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Abstract

This paper studies the asymptotic spectral properties of the sample covariance matrix for high-
dimensional compositional data, including the limiting spectral distribution, the limit of extreme
eigenvalues, and the central limit theorem for linear spectral statistics. All asymptotic results are de-
rived under the high-dimensional regime where the data dimension increases to infinity proportion-
ally with the sample size. The findings reveal that the limiting spectral distribution is the well-known
Marcéenko-Pastur law. The largest (or smallest non-zero) eigenvalue converges almost surely to the
left (or right) endpoint of the limiting spectral distribution, respectively. Moreover, the linear spec-
tral statistics demonstrate a Gaussian limit. Simulation experiments demonstrate the accuracy of
theoretical results.
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1 Introduction

In recent years, there has been increasing interest in the analysis of high-dimensional compositional data
(HCD), which arise in various fields including genomics, ecology, finance, and social sciences. Compo-
sitional data refers to observations whose sum is a constant, such as proportions or percentages. HCD
often involve a large number of variables or features measured for each sample, posing unique challenges
for analysis. In the field of genomics, HCD analysis plays a crucial role in studying the composition and
abundance of microbial communities, such as the human gut microbiome. Understanding the micro-
bial composition and its relationship with health and disease has significant implications for personalized
medicine and therapeutic interventions.

Statistical inference in HCD involves microbial mean tests, covariance matrix structural tests, and
linear regression hypothesis testing. These inferences are intricately linked to the statistical properties of
the sample covariance matrix. Mean tests typically utilize sum-of-squares-type and maximum-type statis-
tics for dense and sparse alternative hypotheses, respectively. Cao et al. [2018] extended the maximum test
framework by Cai et al. [2014] for compositional data. However, there’s a gap in having a suitable sum-of-
squares-type statistic for dense alternatives in HCD mean tests. Many sum-of-squares-type statistics, like
Hotelling’s T2-statistic, rely on the sample covariance matrix. For bacterial species correlation, Faust et al.
[2012] introduced the permutation-renormalization bootstrap (ReBoot), directly calculating correlations
from compositional components. Shuffling is suggested due to compositional data’s closure constraint,



introducing negative correlations. Yet, compositional data’s unique properties require an additional nor-
malization step within the same sample post-shuffling, potentially impacting the theoretical validity of
permutation and resampling methods. Additionally, resampling increases computational complexity for
p-value calculation and confidence interval construction. To address these challenges, Wu et al. [2011]
developed a covariance matrix element hypothesis testing method, allowing control over false discovery
proportion (FDP) and false discovery rate (FDR). All these studies are closely related to the sample co-
variance matrix of HCD.

Current research predominantly focuses on sparse compositional data. In dense scenarios, researchers
often turn to the spectral properties of sample covariance matrices. Despite this, there is a notable gap
in the field of random matrices where specific attention to structures resembling compositional data,
where row sum of the data matrix is constant, is lacking. Statistical inference for HCD encounters chal-
lenges arising not only from constraints but also from high dimensionality. Recognizing the crucial role
of spectral theory in sample covariance matrices is also vital for addressing statistical challenges associated
with high-dimensional data. Importantly, while previous research on statistical inference for HCD has
overlooked studies under the spectral theory of sample covariance matrices, our work takes on these chal-
lenges from a Random Matrix Theory perspective. Existing literature extensively covers spectral proper-
ties of large-dimensional sample covariance matrices, but most results rely on independent component
data structure, i.e. Z = I'X, where I' is determined, and X has independent and identically distributed
(i.i.d.) components. Seminal works by Maréenko and Pastur [1967] and Jonsson [1982] established the
limiting spectral distribution (LSD) of the sample covariance matrix n™" XX, where X is an i.i.d. data
matrix with zero mean, leading to the well-known Marc¢enko-Pastur law. Subsequent research by Yin
and Krishnaiah [1983] and Silverstein and Bai [1995] extended these findings to the sample covariance
matrix n~'XEX' for data with a linear dependence structure. Zhang [2007] extended to the general
separable product form n"TA'/2XBX A'/2 where A is nonnegative definite, and B is Hermitian. An-
other important area of interest is the investigation of extreme eigenvalues. Johnstone [2001] explored
the fluctuation of the extreme eigenvalues of the sample covariance matrix n! XX/, proving that the
standardized largest eigenvalue follows the Tracy-Widom law. Related extensions include sample covari-
ance matrices with linear dependence structures [El Karoui, 2007], Kendall rank correlation coefficient
matrices [Bao, 2019], among others. Considerable attention has also been given to the study of linear
functionals of eigenvalues. Bai and Silverstein [2004] established the Central Limit Theorem (CLT) for
the Linear Spectral Statistics (LSS) of the sample covariance matrix n"" A2XX A2 later extended
to sample correlation coeficient matrices [Gao et al., 2017], and separable product matrices [Bai et al.,
2019]. To summarize, existing results in spectral theory of large dimensional sample covariance matrix
predominantly rely on independent component data structure which, unfortunately, HCD does not fit
in.

Specifically, current second-order limit theorems do not apply to HCD, making the exploration of
spectral theory for HCD with distinct constraints crucial. This paper delves into spectral theory for sam-
ple covariance matrices of HCD, including LSD, extreme eigenvalues, and CLT for LSS. Analyzing HCD
faces challenges due to compositional data’s specific dependence structure, making existing techniques
for i.i.d. observations less applicable. However, we can assume that HCD are generated from unobserv-
able basis data, while the underlying basis data follow independent component model structure. In this
way, spectral analysis of the sample covariance matrix of HCD can be approached through the basis data.
In fact, the structure of the sample covariance matrix of HCD is similar to that of the Pearson sample
correlation matrix in basis data. Therefore, we leverage the analysis methods of the spectral theory of the
Pearson sample correlation matrix to study the spectral theory of the sample covariance matrix of HCD.



In the field of random matrices, research on the spectral theory of the Pearson sample correlation ma-
trix based on independent data is relatively mature. Jiang [2004] demonstrated that the LSD of sample
correlation matrix for i.i.d data is the well-known Marcéenko-Pastur law. Gao et al. [2017] derive the CLT
for LSS of the Pearson sample correlation matrix. The derivation of spectral theory for the sample covari-
ance matrix of HCD can benefit from methods in this context. The LSD of the sample covariance matrix
for HCD in Theorem 2.3 is established following the strategy in Jiang [2004], and we further investigate
the extreme eigenvalues in Proposition 2.4. The proof strategy of CLT for LSS in Theorem 2.5 follows
the methodologies outlined in Bai and Silverstein [2004] for the sample covariance matrix and Gao et al.
[2017] for the sample correlation matrix. However, due to the dependence inherentin HCD, certain tools
from these works cannot be directly applied to the sample covariance matrix of HCD. In response, we
introduce new techniques. Specifically, we establish concentration inequalities for compositional data.
One of the central ideas of the paper, grounded in concentration phenomena, permeates the entire proof
(details in Section 4.2 and Section 4.3), where we develop three crucial technique lemmas (see Lemmas 4.3
- 4.5) essential for the proof. Finally, it is noteworthy that the mean and variance-covariance in Theorem
2.5 differ from those in Bai and Silverstein [2004], and additional terms are present in both the mean and
variance-covariance.

The paper is organized as follows. Section 2.2 investigates the LSD and extreme eigenvalues of the
sample covariance matrix for HCD. Section 2.3 establishes our main CLT for LSS of the sample covari-
ance matrix for HCD. Section 3 reports numerical studies. Technical proofs and lemmas are relegated to
Appendix.

Before moving forward, let us introduce some notations that will be used throughout this paper. We
adopt the convention of using regular letters for scalars and using bold-face letters for vectors or matrices.
For any matrix A, we denote its (i, j)-th entry by Ay, its transpose by A, its trace by tr(A), its j-th largest
cigenvalue by A (A), its spectral norm by ||A|| = /A1 (AA’). For aset of random variables {X;, }%°_; and
a corresponding set of nonnegative real numbers{a,}3_;, we write X;, = Op(a, ) ifforany ¢ > 0, there
exists a constant C > 0 and N > 0 such that P(|X,,/an.| > C) < ¢ holds for all n > N; and we write
Xn = op(ay) if limy 0 P(|Xn/an| = €) = 0 holds for any & > 0; and we write X,, 3" a (X, 5 q,
resp.) if X,, converges almost surely (in probability, resp.) to a. We denote by C and K are constants,
which may be different from line to line.

2 Main Results

2.1 Preliminaries and Notations

Let X, = (x1,...,Xn)’ denote the n X p observed data matrix, where each x; represents compositions
that lie in the (p — 1)-dimensional simplex 8P~ ={(y1,...,Yp) : 2?21 y; =1, y; = 0}. We assume
that the compositional variables arise from a vector of latent variables, which we call the basis. Let W, =
(Wij)nxp denote the n x p matrices of unobserved bases, where wy;’s are positive and i.i.d. with mean
i > 0 and variance 0. The observed compositional data is generated via the normalization

_ Wy
= =5 ,

2_1—1 Wit
1

The unbiased sample covariance matrix of Xy, is defined by S;, n = 7 (Crn X)) (Cn Xy ), where C,, =

I, — (1/n)1,1/, 1,, is a n-dimensional vector of all ones, and N = n — 1 is the adjusted sample size.

n’

Xij 1<1<n,1§]<p



We rescale Sy, N as ]
Bp,N IPZSn,N — N(pxn)lcn(pxn)

For any p x p Hermitian matrix B, with eigenvalues Ay, ..., Ay, its empirical spectral distribution (ESD)

is defined by

1 P
FBP (x) = ]; Z I{)\i(gp)gx},
i=1

where I} denotes the indicator function. If FB» (x) converges to a non-random limit F(x) as p — oo,
we call F(x) the limiting spectral distribution of B,,. The LSD of By, is described in terms of its Stieltjes
transform. The Stieltjes transform of any cumulative distribution function G is defined by

1

dG(A), z€Ct:={z:3(z) > 0}
A—z

mg(z) :J

Many classes of statistics related to the eigenvalues of the sample covariance matrix By, N are important
for multivariate inference, particularly functionals of the ESD. To explore this, for any function f defined
on [0, 00), we consider the linear spectral statistics of By, N given by

Jf(x) dFBrN(x) = f(As),

12
P
where A;,1=1,...,p, are eigenvalues of B, N.

In this paper, we study the asymptotic spectral properties of B, n, including the LSD (see, Theorem
2.3), the behavior of extreme eigenvalues (see, Proposition 2.4), and the CLT for LSS (see, Theorem 2.5).

2.2 Limiting spectral distribution and Extreme eigenvalues

Analyzing HCD poses challenges due to its unique dependence structure, making existing techniques for
i.i.d. observations less applicable. To overcome this difficulty, we assume that the compositional data is
generated from basis data and the basis data follows the commonly used independent component struc-
ture. Specifically, the unbiased sample covariance matrix of X,, is defined by

1 1.
n ==X an:_ An nAan
Snn = X C SWaALC ,
where
1
Yowy 0 Wi s Wiy
0 T ) N Whe S

Here we assume Wy, has i.i.d. components wyj satistying E(wi;) = p > 0, Var(wy;) = o2. Recall that
the Pearson sample correlation matrix for Wi, expressed as
] V) i 1 ~ ! ~
R, ==X, C. X, = EAPWT‘C”W“AP’

n=—
n



n _— 1/2 — n .
where [|[wj]|, = {(1/n) > (wy —wj)z} Wi =(1/m) >, wij=1,---,p,and

N Wi Wip willy' 0 N

X, = : : : : = WLA,,.

-
Wnt o0 Wap /o0 0 e [[wpll; PxP

It can be seen that the normalizing matrix A, of Sy, N is very similar to /N\p of R,,. The former uses
(27 wij )~! for normalization, while the latter utilizes || w; H;] . This allows us to leverage the tech-
niques from the spectral theory of the Pearson sample correlation matrix in studying the asymptotic
spectral properties of the sample covariance matrix for HCD.

Before diving into linear functionals of eigenvalues of By, N, we first explore its LSD and extreme
eigenvalues. Specifically, suppose the following assumptions hold,

Assumption 2.x. {wy; > 0,i=1,...,n,j = 1,...,plareiid. real random variables with Ew,, =
uw>0E(w —n)? =o02andEw, —pu* < oo

Assumption 2.2. cn = p/N tends to a positive c > 0 asp, N — oo.

Theorem 2.3. Under Assumptions 2.1 and 2.2, with probability one, the ESD of By, N converges weakly to
a deterministic probability distribution with a density function

) = { e VO X = a), il
0, otherwise,

(1)

and a point mass 1 —1/catx =0ifc > 1, wherea = g—i(] —/C)2andb = 5—2(1 +4/c)2

The proof of Theorem 2.3 is postponed to Appendix.

