 247
k>k 35 0 0.3 0 4 0.7 0.5 0
k=k 966 989 993 100 87.1 932 929 922
600 <k 0 0 0 0 94 65 6.8 7.8
k>k 34 11 0.7 0 35 03 0.3 0
Table 2

Comparison of four estimators I?Ag, IQ;RMV, IQERAM and IQRE in the factor model (24). Data
is generated following scenarios (II) with true number of factors k = 3. This table reports
the empirical percentages (%) of true estimation (IA< = k), underestimation (IA< < k) and
overestimation (IA< > k) of four estimators based on 1000 replications. Accuracy rates are
highlighted in bold letters.

D Percentages n=2p n=p/2
ACT ER:,, ER%, RE ACT ERY,, ER:, RE
k=k 999 992 985 997 325 32 308 8
100 k<k 01 0 0 0.3 675 667 681 92
k>k 0 0.8 15 0 0 13 1.1 0
k= 100 994 994 100 773 802 79 56.8
200 k<k 0 0 0 0 22 189 197 432
k>k 0 0.6 0.6 0 07 09 13 0
k= 998 993 988 100 97 989 981 968
400 <k 0 0 0 0 12 08 1 32
k>k 02 07 12 0 18 03 0.9 0
k=k 987 995 993 100 982 985 99 99.6
600 <k 0 0 0 0 03 01 0.1 0.4
k>k 13 05 0.7 0 15 14 0.9 0
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