The LSD F¢(x) has a Dirac mass 1 — 1/c at the origin when ¢ > 1. We see that m(z) = m(z). For
eachz € C* = {z: J(z) > 0}, by Theorem 2.3 the Stieltjes transform m(z) = mgc(z) is the unique
solution of m = Gz/uz(]_l_czm)_z in theset{m € C : 1% + m(z) € C'}. Define m(z) to be the
Stieltjes transform of the companion LSD F¢(x) = (1—c¢)8¢ +cF¢(x), where 8 is the point distribution

at zero. Then m(z) is the unique solution in {m € C: 1% + m(z) € C*}of the equation
1 co?/u?
m(z) 1+ 0%/wm(z)’

Proposition 2.4. Under Assumptions 2.1 and 2.2, we have

z=—

ze C*. (2)

2
o
T (] - \/E)27
L
where Amax(Bp,N) s the largest eigenvalue of By, N, and Ain (By N) is the smallest non-zero eigenvalue of
By N. Furthermore, for any £ > 0,17 > ﬁ—;(] + /)2 and 0 <1y < ﬁ—i(] — /€)% - Ligcc<1), we have
I[D(}\max(]gp,l\l) = Th) = O(nie) and IED(}\min(Bp,N) < 112) = O(niz)'
The proof of Proposition 2.4 is postponed to Appendix.

Remark 1. The LSD has support [ﬁ—;(] —/c)?, 5—2(1 + \/E)z] , where it has a density function. The

results of extreme eigenvalues find application in locating eigenvalues of the population covariance matrix
and in proving the CLT for LSS. Proposition 2.4 shows that with probability 1, there are no eigenvalues
of B, n outside the support of LSD under Assumptions 2.1-2.2. These lemmas are crucial for applying
the Cauchy integral formula (see, equation (6)) and proving tightness.

2
a.s. O a.s,
}\max(Bp‘N) ? F(] =+ \/E)Z and )\min(Bp,N) ?
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2.3 CLT for LSS
177P

We focus on linear functionals of eigenvalues of By, N, i.c. 52 io1 f(A;). Naturally it converges to the
functional integration of LSD of B, n, i.e. [ f(x) dF¢(x). In this section, we explore second order fluc-

tuation of % > P, f(A¢) describing how such LSS converges to its first order limit. Define

Gon(f) =p J ) d{FBo (x) — FN (x))

where FEN (x) substitutes cn for ¢ in F¢(x), the LSD of By, n. We show that under Assumptions 2.1 -
2.2 and the analyticity of f, the rate | f(x) d{FBrN (x) — FoN ()}, approaching zero is essentially 1/n and
Gp,n (f) convergence weakly to a Gaussian variable. Before presenting the main result, we first recall some
notation. Let m(z) be the Stieltjes transform of the LSD F¢(x) and m(z) be the Stieltjes transform of
the companion LSD F€(x). Furthermore, we define m’(z) as the first derivative of m(z) with respect to
z throughout the rest of this paper. The main result is stated in the following theorem.

Theorem 2.5. Under Assumptions 2.1 and 2.2, let 1, f2, . .., Ty be functions on R and analytic on an open
interval containing
o? , o2 5
21— ver 0 ver). G)
Then, the random vector (Gp N(f1), ..., Gp N (fx)) forms a tight sequence in p and converges weakly to a
Gaussian vector (Xs,, . . ., X¢, ) with mean function
-2
1 o* 3 o? -3 ot o? —2
EX, = g e f@m’@) {1+ Smia b [1-cSm?e) {1+ Smia) | #)
—1
1 ot 0?2 -2
—d feme) [1 - et {1+ S}

x zm(z) {1 + —m(z) X {h1m(z) + cy—im(z) U—j—} dz
" Wz
2 —277!
- sz jﬁe (2)22m(z) |1 — ci—jn_lz(z) {1 + %m(z)} ]
o2 =1 4
X {1 + u—n_l(z)} {(ou + az)m?(z2) +2—4m’(z)} dz,
and covariance function
:
CorlXXg) = 55§ —TCHIE ey () )

(212)9(7‘2) 3 dm(21 ) dm(ZZ))
1

a : (02'7:; (XZ) f#@] %@2 {

f
1 o2 o2
+Emiz)} {1+ Smiz))

where

R L]

P—o0 W-l



Xy = lim
p—o0

G G (<G Y

= tim p [E(2 1) ],

P00 Wi p2

andw, = Z}L] W1 /P. The contours C, Cy, C; in (4) and (s) are closed and taken in the positive direction
in the complex plane, each enclosing the support of F€(x), . [‘7—z (1—+/c)?, z—i (1+c)?]

Remark 2. The emergence of parameters h; and «; in our limiting mean and covariance functions may
appear unconventional, but it stems from the unique aspects of our analysis. This phenomenon arises

from the non- neghglble influence of terms h;/p and &, /p in the approximation of E(Z4 — 1)? and
E( ‘:’v‘1‘ — 12 vvv\:]z — 1), driven by the multiplication by p in the CLT (refer to Lemma 4.3 and Lemma

4.5). Furthermore, our results introduce parameters «; and «; in place of conventional parameters like
Ewqq]* — 3 and Ejwq;|* — 1 in the limiting mean and covariance functions of the sample correlation
matrix in Gao et al. [2017]. Remarkably, our findings also bring forth a novel parameter, h;, in the mean
function, setting our results apart from conventional approaches.

Applying Theorem 2.5 to three polynomial functions, we obtain the following corollary. The proof
of Theorem 2.5 is postponed to Section 4, and detailed calculations in these applications are postponed

to Appendix.

Corollary 2.6. Under conditions and notations in Theorem 2.5, let Ty = x* fori = 1,2,3, we have

2
(0)
Gp(f1) = r(Bp) =P 5 4 N, Vi),

2 0%\2 4
Gp(f2) = tr(By ) (1 +en)(5) = Nlwa, Vo),

3 21(97\% 4
Gp(f3) = tr(B ) (1 +3en +eR) (117) 5 N3, Vs),

where cn = X, and
w =hy, w2 =( ( ) h1+C(0€1+0€z)
o? 0%\2 o2
— (24 6¢ + 3¢ )(P) +3(1+3c+c )(F> b+ 3e(1 +0) (e + o),
02\ 2
\%Z :2c(;) +clog + oz)y
oZ\4 5[ 0%\2
V2:4c(2—|—c)(1+20)<¥> +ac(l+¢) <F> (01 + ),
2.6 2 4
V3 = 6c¢(1 +6c+3c2)(3+6c+cz)<%> +9¢(1 +3c+c2)2<%> (o1 + 2).



3 Numerical experiments

3.1 Limiting spectral distribution

In this section, simulation experiments are conducted to verify the LSD of the sample covariance matrix
Bp,n from compositional data, as stated in Theorem 2.3. Compositional data {Xi;}1<i<n,1<j<p is gen-
erated by the normalization xi; = wyj/ Y__; Wie. We generate basis data wy; from three populations,
drawing histograms of eigenvalues of B, n and comparing them with theoretical densities. Specifically,
three types of distributions for wj; are considered:

1. Wyj follows the exponential distribution with rate parameter 5;

2. Wjj follows the truncated standard normal distribution lying within the interval (0,10), denoted
by TIN(0,1;0,10), where the first two parameters (0 and 1) represent the mean and variance of the

standard normal distribution;
3. Wyj follows the Poisson distribution with parameter 10.

The dimension and sample size pair, (p, n), is set to (500,500) or (500,800). We display histograms
of eigenvalues of By, N generated by three populations under various (p, n) combinations and compare
them with their respective limiting densities in Figures 1 — 2. Figures 1 — 2 reveal that all histograms align
with their theoretical limits, affirming the accuracy of our theoretical results.

5 5
2

20 2z 20
5 5 5
a a, a

o5 05

00 o 00

0 1 2 3 4 00 05 10 15 20 0 1 3 4
Eigenvalues Eigenvalues Eigenvalues
(a) Exponential(s) (b) TN(o,1;0,10) (c) Poisson(10)

Figure 1: Histograms of sample eigenvalues of By, n with (p,n) = (500,500). The curves are density
functions of their corresponding limiting spectral distribution.

2
Eigenvalues

2
Eigenvalues Eigenvalues

(a) Exponential(s) (b) TN(o,1;0,10) (c) Poisson(10)

Figure 2: Histograms of sample eigenvalues of B, n with (p, ) = (500,800). The curves are density
functions of their corresponding limiting spectral distribution.



3.2 CLT for LSS

In this section, we implement some simulation studies to examine finite-sample properties of some LSS
for B, N by comparing their empirical means and variances with theoretical limiting values, as stated in
Corollary 2.6.

In the following, we present the numerical simulation of CLT for LSS. First, we compare the empirical
mean and variance of Gy n(x") = tr(B n) — P [ xTdFeN(x), v = 1,2,3, with their corresponding
theoretical limits in Corollary 2.6. Two types of data distribution of wj; are consider:

1. Wyj follows the exponential distribution with rate parameter 5;
2. wy; follows the Chi-squared distribution with degree of freedom 1.

Empirical mean and variance of {G, n(x")}, 1 = 1,2,3, are calculated for various combinations of
(p,n) with p/n = 3/4 or p/n = 1. For each pair of (p,n), 2000 independent replications are used
to obtain the empirical values. Tables 1 — 2 report the empirical results for Exp(5) population and x?(1)
population, respectively. As shown in Tables 1 — 2, the empirical mean and variance of {Gy, N (x")} closely
match their respective theoretical limits under all scenarios. To verify the asymptotic normality of LSS,
we draw the histogram of normalized LSS, G, n(x") = (Gp n(X") — wr)/V Vi, T = 1,2,3, where 1,
and V; are defined in Corollary 2.6, and compare them with the standard normal density. Figures 3 and
4 depict the histograms of EP,N (x") for Exp(5) population with p/n = 1 and x?(1) population with
p/m = 3/4, respectively. The histograms for the cases of Exp(5) population with p/n = 3/4 and x?(1)
population with p/n = 1 exhibit similar patterns and are omitted for brevity. It can be seen from Figures
3 — 4 thatall the histograms conform to the standard normal density, which fully supports our theoretical
results.

Table 1: Empirical mean and variance of G, n(x"), T = 1,2,3, with wy; ~ Exp(5).

Gp,n(X) Gpn(x?) Gpn(x?)

p/n N mean var mean  var mean var

100 -2.01 2.63 -4 36.54 -7.82  463.32

E 3/ 200 -L99  2.93 -3.85  39.73 -7.23  48s.05
mp / 300 -1.93 3.03 -3.57  40.3 -6.32 483.76
400 -2.04 2.95 -3.98 38.78 -7.67  460.01

Theo -2 3 -3.75 39 -6.81 457
100 -L.91  3.61 -3.83  64.09 -6.56 1064.75

200 -1.96 3.89 -3.96  68.37 -6.91 1090.14

Emp 1 300 -2.01 3.97 -4.06  68.7 -7.16  1082.72
400 -1.98 371 -3.99  64.22 -7.07  1010.09

Theo -2 4 -4 68 -7 1050
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Table 2: Empirical mean and variance of G, n(x"), T = 1,2,3, with wy; ~ x*(1).

Gp‘N (X) Gp,N (Xz) Gp,N (XS)
p/m N mean  var mean var mean var

100 -5.79  15.53 -24.19 888.99 -97.31  46790.03

200  -5.96 16.74 2439  920.63 -96.17  45375.75
Emp 3/4 300 -5.94 16.6 -23.75  882.92 -90.59  42487.68
400 -5.88  17.51 -22.68  912.28 -81.2  42922.06
Theo -6 18 -23 918 -83  41806.12
100 -5.92 20.81 -26.15  1563.02 -102.73 107846.2
200 -5.98 23.01 -25.15  1639.95 -90.25  105467.9
Emp 1 300 -5.81 21.82 -23.16  1526.34 -74.54  96864.11
400 -6.13 2318 -25.41  1599.96 -90.31  99475.82

Theo -6 24 -2.4 1600 -80 96000

05 02 Dﬁ 02

B ? Eigenv:ﬂue ’ Eigen(\)/cﬂue Eigen(\)/cﬂue

(a) Gp‘N (x) (b) Gp,N(XZ) (c) Gp,N (Xg)

Figure 3: Histograms of normalized LSS G, n(x") = (Gp,n(X") — 1) /v/ Vi, T = 1,2,3, with
wij ~ Exp(5) and p = n = 400. The curves are density functions of the standard normal distribution.

0.4
04 0.4
03 03 03
z z z
g 02 é 02 g 02
[a) [a) [a)
o1 o1 o1
00 : : : ] 00 : : : 00
2 0 2 4 -2 0 2
Eigenvalue Eigenvalue
(a) Gp,N(X) (b) CP,N(XZ) (c) Gp,N (Xs)

Figure 4: Histograms of normalized LSS Gy n(x") = (Gp.n(X") — pe) /v Vi, T = 1,2,3, with
wij ~x*(1) and p = 300, n = 400. The curves are density functions of the standard normal
distribution.
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4 Proof of Theorem 2.5

In this section, we first present the difference between the CLT for centralized sample covariance Bg and
unbiased sample covariance By, N by substitution principle in Section 4.1, where

2 ) 1, | /
BY = p?S% = 2 (Xu —EX,)(Xa —EXn) = —Y, Y, Byn =p?Sun = < (pPXa) CalpXa),

Wij — 1 . . . .
and Yo = (Yijlnxps Yij = —> — land w; = 5 Z]P:1 Wwjyj. By substituting the adjusted sample size
N = n—1 for the actual sample size n in the centering term, the unbiased sample covariance matrix B, n
and the centralized sample covariance Bg share the same CLT (see, Section 4.1). The general strategy of

the main proof of Theorem 2.5 is explained in the following and four major steps of the general strategy

are presented in Section 4.3.

The general strategy of the proof follows the method established in Bai and Silverstein [2004] and
Gao etal. [2017], with necessary adjustments for handling the sample covariance matrix of HCD, where
conventional tools are not directly applicable. Our novel techniques play a pivotal role in overcoming
these challenges. To begin with, we follow the strategy in Jiang [2004] to establish the LSD of B, n
in Theorem 2.3. Then, we develop Proposition 2.4 to find the extreme eigenvalues of By, n. Notably,
these extreme eigenvalues are highly concentrated around two edges of the support, a crucial aspect for
applying the Cauchy integral formula (6) and proving tightness. Given that compositional data x;; =
wij/ 371 wij are not i.id., dealing with the CLT for LSS of the unbiased sample covariance matrix
Bp,n presents challenges. To address this, we employ the substitution principle [Zheng et al., 2015] to
reduce the problem to the CLT for LSS of the centralized sample covariance Bg. By substituting the
adjusted sample size N = n — 1 for the actual sample size n in the centering term, both the unbiased
sample covariance matrix By, N and the centralized sample covariance Bg share the same CLT (see Section
4.1). We then leverage the independence of samples to further study the CLT for LSS of Bg. Specifically,

we exploit the independence of samples to establish independence for r; = \/Lﬁ (V%—‘L‘ —1,..., ‘%—? —
1) 'i=12,...,n,and express Bg as Bg = %Y;Yn = Y 1, rir{. The ultimate goal is to establish the
CLT for LSS of BY.
By the Cauchy integral formula, we have
1
Jf(x) dG(x) = ——,{; f(z)mg(z)dz (6)
2mi e

valid for any c.d.f G and any analytic function f on an open set containing the support of G, where § o
is the contour integration in the anti-clockwise direction. In our case, G(x) = p(FBg (x) — Fen(x)).
Therefore, the problem of finding the limiting distribution reduces to the study of M, (z) defined as
follows:

My () = [y (2) — mO(2)] = n[m, (2) — mO(z)],
mp(2) = m g (2) = ltr [(B) —zI,)7 '], m) (z) = men (2),
my(2) = mg(2) = 2 (B =21 ], ) = (),

12



Note that the support of FB»N is random. Fortunately, we have shown that the extreme eigenvalues
of By n are highly concentrated around two edges of the support of the limiting MP law F¢(x) (see,
Theorem 2.3, Proposition 2.4). Then the contour € can be appropriately chosen. Moreover, as in Bai and
Silverstein [2004], by Proposition 2.4, we can replace the process {My,(z), z € C} by a slightly modified
process {/]\Zp (z),z € C}. Below we present the definitions of the contour € and the modified process
/N\lp (z). Let x, be any number greater than ﬁ—iﬂ + 1/¢)?. Let x1 be any negative number if the left
endpoint of (3) is zero. Otherwise we choose x; € (0, ﬁ—iﬂ —/€)?). Nowlet G, = {x +1ivo : x €
[x1, X+]}. Then we define CT := {x; +iv:v € [0,vo]} U C, U {xr +iv:v € [0,vol},and € = Ct U CH.
Now we define the subsets €, of € on which M, (-) equals to M, (-). Choose sequence {&,, } decreasing
to zero satistying for some & € (0,1), en, > n~%. Let

e — i+ivive mTen,vol} if xg >0,
! {x1+1iv:ve[0,vol} if x; <0,
and G, = {x, +iv:v € [n""e,vol}. Then €, = € U €, U C,. For z = x + iv, we define

M, (z), forz € G,
Mp(z) = ¢ My (x, +in'eyn), forx =x,,v € [0,n "ey], andif x; > 0

M, (x1 +in""e,), forx=x;,ve [0,n e,
Most of the paper will deal with proving the following proposition.

Proposition 4.1. Under Assumption 2.1 and 2.2, then My, (-) converges weakly to a two-dimensional Gaus-
sian process M(-) for z € C, with means

X {—z_(z) (1 + G—im(z)) ) x | him(z) + —im(z) + G—§1>
n u?z
.
—cz’m?(z) <1 + U—zn_i(z)> (oqm (z) + com=(z) + 26—:111’(2))
m W
4 2 -3 4 2 -2\ 7!
ez (1 " ﬁ—m(ﬂ) (1 ~ ez (1 ¥ %m(ﬂ) ) } o)
and covariance function
B m’(zy)m’(z2) 1
Cov(M{z), Mlz2)) = 2 {(m(lﬂ —m(z,))? a (z1 —Zz)z}

m’(z)m’(z;)

Felo ) e )20 + o7/ m(z) )

(8)

Now we explain how Theorem 2.5 follows from the above proposition. As in Bai and Silverstein
[2004], with probability 1, ’f f(z)(My(z) — /I\Zp (z))dz| = 0asm — oo. Combining this observation

with equation (6), Theorem 2.5 follows from Proposition 4.1. To prove Proposition 4.1, we decompose
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M, (z) into a random part Mg ) (z) and a deterministic part M](DZ) (z) for z € Cy, thatis, M, (z) =
MT()] '(2) + M](gz) (z), where

MV (z) =p[m,(z) —Emy(z)] and MI()Z)(Z) =p[Em,(z) —md(z)].

The random part contributes to the covariance function and the deterministic part contributes to the
mean function. By Theorem 8.1 in Billingsley [1968], the proof of Proposition 4.1 is then complete if we
can verify the following four steps:

Step 1 Truncation.

Step 2 Finite-dimensional convergence of M (z) in distribution on €, toa centered multivariate Gaus-
sian random vector with covariance function given by (8).

Step 3 Tightness of the Mg ) (z) forz € Cy.

Step 4 Convergence of the non-random part M]Ef) (z)to(7)onz € €.

The proof of these steps is presented in the coming sections. Before that, we introduce the substitu-
tion principle and crucial lemmas in Sections 4.1 and 4.2 respectively. The former explains the reduction
of problem of the CLT for LSS of By, N to that of Bg, while the latter provides essential lemmas for these
four steps in proving the CLT for LSS of Bg.

4.1 Substitution principle

By the Cauchy integral formula, we have

1

Gp(f) = —5

i f(z) [r(Bpn —2Ip) ' —pmQ(2)] dz

valid for any function f analytic on an open set containing the support of G, N, where

m&, (z) = mpen (2) = ]
NV = N 62 12(1 — e — enzmdy) — 2

)

1—c¢
mY (z) = mpey (2) = — A

—+ cmy (2),

1 0?/p?
0 +CN 2 /1120
my,(z) 1+ 0%/u?mg (z)

Zz=—

with cy = . To obtain the asymptotic distribution of Gy, n(f), it is necessary to find the asymptotic
distribution of tr(B,, n —zI,,) ™' —pmY (z). To achieve this, we derive the following Lemma 4.2 whose
proof is postponed to Appendix.

Lemma 4.2. Under conditions and notations in Theorem 2.5, as . — 0o,

tr(Bpn —zl,) " —pm(z) = w(BS —zI,) ' —pm&(z) + op(1).

P
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By Lemma 4.2, the asymptotic distribution of G, n (f) is identical to that of Gg (f),ie.,

Gp.n(f) =D f(A(Byn)) —PJf(X) dFN(x) = N(m(f), v(f)),

i=1

P
GS(F) = D fI(B)) — p | £x) dFer(x) — N(m{1), (1),

Go(f) = ——,fj; f(z) [tr(Bg — zIp)_1 —pmﬂ(z)] dz
e

and ¢, = B, m(z) = mpen(z) (note that we denote m9(z) as mg (z) in other sections except this
subsection).

4.2 Some important lemmas

Before delving into the proof of the CLT for LSS, it is crucial to introduce three pivotal lemmas, repre-
senting novel contributions to this paper, that unveil concentration phenomena. Lemma 4.3 is crafted
to estimate essential parameters, facilitating the derivation of estimates of any order. Concerning v, and
V12, the terms hy /p and h, /p emerge as non-negligible due to the multiplication by p in the CLT. To
address these parameters, we establish that the probability of the event B} (€) decays polynomially to 0
and leverage Taylor expansion on the event By(e) = {w : Wy — pl < €, W; = Z}j:1 Wi;/p} to han-
dle the issue of dependence. The proof of the CLT for LSS relies on two pivotal steps: the moment
inequality for random quadratic forms and the precise estimation of the expectation of the product of
two random quadratic forms. Lemma 4.4 establishes the former step, essential for converting them into
the corresponding traces, while Lemma 4.5 establishes the latter step, enabling the application of CLT for
martingale differences. Both Lemma 4.4 and Lemma 4.5 heavily hinge on the estimation of parameters
V2, V4, and Vi, in Lemma 4.3. The proof of Lemmas 4.3 — 4.5 are postponed to Appendix.

Lemma 4.3. Suppose thatw = (w1, ..., wp,) hasi.id. entries withEw; = W, E(wy — n)? = 02, and
Elw; — u|4 < 00, let W = % ?:1 Wi, then there exists a constant K > 0, such that for any 0 < e < 1/2
andp >0,
2 2
v, :E(@—]) :E<m—1> +—hy+o(p ),
w m p
2 2 292 1
m;:E(@-]) (Vg—]) - E(Vﬂ—1)] Y —hy+o(p ),
W W m p
4
a4 :E(@—]) :E(Vﬂq) +o(1),
W m
where
Ew3 2.2 2 2 B3 2.3 2.2 2
hy = Z%Jﬁ(c—z) +5% +2,hy = -8 Ws”+10<6—2) +22(G—2> +82.
m m m u2op m m m
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Lemma 4.4. Suppose thatw = (w1, ..., wy,) has i.i.d. entries with Ewq = p, E(wy — p)? = o2, for
anyp X p matrix A and q = 2, we bave there is a positive constant K depending on q such that

1 q
E[r'Ar — H”“A‘ < Kq [n*q <(E i tr(AA) Y2 + Elw, |2qtr(AA’)q/2)

+nIP(BS (e))|A[ 9 +n9|AS IIhﬂ )

where v = \/LH(WMW— 1,..oywp /W — 1)/, hy is defined in Lemma 4.3, Byp(€) = {w : W —u| <
&7 = 3.0y wy/p), and
BB (€) < Ke = (X0p500/2 4 p kT 01, ()

in which €,k, q1 > 0 are constants. Furthermore, if |A|| < Kand lw; — | < dn/M forallj =1,...,p,
then, for any q = 2,

1 q
E[+'Ar — Evztm( < Kgn 15294,

Lemma 4.5. Supposc thatw = (W1,...,wy)" has i.id. entries withEw, = w, E(w; — p)? = 02, A
and B arep x p matrices, if || A|| < Kand |B|| < K, then

E(r’/\r — l\/2trA> (r’Br — lvztrB>
n n

1 i 1 ) 1
= E(\M — 3\/12) Z AuBu + F\/]z(tr(AB ) + tl‘(AB)) + E(V]z — V%)tI‘AtI‘B + O(TL_1 )
i=1

4.3 CLT for LSS of the centralized sample covariance Bg
4.3.1  Step 1: Truncation

We begin the proof of Proposition 4.1 with the replacement of the entries of W, with truncated variables.
We can choose a positive sequence of {8, } such that

1/4 4. 4
don — O) dnn / — 00, 6n EWHIHWH*HD&L\/H} — 0.

A Q A A A A A
LetB, = %2 (Xn—EX, ) (Xn—EX,, ), where Wi, is 1 X p matrix having Wi; = wy; Ly —pl<sn v}
We then have

A O
PBY £ B,) <P( |J (wy— > 80v)) <np - Pllwyy — 1l > /i)
i<n,j<p

<K wia|* = o(1).

|
n
{lwy—ul>8nv/n}

Let ég(x) be Gg(x) with Bg replaced by ]gg, then IP’(G%(X) # Gg(x)) < P(Bg + ]%2) =0o(1). In view
of the above, we obtain

ij(x) ng(x) = ij (x) dég(x) +op(1).
To simplify notation, we below still use wy; instead of W;j, and assume that

|Wij — LL| < 6n\/ﬁ, EWij =Uu> O, E|W1) — }L|2 = Uz, E|W1) — }i|4 < 00. (IO)
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4.3.2 Step 2: Finite dimensional convergence of Mg '(2) in distribution

Lemma 4.6. Under conditionsand notationsin Theorem 2.5, asp — oo, foranyset of v points{zi,z2, ..., z:}|J G,

the random vector (l\/l](o1 ) (Z1)y.nny Mg ) (zr)) converges weakly to a v-dimensional centered Gaussian dis-
tribution with covariance function in (8).

We now proceed to the proof of this lemma. By the fact that a random vector is multivariate normally
distributed if and only if every linear combination of its components is normally distributed, we need only
show that, for any positive integer T and any complex sequence a;, the sum

> MV (z)
j=1

converges weakly to a Gaussian random variable. To this end, we first decompose the random part Mg ) (z)
asa sum of martingale difference, which is given in (18). Then, we apply the martingale CLT (Lemma A.3)
to obtain the asymptotic distribution of M, (z). Details of these two steps are provided in the following
two parts.

Part 1: Martingale difference decomposition of M. (2). First, we introduce some notations. In
the following proof, we assume that v = Jz > vy > 0. Moreover, forj = 1,2,...,n, let

1 Wiq W; !
r]:ﬁ<$]]— ,...,W—]:— ) ,D(Z):Bg—llp, Dj(z):D(z)—rjrj’,

1
B](Z) - ] —|—T‘]/D;1 (Z)rj

1 1
1+ 1vuD; ' (2)] p(2) 1+ Lv;EuDy ' (2)

) Bj (z)

gj(z) = rj’Dj_] (z)r; — %vztrDj_1 (z)and §j(z) = r)-’Dj_Z(z)r]- — %VztrDj_z(Z) = ﬁaj(z). By Lemma

4.4, we have, forany r > 2,

T K —1¢2r—4 T K —1g2r—4
Ele;(z)] <\?n o:) and E[d;(z)] <\7n o, (1)
It is easy to see that
D '(z) — D; ' (z) = —Dj ' (z)157{D; ' (z) B; (2), (12)

where we use the formula that A;' — A5 = A5 (A, — A;)A; ! holds for any two invertible matrices
A and A;. Note that [3;(z)], |BJ (z)l and by, (z)] are bounded by lvil We also get that for any j,

1 1 S
E(T’JT]) n\/z < p—]1p1p+1ﬁlp+lp) . (13)

LetEo(-) denote expectation and E; (-) denote conditional expectation with respect to the o-field gen-
erated by 11,12, ...,7;, wherej = 1,2,...,n. Next, we write M](D] ) (z) as a sum of martingale difference
sequences (MDS), and then utilize the CLT of MDS (Lemma A.3) to derive the asymptotic distribution
of M]g ) (z), which can be written as

n n
plm,(z) — = [r(E —E_)D ' (2)l == ) (B —Ej_1)B;(2)r{D; *(2)r5.  (14)
j=1 =

j=1
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Write B;(z) = B;(2) — B;(2)B;(2)¢;(2) = B;(2) — B, (2)¢;(2) + B; (2)B;(2)€2(2). From this and the
(

definition of 8;(z), (14) has the following expression
(E — B 1)B;(2)r{D; 2(2)r,
= (B —E;1)[(B;(2) — B; (2)&;(2) + B; (2)B; (2)eF(2)) (8;(2) + %thrDjz(z))]
= —Yj(2) + B Yi(2) — (B — B ) [B; (2) (&5(2)85(2) — By (2)1{D 2(2)ryel(2))],  (is)
where the second equality uses the fact that (E; — E;_1)B;(z)arD; 2(2) = 0, and
Y,(2) = & (B (2)8,(2) — B (2)gs (2) 1vareD; 2(2)) = ~Ey o (B (2)ey ).

By (11), we have
\ZE BB} (2)6(2)8(2)] <4 ) E[B] (2 (2)5(2)] = ol1), (16)
=1 j=1

here we leverage the the martingale difference property of (IE; —E;_; )BJZ (z)€j(z)0;(z). Thus, Z] 1 (E;—

E;_1)B; (2)¢;(2)8;(z) converges to zero in probability. By the same argument, we have
i E; —E; 1) )ﬁj(z)r;D;z(z)rjef(z) LR, (17)
j=1
Then, equations (14) — (17) imply that
Z{Y E;_1Y;(z)} + op(1), (18)

where {Y;j(z) —E;_1Yj(z),j =1,...,n}is a sequence of martingale difference.

Part 2: Application of martingales CLT to (18). To prove finite-dimensional convergence of
M\ (2), z € €, we need only to consider the limit of the following martingale difference decomposi-
tion:

where J(z;) # 0,{x; : 1 =1,2,...,r}are constants. We apply the martingale CLT (Lemma A.3) to this
martingale difference decompositionof }_;_; oy T\/l]([,1 ) (zi). To this end, we need to check two conditions:

Condition 4.7.

(0

2

zi) =B Y(zi))| Ijgr o (Y (20 4BV (20)) 12 }) — 0. (19)
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Condition 4.8.

n

ZE]'A [(Y;(z1) —Ej—1Y;(z1)) (Y;(z2) — Ej_1Yj(22))] (20)

i=1
converges in probability to a constant.

First, we verify Condition 4.7. By Lemma 4.4, we obtain

1
EIY; (2)]* KEkﬂ)l——o<5>- ()

Furthermore, by Jensen’s inequality and (21),

EE; 1Y,(2)* < E(E; IV, (2)*) = mwuwzm(%). (22)

4
)—>O.

It follows from (21) and (22) that

T

Z o Ej1Yi(zi)

1TL
] FalE2

the left hand side of (19) ( Z

Z OCin (Zi)
i=1

Then, we verify Condition 4.8. Since

(ZO)ZZEj_][ Z j—1Y5(z1)][Ej—1Y;(z2)]
— —
) az N ) j )
- 621 alz (ZEJ'*1 [Ej(ﬁj(zl)sj (11))Ej(|3j (22)85 (Zz))])
ji=1
az

(Z [Ej—1B;(z1)e; (21 )IE 1 B (z2) e (ZZ)]>)

it is enough to consider the limits of
D B [ (Bj(z1)es(21))E; (Bj(22)e(22))] (23)
j=1

and

Ej—1B;j(z1)¢;(z1)1[Ej—1 B;(22)e5(22)].- (24)

I\/]:

]:1
The limit of (24) is provided in the following lemma.
Lemma 4.9. Under conditions and notations in Theorem 2.5, then

Z i(21)€5 (2] [E5-1B; (22)€5(z2)] B0,

j=1
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The proof of Lemma 4.9 is postponed to Appendix. By Lemma 4.9, the remaining work is to consider
the limit of (23). Since the following inequalities hold:

_ _ |A]

(D' (z) = D; '(2))A] < 32 (25)
E!%vztrD] (z) — IETlLVZtrD1 (2)|" < Cqn 9259, (26)

Klzi|*
E|B;(zi) — bn(z1)]” < : (27)

5 et

itis enough to prove that

2) ) By [E(5(21))B; (e5(22))] (28)

j=1
converges to a constant in probability, which further gives the limit of (23). By Lemma 4.5, we have

n P
(28) = bp(2z1)bp(z2) ) [Z %m — 3v12)E; (D (z1)uE; (D} ' (z2))s
j=1 ti=1
+ éwz (tl‘ [E]DJ_] (Z] )E] (1))_1 (Zz))/} +tr [E)DJ_1 (Z] )E)D]_] (Zz)])

1
+ — (vi2 = v}t [E;D; ' (z1)] tr [E;D; (Zz)]] +o() =1L +L+ 13+ 1s+0(1),
n

where
1 - 1
L = =5 (va = 3vi2)by (21 )by (22 )Y ) E(D JuE; (D (z2))is,
j=1 i=1
IZ = ;'\/]zb Zz Z (D]_] (Z’Z))/] )
1 = a _
I3 = ?wsz(mbp(zz) Z r [ED5 (21)E; D5 (22)]

1

)

L — %(m V)b, (z0)by(z2) Y e [ED; " (20)] r [EsD; ' (22)] -
j=1

In the following Steps (i)-(iii), we derive as p — oo,

02 ip. m'(z)m’(z
9210z, (1+&m(z1))" (1 + Sm(z))
09 0 Qalenm)/0n) | mlamz) (50)
0210z, >’ 9210z ° 0z; " T—alzi,z2) 7 (m(z1) —m(z2))2 (21 —22)%’ ’
02 ip 2 m’(z;)m’(z,)
L, B c¢(h, —2—h, ——— (31)
02102 < 2 ) (1 + ﬁ—ﬁn_l(m))z 14 ﬁ—iﬂ_l(lz))z
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Step (i): Consider I, and I3. Let Dyj(z) = D(z) — rir{ — r]-rj’, bi(z) = ———— and

1+ 1v,EuDy; (2)

Bij(z) = m We have the equality Dj(z1)+z; Ip—“nivzln (z1)I, = Z?ﬁ rir{—“T*]vzm (z1)I,.
i 1

Multiplying by (z,1,, — %Vzb] (z)I,) " on the left-hand side and Dy '(21) on the right-hand side,
and using 1”{Dj_1 (z1) = Bij(z )ri’Di_j] (z1), we get

D;'(z1) =—Q,(z1) + ) _Bij(z1)Q,(z1)ri7{Dy' (z1) — i 1Vzb1 (21)Q, (z1)D; ' (z1)
i

= —Q,(z1) + bi(z1)A(z1) + B(z1) + C(z1), (32)

where Q,(z1) = (211, — ®1vabi(z))L,) ', Alz1) = Y1 Qulz) (rir] — 1v,1,) Dy (21),
B(z1) = Y 1 (Bij(z1)—b1(21)) Q, (z1)riv{ Dy (z1), Cz1) = Lvaby (21)Q, (1) X1 (D' (1) —
Dj_1 (z1)). For any real t,

B t —1 _ |z(1 +n*1y2EtrD?21 (Z))l o 1z|(1 4+ p/(nvo))
z(1+n-"v;EuD5; ()| 3(z(1 +n-"v;EuD5; (2))) Vo '
Thus,
1+p/(nv
IQy(z0)] < 2L, &

For any random matrix M, denote its nonrandom bound on the spectrum norm of M by [[[M||. From
(27), Lemma 4.4, (33) and (25), we get, for any M,

z112(1 +p/(nv

E[tB(z)M] < KM 2 PAwa)) g (34)

0

z1|(1 + nv
rClz )M < vy 20 BAv)), 6s)
0

1+ nv

ElarAlzM] < KM P e 56)
0

Note that
trE; (A(z1))D; ' (z2) =tr ) Q,(z1) (rir{ —n'v21,)E; (Dy' (z1)) D' (22)
i<j

+tr Y Qplz)(rirf —n Vo1, )E; (Dy' (1)) (D5 ' (22) — Dy (22))

i<j

+ tr E; <Z Q, (z1) (rir] — %VzIP)Di—j1 (z1 ))D]ﬂ (z2),

i>j
therefore, by using (12), we can write

tl; (A(z1))D; ' (z2) = Aq(z1,22) + Az(z1,22) + As(z1,22) + R(z1,22), (37)
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where

ZhZZ Z [31] ZZ /E ( ))Dl_]1 (Zl)riri/Di_j] (ZZJQp (Zl )riv (38)
i<j
Az(z1,22) ——trZ Q,(z1)n 'vaE; (D' (1)) (D5 ' (22) — Dy (22)),
i<j

A3z(z1,22) = trZ Q, (z1) (rir{ — ™'V, 1,)E; (Di_j] (z1 ))Di_j] (z2),

i<j
- 1 ’ 1 —1 —1
Riznz2) = Qylan (a2 gyl B (D5 ) (22, o)
and 1, is a p-dimensional vector with all elements being 1. It is easy to see that R(z1,2z,) = O(1).
We get from (25) and (33) that |A;(z1,25)] < w. Similar to (36), we have E|A3(z1,2)] <
Mn]/ 2. By similar calculation of Bai and Silverstein [2004], we get the following lemma and
0

its proof is postponed to Appendix.

Lemma 4.10. Under conditions and notations in Theorem 2.5, for any1 <j <n,

(B (D5 (21)) Dy (22))
Cn

(1+ nT_]Vzﬂ_lg(Zﬂ)U + anVzﬂ_lg(Zz))

vim(z1)md(z2)

_ n 1 + S(z1,25)
T2z (14 2 vomd(20)) (1 + 2 vomd(z0))

where E|S(z1,2,)| < Kn'/2,

By Lemma 4.10, I3 can be written as

1 1
Iz3=a ) - : +A ) )
3= Gplz1,22) - > 1= lay(z,20) 4(z1,22) (40)

j=1

0
)mS (z2) and E|A4(z1,22)| < Kn~1/2, By Lemma 4.3,

2
N1+ vmO (23))
4 cm(zq)m(zz)

2 cnmd
20+t v,ml(z

where ay,(z1,22) = V3 ](
u (1+2m(zn) (1423 m(zz))
limit of 55— 13 is in (30). Similarly, we get the i.p. limit of 55— Iz, whlch is also given by (30).

Step (11) Cons1der I;. Itisenough to find the limit of Z P E; (D5 V(24 ))ulE; (D5 M(22))i1.
By similar calculation of Gao et al. [2017], we get the followmg lernma and its proof is postponed to Ap-

pendix.

thelimitof a,(z1,22) is a(z1,22) = . Thus, by (40), the in probability (i.p.)

Lemma 4.1x. Under conditions and notations in Theorem 2.5, forany 1 <j <n,

P -
% > Ei(D; (21))uls (D5 (22))ie 5 m(z1)m(z2).

i=1
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By (26), the formula (2.2) of Silverstein [1995], m, (z) = _an ZL] Bj(z), and Lemma 4.4, we have
bp(z) —EB1(z)l < Kn™'/2, EBy(z) = —zEm,(2), |bp(z) +zmf(z)| < Kn~ "2 (41)

Thus, by (41), Lemma 4.3 and Lemma 4.11, we have

i.p.
I = coqzizom(zi)m(zz)m(zi)m(z2) = coy >

where the equality above follows from m(z) = —z~! (1 + ﬁ—im(z))q. Thus, the i.p. limit of azg;z] I
isin (29).
Step (iii): Consider 1;. We have E ‘%tr]EjD]i‘ (z1 )%trEjD)T1 (z2) — mg(m )mg(zz)‘ = o(1). By
Lemma 4.3, we get
lim p(vqiy — v%) =h, — 20—2h1.
p—oo 23

This, together with (41), implies that

2 2

ip. o o
L% e(ha — 2730 )2z )zam(z)miz mz) = ¢ (he - 273 h)

Then the i.p. limit of the second derivative ﬁh isin (31).
22,021

4.3.3 Step 3: Tightness of Mg '(2)

To prove tightness of Mé '(2), it is sufficient to prove the moment condition of Billingsley [1968], i.e.,
EIMy (z1) =M} ()12
SUP Lz z0c€, lz1—2212

postponed to Appendix.

is finite. Its proof exactly follows Bai and Silverstein [2004], and is

4.3.4 Step 4: Convergence of M](DZ) (z)

Similar to Bai and Silverstein [2004], one can prove the inequality:

E|erD; ! (2)M — EuD; ' (z)M]? < K[MJJ2. (42)
We first present the following equations for later use, Méz) (z) = p(Emp 250 (2) — Mpen(2)) =
n(Em,(z) — mg (z)), m(z) = —1%“ + cm(z). The next step is to find Em,, (z). From the identity (2),

which is the inverse of m(z), we define

1 Gz/uz 1
R = —Ltn -
p(2) TZ—Cng + 02/ Em,(z) Em,

Cn
(2) <1 —Cn b zEm,(2) + 9 02/I2Em, (2) )

0?/u?

A (2)/Emy(2) (43)
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where A, (z) 7+ zenEM, (z). Note that

— Cn
T 1+02/uEm, (z

2/ 2 -1
n_y‘i = (—Z+ Cnﬁ) . (44)
From (43) and (44), we get
(0?/u?)? -
E —m? =-m) A T—cn 0 E 2 2 :
m,(z) — my(z) = —m, (z)Ap(2) cnmy, (z)Em, (z) (0 + ZEm, (2) (1 + Zm3 ()
(45)
Our next task is to investigate the limiting behavior of nA,. Let ép (z) =1, + ﬁ—iEmp (z)I,, then
My =Py gz iz T PEME) BB P TEB R, (49
where
o~ 2 -
Piiz) = [nriDy'(2)Q, (21 — oy (Q, (2)ED'(2)) ],
o? 1 1 o’ 1 1
Pa(z) = | 5 Q' (2ED; (&) — 1 (Q, ' (2)ED ' (2)].
Since 31 = by — b%% + B1b%y%, where y1(z) = r{DT] (z)r) — %Vz]E tr D?] (z), we have
E(B1P1(2)) = by (2)EP1(2) — b3 (2)E(v1P1(2)) + bj (2)E(B1v1Pi (2)). (47)
For EP; (z), by (13), we get
B n 1 o? .
EP;, (Z) = W (]E’Y] (Z) + T_l <V2 — E)Etr D] (Z)) (48)

The estimates for E(y1P1(z)), E(B1Y$P1(z)), and E(B1P2(z)) are provided in the following lemma.

Lemma 4.x2. Under conditions and notations in Theorem 2.5, we have

1

E(yiP1(2) = nE[(rDy (@1 — tvo Dy (@) x (1Dy ' (2)Q, (2 — ~varr [Dy1(2)Q, ' (2)] )]
1

o 1 L .
oo (¢D; ') ulD} ' (2)Q, (2)1) - TEINL (1,07 @1, vD7'(2)Q, (=)))
0?/u?

A et —1
= ﬁ—iEn_lp(z) tr[ED; ' (2)]Eyq (z) + o(1), (49)

and

~_ 2
BB P () = E(nfa(ehi@riDy ' @)Q, @) ~ & (il e [ %Q, @Dy @) )

2
1 Cov (rs] (Vi) [%Qp‘(zmﬂ (z)D — 0(82), (50)
and
p 0%, Y- 1 ~12
E(wz)Pz(z))=n(p_”vZFbp(z)Etr[D1 (2)Q, @D;'(2)] +0m 2. (s
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The proof of Lemma 4.12 is postponed to Appendix. Therefore, from (46) — (s1), we get

nA, =Ji1 +J2+]J3+o(1), (52)
where

nby, (z) 1 o?

__ NOplz) 2vi - SV EuD!
= e (Evi(@) + (v = H)EeD; (=)

Lo ;
+ (bp(z) Ewn %Eﬂ_lp(z)) t[ED7  (2)]Eyq (2)
—b2(2) [ﬁ@a (trDT1 (2) D' (2)Q, (z)])
1 o~
- m\’éﬂz (%DT] (2)1, (D! (Z)Qp] (Z)])} ;

J = -—nbZ(z)E (T’{D1] (z)r1 — Tll\’z Dy (Z)>

~_1 1 ~—1

X (r{Dﬂ(z)Qp (2)r1 — —v2 a[D7'(2)Q, (Z)]>,

2 ~
Js = ﬁbi(Z)%VzEU[DT‘ (2)Q

—1

» (2D (2],

The limits of J1, J> and J3 are provided in the following lemma. The proof of Lemma 4.13 is postponed
to Appendix.

Lemma 4.13. Under conditions and notation in Theorem 2.5, asn — oo,

— 2 2
() (e + g mea),
[, e _coaziml(zim’(z) | 2eztm(2m’ () Biwi PP 0% 2wl (z)
2 1+ &mz) 1+ Em(z) e T g
J5 B c“—imz(z)u £ % () - Tm?(2)(1 + G—jmm)‘z N
W b W K

From (45), (52), and Lemma 4.13, we get (7). The proof is completed.

A Some technical lemmas

Lemma A.x (Weyl’s inequality, Corollary 7.3.5 in Horn and Johnson [2012]). Let A and B be two p x
N matrices and let v = min{p,n}. Let 01(A) > -+ > 0.(A)and 0,(B) = -+ > 0,(B) be the
nonincreasingly ordered singular values of A and B, respectively. Then

max |oi(A) — oi(B)] < ||A—B|,

1<igr

where || A — B|| denotes the spectral norm of A — B.
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Lemma A.2 (Burkholder [1973]). Let {X\} be a complex martingale difference sequence with respect to the
increasing o-freld {Fy}. Then for q > 1,

Y x| <K, {E (ZEknxkF)q/z +E(Y |xk|q)} .

Lemma A.3 (Theorem 35.12 of Billingsley [1995]). Suppose for eachn, {Yn1, Ynay ..., Ynr, } s a real mar-
tingale difference sequence with respect to the increasing o-field{Fy;} having second moments. If asn — oo,

> E(Y4|Fn ) B o? (53)
j=1

where 6% is positive constant, and for each € > 0,
rn
2
D E(VTivze) — 0, (54)
j=1

then Z;l] Ynj B N(0, 02).
Lemma A.4 is used in the proof of Lemma 4.9, and its proof is provided in Section B.12.

Lemma A.4. Suppose that x,, = \/Lﬁ(] Ny oo\ 1) is a p-dimensional normalized all-one vector, then for

the truncated random variable satisfying (10), we have IEIX{,D_1 (z)xp + %|z — 0.

B Proofs

This section contains proofs of Theorem 2.3, Proposition 2.4, Lemmas 4.3 — 4.5, Lemmas 4.9 — 4.13,
Lemma A.4, Corollary 2.6, tightness of M](D] ) (2).

B.x Proof of Theorem 2.3

We write

P1 O w e W
2wy 11 1p
XTl = = Anw'm

1
O .. m wn1 .« .. wnp

and let W,, = C\}TV‘CL“ By Theorem 3.6 in Bai and Silverstein [2010], the LSD of \F/VV;WTI has a density

function given by (1). Let L(-,-) be the Levy distance. To prove Theorem 2.3, we need to show that
L(FBoN, FWaWn) 2% 0 Let Y, = p%“ = pC“\//\ﬁ“W“, then we can write B, n = Y, Yn. By

Corollary A.42 in Bai and Silverstein [2010], we have

L4(FBp)N , FVV;WH) — L4(FY§IYH) F\TV;\TVTL)
< étr[(Yn — W) (Y = W] - (YL Y + W W),
P
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By using Von Neumann’s trace inequality and the law of large numbers, we have

1

~t(Y.Yy) = L (WL A/ CuAn W)
P N
Wy
<p”§ nl tr(W/ A A W,) NZ : _y W /P > =05(1),
i=1 Z] 1W1)/p)
ltr(\Tv’Vv ) = (W, CaW,) < 1€ (W, W ; iw
p " Npw? Npu? Npuzl T 5

Thus, to complete the proof, it is sufficient to prove that

Carl(Yo = W) (Yo = W] = op(1)
Letv; be the i-th column of Y, — Wn, thatis,v; = C,, ( m(zg’vi 757~ \/%u) Then,
i=1 Wij
1 _ _
I_)tr[(Yn - Wn)/(Yn - Wn)]

b
]:

This completes the proof.

B.2 Proof of Proposition 2.4

—~ ~ ) ~
First, we prove the convergence of extreme eigenvalues. Recall that W,, = C\“FT“:L“ Let Ay (W, W4 )

and Ao (\A/\//;Wn) be the largest eigenvalue and the smallest non-zero of W;Wn By the equation (2.7)
in Jiang [2004] and Theorem 1.4 in Xiao and Zhou [2010], we have
2 o, o2
hm ?\max(W W = H 1++0c)? and lim Ay (W, Wy) = F(] — /)2 (s5)

By Lemma A.1, we have

VABoN) VAW, W) < [Catpa

By Lemma 2 in Bai and Yin [1993], we have maxj<i<n | ZF:1 wii/(pp) — 1| == 0, which implies that

(56)

max
1<igp

Wy
< lpudn 1)1 | W .

IpuA — I|| = maxicicn Iﬁ — 1] =% 0. From the Theorem 2.9 in Benaych-Georges and
=1 Wij
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Nadakuditi [2012], we conclude that [|[W,,/(uv/N)|| < oo. Combining these facts with (s5) and (56),
we have

\/ }\max(Bp,N) - \/ )\max(vv;vvn) LS} 0 and \/ }\min(Bp,N) - }\min(vv;\//\v/n) —0

which together with (s5) implies that

/ / g as. 2
Amax(B'p,N) + }\max(wnwn) — G“ + \/a)

m

! a.s. 2
/Amin(Bpn) + V Amin (W, W, ) &5 fn — el

Therefore,

—~ ~

}\max(Bp,N) - Ama’((w;wn) % 0 and Amin(BPyN) - }\min(w Wn) &) 0.

n

This, together with (s5), completes the proof of Proposition 2.4.
Now, we show that, with probability one, no eigenvalues of By, N outside the support of LSD. For any

positive constant € small enough such thatn; —e > 5—2(1 +v/c)?andn; +e < To1)(c)- i—i(] —/)?,
we have

P(Amax(Bp,n) = 11)
— P(Amax(Bpon) 2 M1y A (W W) 21y — )
+ P(Amax(Bp,n) > ﬂ1,7\max(W;Wn) <M —e¢)
< P (A WaWy) 2 11 — €) + P(Amax(Bpn) — Amax(W

W, )| 2 )

and
]P)()\min(Bp,N) < T]Z)
= IFD(7\min“3p,l\l) < nla}\min("/\/v;wn) < N2 — 5)
+ ]P)(Amin(Bp,N) < i, }\min(w;wn) > — 5)
g P(Amln(w;‘//\v/n) g N2 — 8) + IED(P\min(Bp,N) - }\min(wl

n

Wyl > e).

To prove this theorem, it suffices to give the following three estimations:

IP’(]m_ax Au(Bpn) — A (WL W) > 5) =o(n™"), (57)
<igy
P (AW Wo) 11 —¢) = o(n ), (58)
P (Awin (W, Wy) <11 — €) = 0(nY). (s9)

First, we prove (57). In view of the inequalities (56) and (58) (will be proved below), it suffices to show
that, forany { > 0 and € > 0,

)
21 Wii/P
=1 ij
P max ==
1<ign

u

1] > e) — o(nY, (60)

2.8



which follows from the equation (9) in Chen and Pan [2012]. (Although Chen and Pan [2012]’s ultra-
high dimensional setting (p/n — oo asp An — o00) is different from our setting, their equation (9) still
holds when p and n are of the same order.)

Second, we prove (58) and (59). Let W7, = LL+N(WTL — u1,,17). From Bai and Silverstein [2004],

we have
P(Ama((W5)'W3) 211 —€/2) =o(n ) (61)
and
P (Awin ((W5)'W5) <12 = £/2) =o(n ), (62)
By using Lemma A.1, we have
max Ai(Vv;an) — A ((Wr)'wy)
1<i<p
A7 o 1« ZTL1Wij/n ok
< _ — ¢ — == J/ = __
< Wa—wg {NZ( il )
n 24 1/2
P 2_iq Wij/n
<+ L W/ ,
<{fmm (5o ) ©
Similarly to (60), for any { > O and ¢ > 0,
P(max M—1‘ 28) =o(n Y. (64)
1<5<p m

This, together with (61) ~ (63), completes the proof of (58) and (59).

B.3 Proof of Lemma 4.2

The proof of Lemma 4.2 is quite similar to Sections s.3.1, 5.3.2, and 5.5 of Zheng et al. [2015], it is then
omitted. For readers’ convenience, we present the outline of the proof for Lemma 4.2. In this situation,

0 1w/ n 1 1wy Wi 1 s
B, =Y, Yn = DT = \/—E(W—‘i‘ —1,..., o~ 1) = \/—H(yﬂ,...,yip)’,l =1,2,...,n
and ]Erir; = 15 where X is the population covariance matrix of p mutiple of the compositional data

T n

(ie., pXn)and £ = v, (—p%ﬂph’, + T)%]Ip + Ip). As for moments of y3j, by (9), for any q > 0, we

have

Elye)" =E [(29 1) 168, (en)] + B[22 1) 1088 (e))] < KE (wy — )0
) P P

Wy

Therefore in the following proof, the requirement of truncation of Yy reduces to truncation of wy;. First,
we get that

r(Byn —zL,) T —pmQ(z) = (B) —zI,) ' — pmS (z) + p(mS (z) — mQ (2))

+tr A 2(2)A + AT (2)(AAT (2))? + u(A(z) — A) T AA T (2)3, (65)

where A(z) = Bg —zI,and A = Bg — B, n. Moreover, after truncation and normalization, for every
zeCt={z:7z> 0},

0 as. m(z) +zm ' (z)

72 o
zm(z) O’ El (A% (z)A)* = o(1), (66)
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tr(A2(2)AA " (2)A) B (m(z) +zm (2))(1 + zm(z)), (67)
(A (2)A)P(A(z) —A) 7' = (1 +zm(z)) u((A ' (2)A)*(A(z) —A) ") +op(1). (68)

Thus, by (65) - (68), Lemma 4.2 is obtained.
Note that, we also need to check the tightness of tr(B, n — zI,,) ™' —pm{ (z). Since

tr(By N — zIp)*] —pm?\] (z) = u(Bp,n — zIp)*] — tr(Bg —zIp)*1
+ (B —zI,) ' —pmd(2) + pmd (z) — pmy (2),

and the tightness of tr(Bg —zI,)7" — pm9 (z) is proved in Step 2 of Section 4.3, it suffices to prove

tightness of tr(B, N — zI,,) 7' — tr(Bg —zI,,)7". It can be obtained from similar arguments in Section
5.3.2 of Zheng et al. [2015] and we omit the details. Finally, the proof is completed.

B.4 Proof of Lemma 4.3

Note that, by Taylor expansion, there exist C; > 0 such that, forany —1/2 <x < 1/2,

1
(14+x)2

=1—2x+3x*+ a(x),la(x)| < Cx>.

Hence, there exist C; > 0 such that, forany 0 < e < 1/2,ontheeventBy(e) ={w :[Ww—p| < e,w =

Z}jzl W] /p})

_ 1 [1_2(W—u)+3(W—u)2+a<v_v—u)])

1 1
whoop2 (Rt )2 m u? m

where |a((W — u)/u)| < Cye3. Hence, we have

w? w2 2wiw—pu)  3wiw—pu)? w? W —
By (€)= | T3 — T T 1By (€) + e () B (€), (69)
where | a(®=4)I(B, (€))] < Cr % €. Since I(By (€)) = 1~ 1(BS (e)),
w? 2wiw—pu)  3wi(w—p)?
the right hand side of (69) :—21 — = 3 ! 3
m m m
wi o 2wiw—u)  3wi(w—p)?y. .
- [F B e e MUH GRS
where |a] < C; V:—jez‘ . Therefore,
w? w? 2wi (W — 3w (w — u)?
__;I(Bp(e))__z] o ]( . H) ]( - H)
v 8 " 8 (70)
2 2 ( 2( 2
Cwi 2wiw—p) | 3wi(w — ) c
(B S S B B ) + o,

where |a] < C; V:—j e3. Taking expectation for (70) yields that

2 2 2 (v 2 (w5 2
Wy wi  2Ewi(w—pu)  3Ewi(w —p)
E(W—ZI(Bp(e))) ~Eg=- > + u4
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2 w2 (i — 205 2
m m m
_ 2EW$(V3V — ) |, 3Ewj (VZ W Ea,
w
where |[Ea| < C;4 :—563. Thus,
2 2 IEW2 (W — Ew2 (70 — 11)2 2
BT _ %:_ W‘SS" D W‘(VZ b —Eb+Ea+E(V_L;
w w w
Note that
wi 2
Ecl = [E(Z31(B5(e)))| < p*B(B(e).
Next, we bound Eb. In save of notation, we denote by
W _ milw ) 3w — )’
UI_F’ Uz—T, Us—T

It is obvious that

E(y11(BS (¢)))] < C[Ew31(BS (€))] < C2P(Bg (€))7

Note that
pWiv—w 1 i Ewi(wi —p)  1Ewi(wi —p)
3 3 3 )
i P = i p i
and
pWiv—w? 1 i Ew?(w; — p)(w; — )
Ty p? 5o Th
_ 1 3 Ewdlw =)
p? i=1 wt
1 Ewiwy —w)? | p—1EwiE(w; —p)?
T p? u p? ul '
By (74), we get
E(y:1(B5 ()| = =5 Ewiwr — wI(B5 (e))
C
< 2 ([Ewticeg e + [Bwiicesien))
C
< (P (€))7 + [ 2 Eni1(B; ()]

C
< ﬁ(P(Bg(en”z +P(Bg(e))'/).
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(73)
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By (75), we get

E(y31(BS(e)))] < p%w\lﬁsw%(m —w1Bg ()| + BT (BB e)) (BOw, — w1l

prut
< % T %(P(B;(e)wz P(BS(e))'/2)
1 1 c
< C4(? + EP(Bp(e))).

By (76)—(73), we have
[Eb| = [E(ys +y2 +3)1(B; (¢))
< [ 1(Bg ()] + [Ely21(Bs (€))] + [Elys1(B5 (€))

< Cs(B(Bg(e))/* + %P(B;(e))‘/“ rp ).

By using (9) and E fwy — pl* < 0o and |““| < /M8y, we have Ea — Eb + Ec = o(p~ ).

Thus, by (71), (72) and (78), we get

Wi owi_ 2Ewi(W—u) | 3Ewi(W— )’

Wl - 3 u +o(p ).
Plugging (74)—(7s) into (79), we get
w w 1 3EW?E(w; — w2 2Ew?(wy —
E(:])Z_E(_WZZ_ 1 (41 1) . 1( 31 M)} "‘0(]971)
w ® P [ W

1
=—h +O(p7]))
b

which is the first equation in Lemma 4.3.
Similar to the previous calculation, we obtain

(%) (%2 1) uBy o)

_(T_ ) (T_ ) I(Bp(e))+<a— )1 (wr, W, WI(By (€))

+(5- 1) 2w, wa, WI(B, () + o(p~),

where

+ (m”)z(&”)z((wﬁ(fnz +zmw/]u/i])

()|

(77)

(78)

(79)

(80)



+(m_1)2(%_1)2((w:\iﬁz1)2+2wZv/2u/i1>' (81

Similar to (69)—(79), we get

E(o — (= —1)?

= ]E<W_H1 — 1) <% — 1) +E<Z: - 1)f1 (wi,wa, 1) +E(Z: — 1)2fz(W1>W2>H) +o(p)

=Ti+T+Ts+o(p ). (82)
Similar to (74) and (75), we obtain
P

TZZ%EZ<%—1>f1(W]>WZ)FL) %E<%+%_z>f1(whwlvu) (83)

i=1

and

:_EZ<__1)<u >fz(W1,W2,H)

i,j=1

:—]EZ(——1> 2 (wr,wyo, 1)

= —]EZ(— — 1) 2(wi,wa, 1) + pp—ZZE(? — 1) Efy(wi, wa, 1. (84)

Thus, by (82) — (84), we get

E(%—QZ(%—Q —E(%—Q (%—1) +:—)E(%+%—2)f1(w1,wz,p)

1 02
+Eu_Ef2(W1)W2)H)+O(p 1)
_m(M _ w2 1 -1
_E(u 1) (u 1) +oha+o(p ). (85)

which is the second equation in Lemma 4.3.

Similarly, we get
E(% _ 1) :E(% - 1) +o(1),

which is the third equation in Lemma 4.3.

B.s Proof of Lemma 4.4

First, we prove the estimation of P(B, (€)). By Markov’s inequality and Burkhdlder inequality, we get

P(BE () = P(W — | > e)
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—kq1E| Z p|kq1

P
< Kig, e 91p 4 | Z -1l —ulz)kq‘/2+EZIW —ulkq‘}
i

j=1

:qu]efkmpfkq] kcn/Z +EZ|W _u|kq1]

j=1

< Kieg, € K0p 7501 | (po?) <4172 4 pElw; — ul‘““}

_ kqp .—k “kq1/2 —kqr 1 Wi T M
—qu10‘ d1¢e q][p q1 +P q1 E|T| Uh}.

Next, we prove the estimation of the q-th moment of r’Ar — %vz tr A. Forany q > 2

q
E|[r'Ar — %vz wA| <K (E

By Lemma 4.3, we have

q

1o _
< Kqp YA] RS

1
]E‘——tr/\— —vVytrA
nu? n

. 2 . ..
Next, consider E’r’ Ar — %% tr A} 9. There exists a positive constant K such that

2

1
Elr'Ar — —0—2 trA
nu

2 2

< Kq (E‘ (r/Ar— Tll% trA)I(Bp(e))‘q +IE‘ (r’Ar— Tll% trA)I(Bp(e))‘q).

Step 1: Since ‘r’Ar——E—i Al < |Ir[l|A]l + CIA|| < C - p||A[], we have

! 1 Gz C q C
E‘(r Ar—T—lPtrA)I(Bp(e))’ < C-pIJA|TP(BE (e)).

lo 1 q
’Ar———trA‘ +E‘——trA——vztrA‘ )
n n

]

(o1)

q
Step 2: Estimating E|[r'Ar — %z—i tr A]I(Bp(€e))| . Write
1 0? 1 _ _ 10°?
T'Ar — EF trA = W(W—V\ﬂp)/A(W—W]p) — EF trA
2 —wl ! —wl 1 2 1 2
nw o nw ny
=iV1+Vy,
where 1, = (1,1,...,1)" € RP. For 0 < € < 1/2, there exists a positive constant K4 such that
1 0.2 q

E < Kq (Elwl(Bp(e))lq + ]EIvZI(Bp(e))Iq>.

[r'Ar — n 2 tr AJI(By, (€))
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By (86), we also have
q

). (92)

W, —
EWw — p|9 < quq (pfq/z +pfq+1E ‘J_“

o

On the event B, (€), we have —e < W — u < ¢, by this fact and (92), we get

1 1
Elv,1(Bp(e))|f = — =5 r A — — —r A
nw nu
trA |9 1 1 q
= 0?9 —| E|(— — —)I(By(e))
n w i
A q = q
n wou
AT
Koo 2| B — e
Al B W —
<K ) [
W —_—
< KuoqllA T [p9/2 4 pet 1B =] (93)
Next, we consider vq. Note that W_GW1" = W_G”]p — W]pgmp, we get

q

o’ [(W—WH)'A(W _GW1P) —trA]I(Bp(e))

nw> o

Efv1(By(e))* = E

q

(W—V_V1p)/A(W—V_V1p) —trA} I(Bp(e))
o (0

< Ku,d,qan’ [
(w—pul,)  (w—upl,) . 4
— I(B

- A 5 trA_ (Bp(e))

 Kugqn 95| (AT g, )

N

< Ku,c,,qnq]EH

~ _ ! s _ ‘I -
+ Kporqnt IE (w G“”’) AT = 1) 1(B,(e))

+ Ku)o_’qnin _(W1-p - H1p) A(W1p - u1p):|I(Bp(€))
L (o) o

= Ko,qn (Vi1 + Viz + Viz + Vig). (94)

By Lemma 2.2 in Bai and Silverstein [2004], we have

L4 q/2 — 24
Vi quKE‘W]U ”‘ tr(AA’)) +E‘w10 ”‘ tr(AA’)q/Z]. (95)

(wW—w)1, 1 1 (w—ply)
BT = 19,1 Dvite) gy

In the following, we consider V1,, Vi3 and Vi4. Note that >

1 1 ]
Bl T[A) = B alATp1)) =B a(ly AT, 1) < VRl
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we get

q

_ Tw—uly,) o, (w—ul,)
Vi = Kuoqn qE‘ [ET‘DHHAT‘“]I(Bp(e))
(W_Pdp)/ 1 / (W_Fﬂp) 1 I d 1 / a
< ARG aded -E N o ARAGIIN odel NN L _
< Kq (E‘ S A a1 TA)| +Ela(CTpT5A) )
(W_Fﬂp), 1 (W_Pﬂp) 1 a
< M e S / ST TP (= ! q/2 q
< Kq (]E‘ S A a1 1A) + Al )
< Vi (96)
Similarly, we get
Viz < Vi, Vig < Vi1. (97)
By (94)~(97), we get
wy — pl* qa/2 wy — |
Ev;I(By(€))]* < anqK}E‘ - ‘ tr(AA’)) —l—E‘T‘ tr(AA/)q/z]. (98)
From (89) —(93) and (98), we have
2
E[rar - L% aAl’
np
_ wy —p |4 ) 972 wy — |29 nq/2
< Kq(n9[(E| w(AA))" +E M raane]
o o
W — LL|q'

F A [pe/2 4 p o B ] p Al p(B o))

< Kq (n—q [(E(W‘G_ “(4 tr(,l\/!\’))q/2 +E[Y T ”‘zq tr(AA’)q/Z} +nq||A||q]P>(B;(e))>. (99)

o
By (88) and (99), we get
1 q
Elr'Ar — —vytrA
n
— 4 q/2 — 2q
<Kq<n*q[(E‘W1 “‘ tr(AA)) +E)W‘ “) r(AA)9/2]
(0}
+nIA[9P(BS (€)) +n y|Ay|qh$). (100)

IfE w; — y* < o0, A < Kand |¥E| < \/nb,, then, for any q > 2,

o

wy —p|t /2wy —p
anE‘ = ‘tr(AA’)) —HE‘ .

2q

tr(AA')q/z} < Kgn~'52a— (101)
and

n 9 A[9h] < Kqn 182977, (102)
Takinge =n"%,0< a < 1/2and kq; > %& yields that

nI[A[IP(BS (€)) < Kqn~'5297,
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Hence, we have
q
—1s2q—4
<Kqn 65977,

E|lr'Ar — lvz trA
n

which is derived by the following calculation,

Wi — 1 k1
BB} (€)) < Kig, 0501 e 1 [pen/2 +pkq‘“E'—JU

= Kiq, 09 (Py + P2),

and

Wi — kqi
P, = ¢ kaipkartig H
o

-k —kq1+1(,1/2 kqi—4
e KipTkatl (/25 ykan

*kq1n7kq1/271

€
P;.

NN N

Therefore,
P(B;(e)) < 2Ky, okaTP,. (103)
Takee =m* (0 < x < 1/2) and kqy > % into (103), we have
anP’(Bg(e)) < anqnf(%—oc)km < anfq/z < an*]éiq"‘.

B.6 Proof of Lemma 4.5
It is obvious that

, 1 , 1

E(r Ar— —v; trA) (r Br——v, trB)
n n

=K (r’Arr’Br) — (%vz tr B)E(r’Ar — T]—lvz trA)

1 , 1 L
— <EV2 trA)E(r Br — T_LVZ trB) — sz tr AtrB. (104)
Step 1: Consider E (r’Ar — %vz trA).
Recall thatr = \/Lﬁ(% —1,..., 22 —1)’. Note that {wj,1 <j < p}areiid.,and
P
wj _
Z =P (105)
j=1
and
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Taking expectation on the above two identities yields that Ex2 = 1,and, for 1 < j1 # j; <

B )& ) e

where v, = Var(%). This implies that

]E(rr’)zk( L1 1/ 1 I +I)
n p—1 1
By (106), we have
E (r’Ar _ 2 trA) =Etr (Arr') — Y2 A
n n
- tr(AErr') _ 2mA
ZAkla
k;él
thus,

/ 1 2
( vy trB) E <r Ar — —\/2 trA) mvz tr B ZA“'

k£l
Similarly,

/ | 2
< —V2 tI'A) <T Br— —Vz tI'B) —m\/z trAZBkl-

k#£L
Step 2: Consider E (r’Arr’Br).
LetR; = \/Lﬁ(% — 1), 1 <j < p, then we have Z]P:] R; =0, and
Wi

vy =E (W — 1) = n’ER],

vizi= B[ 1) (22 1)) = (RERE)
It follows from (105) that

ER3R, = %E[R? (i R; — R1)} = ]_ Vi,

1 P
ERIR,R; = - [RER (Y Rj—Ri—R,)]
j=1

1 1
= ——R(R3 — FE(R?R?
—) (RYR2) — — (RTR2)
1 1

Th-Dp—2 T p=2
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ER;R,R3Rs — #E{m R,R; <§ Ry — Ry — R, — Rs)]

= —EE(R%Rst)
3 3

T o203 T ho2p-3""*

To calculate E (r’Arr’Br), we expand it as

E (r'Arr'Br) = (ZR AuR; ZRkBkLRI) = Y ERRRRAB).

i"j)k$1

To calculate (112), we split it into the following cases:

i=j=k=1 ) (R{)AuBy;

1

2
i=jk=Li#k ) (RIR})AiBug
ii;éli
3
i=§,k#1 ) (R{RRy) AuiBy;
1 ,ll
4
i£j, k=1 (RRRE) AyBu;
Ul
S
i#j,k#£Li= ,)—IZ RZRZ AiiBijs
175)'
6
l;’éj,k%ll—l,)—kz Rsz B]u
i#)’
7
1£5,k#Li=Xk1#], D (RRRR)AyBiss
i
8

PAGkALL=gi7Kk ) (RiRReR)) AyBugs

)J)
iA#k
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i£j,k#Lk=7j,1i#1, Z (RiR;R;Ry) Ay;Bji;

)J)
iAj#l

10
i£ik#Li=Lk#), > (RRjRR:) AyBuss
i,j,k
i
II

125,k #LL#§,i#k Y (RiRRR) AyjBu.
i,j,k,1
A A

For ease of presentation, we still keep v4 in the expectations although we have obtained its value. The
expectations of all cases are listed as follows.
Case1:

E Z (Réf) AiiBiyi = E (Ril) Z AiiBii = %\M Z AiiBis.
Case 2:

EY (RIRZ) AuBi = E (RZR} ZAuBkk——ZZZ AiiBux
117‘6]% 175k 7"5]i

v
= ;22 (tI‘AtI'B — Z AiiBii).

Case 3: From (109) and (110), we obtain

E ) (R{RiRi) AiiBit =ERTR2R; ) AuBi +ER{R; Y AuiBu +ERIR, ) AyiByg

i,k,1 i,k,l i,1 i,k
KA iZk#L B ki
Vg
= AyB
(nz(p—ﬂ(p—Z) nzp 2) ; K
12K#L

(Z AnBtl + Z A'H.Bk.l> (113)
1#41 k;él

Note that

EtrA < ZA )'/? <E(pu(AA)V2 <E(p*|Al*)/? = pE| A, (114)

and

E‘ Z Aiinl‘ = E‘trA1;B1p‘
ikl

E(JA]-15B1,])
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<p’E(JA[l - [IB])
<pA(E[A[[T) Y (E[B])!/2
=0(p?), (115)

and,forq1,q2 >Oand1/q1 +]/C|2 = ],
E‘Z AuByl| = E‘Z Aﬁm;)’mp’
i,l i

E(’ZAizi )1/z<[z ((1;]31;)) ((1;)’B1P)D

pE|A| - |(1,B1)((1,)'B1,)]'/?

p*/?E[|A| - |B]

p>2(E[A[[9) /9" (E[BI|)'/ 92

=0(p*?), (u16)

1/2

INCININ

where 1}, is the p-dimensional vector with all components being 0 except for the i-th component being

1, and

E) AuBu=EuAuB<p’E(|A]-[B])=0(p?), (17)
il
and
EZAHBH pE|/diag(A)diag(B)|| < pE([|A[ - [[BI]). (118)

Thus, by (115)—(118), we have

E Z AiiBi = (Z AiiBil — Z AiiBiu — Z AiiBu + Z AuBu> = P ) (119)

ikl Tl
12K v

It follows from (113)—(119) that

Vi
E Z (RiszRl) AiiBy = ﬂ Z AiiBi +o(mn™).
Pty iZich
Case 4: Similarly to Case 3, one can conclude that
v
E Z (RIRJRi) AijBkk = —% Z AijBkk + O(Tl ])
i,k n*(p —2) i,k
i#j Eakals
Casess:
EY (RIR?) AyBy; =E (RIR3) Z AijBy = nzz (r(AB') — > AyByi).
) i) '
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Case 6:
EZ (RIR?) Ay;Bj; = E (RIR3) ZAUBJI_ (tr(AB) ZAuBu
i#)’ i#]’

Case 7: By (110), we have

E Z (RiR;R{Ry) AijBiy = E (RZR;R3) Z AyBu

1#1961 l#)#l
1
- - Al Bl
(nZ(p_‘l)(p_z)V4 n ) ; ) 1. (12‘0)
172);&1
Note that, E1)A'B1,, < pE(||A]| - [|B])), Etr(A'B) E(||A] - ||B]|), and by (116) and (118), we
have
E Z A—llBll =E Z AIIB‘L]. E Z AuBu = O(P3/2) (12‘1)
i#£l i,l
thus,
E Z AiiBy = (1;A'B1p ~u(A’B)-2) AﬁBu> — O(p3/2). (122)
il
1#)761 ’
It follows from (120)—(122) that
E Z (RiRjR{Ry) Ay5Bi1 = o(n™").
1,1
A
Case 8: Similarly to Case 7, we have
E Z (RiRijRj) AijBkj = O(Tl_] )
i,k
iy
Case 9: Similarly to Case 7, we have
Vg
E (RiRiRiRy) AyiBj = — Ai;B; .
el i)

Case 10: Similarly to Case 7, we have

V4 Vi2 nl
E (RIRR Rl) AIB i = ( — ) Al B i = 0 )
i%k o T nz(p—U(p—Z) nz ; e
A7k i#j#k
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Case 11: By (111), we have

E ) (RiRjRR) AyjBi

1,3,k 1
iA) kAL
=E(RiRoR3Ry) D) AyBia
1,j,k,1
A ARAL
3vy 3V12 )
= — + Al B
( np—T)p—-2)(p—3) n*(p-2)(p—3 qul o
A KA

Note that, by (122) we have

E ) AyBu=E(1,Al,—uA)(1)Bl, —uB)—2E } AuBy

i,3,k,1 ikl
IPABAISA] 12KEL
< Kp’E(|A]l - [|B)) — 2E Z AuBit = O(p?).
i,k,l
12K
Thus,
E )  (RiRRR) A B =o(n").
i,j,k,1
i£)#KAL
Combining Cases 1 — 11 gives us
/ ! 3V12
E (r'Arr/Br) =4+ >Y12 Z AuBy 4+ 2 (trAtrB + r(AB') + tr(AB))
Tl i=1

1 _
— mvu ( E AiiBr + E AijBkk> +o(n ])°
p Coinl 1,j,k
ik, kAL i#l i#),i#k, ik

Step 3: By (107)—(108), we have

_ (E trB) E (r'Ar— v2 trA) _ (E trA) E (r’Br— % trB)

2
V2
:—]trBZAkl+ trAZBkl
2p—1) k£l )
v
2 (p—1)
Z ByrrAxl + Z A B + Z BuAx + Z AuBi + Z BiiAx + Z AiiBit
K, K, K, K, ikl ikl
k#L K#L K#£L k#L i£k, kAL, i#£l 14k, kAL, i#£l
v3 1
=—— Z BiiAx + Z AiiBi | +o(n).
n(p —1) ik,1 i,k,1
£k, k£ i#£L £k, k£ i#£L
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Following the above calculations, we have
E(r’Ar — lv trA) (r’Br — lv tr B)
n’ n’

o P
:V“n—fm ; AuBii + % ( trAtrB + tr(AB') + tr(AB))

Vi2 Vi2
e ——— AiiB e ——— AlB
n2(p —2) 2 T n2(p-2) 2 Ik

L, LR i,j,k
ik, kAL i#£l 14, j#£k,i#£k
v3 V3 —1
-3 trAtr B+ m Z BiiAw + Z AiiBit | +o(n)
i,k,1 i,k,1
1k, kAL il £k, kAL il
-3 L Viy —
—HE Y ABi+ s (((AB) + u(AB)) + 2 : e AwB
n — n
V% —Vi2
+t = Z BiiAw + Z AiiBi
n(p —1) ik, ik,
£k, kAL i#£L 12K
Vi2 O
BiiAk + AiiBiy | +o(n7)
nZ(p —1)(p—2) lel lel
ik, k£ i#£L ik, k£ i#£L

VATV S A B+ 22 ((AB) + r(AB)) + Y2 A B 4 o(n ).
n? n?

n2

B.7 Proof of Lemma 4.9

Forany p x p matrix A, we have

‘tr(D*1 (z) — D;1 (z))A‘ < % (123)

By Lemma A.2 and equation (123), similarly to (4.3) in Bai and Silverstein [1998],

ﬂ«:\—trD (z) — E%trD_](z)}q < Cqn 92y, 9, (124)
which implies that
- 2 _ Kpzf!
E[B(2) ~ by (=) < k- (125)
Now, we prove that the difference between
Z i(21)€5 (2B -1 B (22) €5 (22)]

j=1
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and
mn

by (z1)bp(22) D [Bjo1e;(z0)IE; 1 (e5(22)]

j=1

converges to zero. We write
E|[E;1B; (z1)¢5 (21 (s 1B (22)¢ (22)]
— by (21)b (22) [Bs 1 (20 ))Es 1 (e5(22)]|
<E|[E; 1 (B (z1)e5(z1) — b (21)e5 (20 )y 1By (z2)e5(22)]|

+ E’ [Ej—1bp(21)€5(21)][Ej—1B;(22)€5(22) — Ej—1(bp (22)¢(22))] ‘
=1L+ 1.

Note that, forany q1,q> > 1 with 1/q; +1/q2 = 1, we have
L = E| [B 1 (B (z1) — bp (20))e5(21)] [B5-1 By (z2)e5 (z2)]|
qi\ /a1 _
) (B[R Bz 22)
qi\ /a1 _ qz\ 17492
) ) (E’Bj(ZZ)‘Sj(ZZ) )

— qz\ 1/492
< (E[Ey1(B; (1) = by 1)) 21) )

< (E[(B;(z1) — by (1)1 (21

= I]] X 112.

From Lemma 4.4 and (125), forany 1 < ¢ < 2, g2 > 2, we have

(L))" = E‘ [(Bj(z1) — bp(z1))ej(z1)] .

< (E[B;(z1) —bp(ZI),mqa)ql/z(Ewm‘q%)2;]

_4r 274 — — -
<Kn zn z §tat —pnlgtad

and

= q 292 g
Liz :E}Bi(zz)ii(lz)‘ ' < KVTTL 529274,

Thus,

4q1—4 2qp—4
L <Kn'5," 2 =Kn's.

Similarly, we can obtain I, < Kn=162. Thus,

B;(z1)e;(z1)I[E;j—1B;(22)€;(22)]

— by (z1)bp (22) [Ej_15(21)][Ej_1 (83‘(22)])

“1s2
< Kn™'os.

E|[E;
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From (129), we get
i i(21)€5(z1)][E5-1B;(22)€5(22)]
=
—bp(z1)bp(z2) i [Eimre;(z0))Es—1 (5(22)] B 0. (130)
=1
Next, we prove that
i By 15 (z1)][E; 1 (g5(z2)] =5 0. (131)

j=1

By (106), we get

T 1 -
Ej_1¢5(z) =E;j4 <1*]-Dj ](z)rj — T—vatrDj ](z)>

1
= tr[Bj 1Dy (2)Eryr]] — —vol;yuD; ' (2)

1 ) 1, 1 .
= v, By 1D} (2) (- L L )| - 3B (D (2))

—_Vz]E]',1 [tl‘ ])]_1 (Z)} .

Thus,

n
Z j— 153 Z] ) 18)'(22)]

j=1
2 n

:ﬁz i1 (D5 (20) ~ 1,05 21,
x By (D (22) = 15D (22T, ). (132)

By Lemma 2.3 in Bai and Silverstein [2004], we have

1

2

]; tr [D]-_] (z)] LN m(z), asp — oo, (133)
and by Lemma A .4,

] / -1 I_z 1

—1.D; (z)1, = —=, asp — oo. (134)

) z
By (124), we have

by (2) —EB1(z)l < Kn™'/2, (135)

46



From the formula (2.2) of Silverstein [1995], m,,(z) = —;—n Z]T;] B;(z), we have
EBq(z) = —zEm, (z). (136)
From (135), (136), and Lemma 4.4, we have
by (z) + zm) (z)] < Kn™1/2, (137)
From (132) — (137), we get
2) Y [Ejve;(z)lEsq (g5(22)] =5 0.
j=1

This, together with (130), completes the proof of Lemma 4.9.

B.8 Proof of Lemma 4.10

Using Lemma 4.4 and equation (125), we have, fori < j,

E|Bij(z2)7{E; (D5’

— n_2v§b1 (z2)
1

)) D (
r(Ej (D* 11 )tr(D ] (z5 Qp Z4 )‘
)) Dy 1(Zz Dy (22)Q, (z1)7

(z
t
E|Bs(z2)r{E; (D' (z )riv{Dy;
— 3By (z2) o (B (D (20)) Dy (22) ) (D (22)Qp (1))
+E[n 23 (B (22) — b1 (22) (B (D5 (21)) Dy (22)) (D5 (22) Qg (21) )|
< E|By (22) [r{B; (D5 (21)) Dy (z2)rs — o (B (D (21) Dy (22) ) [HDy (22)Qp (21
+ sy (z2) (B (D () Dy (22)) [0 (22)Q, (z1)r: — va (D (22)Q, (2]

+E[n 23 (By (22) — i (22)) (B (D5 (21)) Dy (22)) 1D (22)Q,. (21))
< Kn~V2, (138)

By (123), we have
o (2(Dy' (21)) Dy (22) ) e (D5 (22)Q, (21))
— (B (D} (21))D; ' (22) ) er (D} (22)Qp (1) )| < K. (139)

It follows from (138) and (139) that

| A1 (21,22) + V301 (z2) 1 (B (D (2)D; ' (22)) (D (22)Qy (21))| < K72, (140)
where A1 (z1,z;) is defined in (38). Note that
(B (D} (20)) D' (22)) = tr (B5[ — Qp (1) + b1 (2)A(21)] D] ' (22) ) + O(n'/2)
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=—t (Qp(l1 )D;l (z2)) + b1 (z1)uE; (A(z ))D;1 (z2) + O(n'/?)
j

= —tr (Q,(21)D; (z2)) + b1(z1)A1(21,22) + O(n'/2).

Therefore, from (32)—(37) and (138)—(140), we can write

tr (B (D} (20)) Dy (22)[1 4+ 113301 (2101 (22) 5 (D (22)Q, (21)

= —tr (Q,(21)D; ' (22)) + Aslz1,22),

where E|A4

(z1,22)| < Kn'/2. Using the expression for D;] (z2) in (32), (25), and (34)-(39), we have

tr(E; (Dj ' (21)) Dy ' (22)) {] - Jn ]Vzb1(Z1)b1(Zz)tf(Qp(Zz)Qp(Z1))]

= r(Q,(22)Q, (1)) + As(z1,22), (149

where E|A5(z1,22)] < Kn'!/2, By (137) and (141), we get

tr(E]- (D; " (z1)) D5 (z2)> {1 — j;] vimy (zi)my (z;)

Z1

1 n—
:—Zztr |:<Ip+

X tr{(lp—i— n-

1\/2“_13(21))1 (Ip +

]Vzﬂ_lg(m))] (Ip + nT_L ] Vzﬂf,@z))ﬂ }

n—

1\/2”_13(22)) } + Ae(z1,22), (142)

where E|A¢(z1,22)] < Kn'/2. Thus, we complete the proof of in Lemma 4.10.

B.9 Proof of Lemma 4.1x

By Burkholder’s inequality, the inequality [31;(z)]

E|(1,

=E

=E

< ‘vio‘, and Lemma 4.4, we get

) (D7 (z1) —ED; ' (z1))1} ‘
(B 15Dy (2015 — B 1 (1) Dy (21)13)

o e

2

'l\’lﬁ

Il
=

)
2

~

[B(15) (D7 (21) = Dy (2015 = B4 (1) (D7 (21) = D7, (21)) 13

u
Il
=

2

M =

(B — B )(15)' (D7 (20) = Dy (1)) 18

—.
—_

hE

. . 2
<KD E|(B; — Ej1)Bys(z0)r/D5; 15 (15)' Dy
j=1
<K E[p(z)r/Dy 15 (1) Dy )
j=1
< Kn', (143)
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where 1; is the p-dimensional vector with all components being 0 except for the i-th component being
1. Hence, we have

l & ¢ _ B B
IE‘EZ]Z]E]- (D;'(z1) —ED; (1)) B (D5 ' (22))
nK ¢ i/ Ty—1 -1 i -1/2
< o5y D E|03)(Dy (z1) - EDY ()T < kn 7,
n<vo i
and thus
1 & o
222 E(Dj(z1) ~ED; ' (21)) By (Dj ' (22)), = Op(n '), (144)

j=1 i=1
With (144), it remains to find the limit of
12

5 ZE(D;1 (21))11E(D;1 (ZZ))u' (145)

i=1
It is easy to see that the sum of expectations in (145) is exactly the same for any j. Moreover, we have
1 & _ _ ip.
5 2_E(D;(z0)) B(D; (z2)) ¥ mizi)m(z2).
i=1

This completes the proof of Lemma 4.11.

B.1o Proof of Lemma 4.12

First, we prove the first equation in Lemma 4.12. For E(y1(z)P1(z)), we have

E(y1(z)P1(2))
o~ 2 ~_
=E [w (2) (m’{DT] (z)Qp] (z)r; — % tr (Qp 1 (z)ED;" (z)))}
__ 27,2
— nE [% (27D '(2)Q, (z)m} __OW ED (2)Eya(2)

1+ %Em, (2)

1 1 1
= TIEKT'{DT] (2)ry — —vytr DT1 (z2) + —vytr D]_] (z) — —=vEtr DT] (z))
n n n

—1

< (1D (2)Q, (2 — 1vau D7, ()] + vaw [0y (20, (2)])]
e
1+ %Em,(z)

= nE[(rD7 (v — ~va Dy (2 ))(nD1 2Q,z )n——mr D20, @])]
1

tr[ED; By, (2)

L viE (wDy ' (2) D (@) ~ ———viE (1,07 ()1, «D; ' (2)Q, (2]

np—1)
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+—(1+ %)V%Cov (trD;‘ (z), t[D7! (2)6;1 (z)]>

n P—
:

- i E (DT @D @Q, 1) ~ B (D7 (@) E (1,07 (2)Q, (2)1,) |

02 /u?
] —i—z—;Em (z)
= nE[ (1D} (@)1 — vy Dy ())(r1D1 =Q, ()n——mr[m ©Q,")])]

n(p]—1)V%E (“D1 (2) u[D7( ) ZE (1 D;'(2)1, u[D;’ (Z)Q;‘(Z)D
ot/
1+ SEm, (2)

u[ED; ! (2)]Ey1 (2)

+

u[ED; ! (2)]Ey1(z) + o(1),

which is the first equation in Lemma 4.12. Below are some interpretations of the above equalities:

1. The fourth equality uses the following derivation: By (106), i.e., E(rr’) = %vz( 1,10 +
;T]Ip +1,,), we get

nE[(rqD;1 (2)r) — %vz aD;! (z)) (lvz tr {D1 m
+nE[(1v2 Dy (z)—TllsztrD1](z))(r1D1 z)ﬁﬂ
00,
(2)r)
= v, u{Err{E[D] ' (2) 0 (D7 (2)Q, (2)) ] } - %v%E(uDr‘ 2)u[D'(2)Q, ()])
+vu[E(D;(2)Q, (2)uD; (@)Erir)| —vEuD; ' (2)u[E(D) ' (2)Q, (2))Erivi]

(2))

—vE(HD; (@ o {Dﬂ(Z)Qp](Z)D—%V%E(trm (2)u [D7(2)Q

P
~ 1 —1
P

—|—V2E<trD1_] (2)r1D;'(2)Q, (z)h) —v;EuD;’ (z)E(rgDﬂ (2)Q

= (a7 (@) [0, 1)) + s (w07 () wDy (2)Q,
1 o ] B
EETEkS (157" (21, D7 (2)Q, ' (2)]) - —viE(w D7 (2)wr D7 (2)Q, '2)])

-1+ ﬁ)v%Cov (trD;‘ (2),¢[D;'(2)Q, (z)])

' TY— ~ 1 _ )~ ~—1

BT AL [E (trD1 (2)[1,D7'(2)Q, (Z)1p]>—E(trD1](z))E(1pD11(2)Qp (Z”P”

_ V2 —1 -1 ~

_ —n(p_UE(trD1 (2) D7 (2)Q,

s
n

v3 AT T Q.
e (1,07 (@1, 407 (2)Q, ()]

] -Jv3Cov (uD;‘ (2),¢[D;'(2)Q, (z)])

1

(2)1) -

2 ~ ~
- —n(pvi 1 [E (trD?‘ (2)1,D;,'(2)Q, (znp]) ~E (D' (2))E (1;,13;1 (2)Q, (znp) ]

50



2. The last equality is due to

~—1

%Cov(trD11 (z), tr[D?1 (2)Q, (z)]) =0(n"),
which follows from (42).

Next, we prove the second equation in Lemma 4.12. For E(B1(z)y$(z)P1(z)), we have

E(B1(2)v}(2)Pi (2)
2 -1 ~] 2 o’ ~—1 1
E(nB1(2)vi(2)rDy ' (2)Q, (Z)ﬁ)—E(BNZ)%(Z))E(PU Q, )D; (z)})

~ 1 0‘2 ~ —1
B(nf1 2 D; Q, () B (Bl « | 55Q, D12

2

+ Cov <[51 (2)y3(z), tr [%Qp] (z)D;! (z)}) . (146)

From Lemma 4.4 and equation (42), we have

2 JEE PN 2 0% <1 1
B(n1 (203D @0, (o) ~E (B @i e | 50, @D @) )

— 2 o 1/2
<nfEm@m@e] B =R, n - 1 S «(Q, @D @) ]
<Kn(n'64)1/2n"1/2 = Ks2, (147)

and
02 ~—1
Cov <f31 (D2 (2), [EQP (2)D;" (z)} )
< (BB (2)1*) " (BN ()1
02 ~—1 . 02 ~—1 iy 2\ 12
x (E tr(FQp (2)D; (z))—Etr(FQp (2)D; (z)) )
< Kn /453, (148)

From (146), (147), and (148), we complete the proof of equation (50).
Finally, we consider (s1). From (106), D,;'(z) =D '(z) = B:1(z)D; ' (2)"i7/D; ' (2), B1(2) =
b, (z) — by (z)v1(z)B1(z) and ER1(z) = by (z) + o(n~"/2), we have

E(B1(z)P2(z))
o? ~ 1
= E(B1(2)w|Q, (2) (ED; ' (2) ~ ED ' (2)
2 ~
= (B (2)) [ Q, (JE (B1(2)D; (&) riDy ' (2)]
2 ~
= 23E(B1 (2) E[(by (z) ~ by (2)81 (231 (2))riD; ' (2)Q, (2)Dy ()

SI



2 ~_
= by(2) BB (2))[Er{Dy ' (2)Q, (2)Dy ' (2)ry

—1

—EB1 (21 (27 Dy (2)Q, (=)D (2]

~—1

w2 U_z -1 —1 ~1/2
=b(a); EriDT'(2)Q, (2)D7 (z)m] + O(n'72)

p 2
2 (7_2 1A/ 1 / ~1/2
b u«[ED;'(2)Q, (2)D7 " (2)Eri7i| +O(n/2)
2,407 —1 -1 —1
_bp(z)ﬁu[ﬁm (2)Q, (z)D;(2)
X l\/z(— ] ]1p1;+TIp+Ip>} +0(m "2
2
- P 1)v20—2b§(z)Etr[D]‘(z)Qp (D7 (2)]
1, U—sz(Z)Etr[D](Z)é](Z)D1(Z)1 1’]+0(n—‘/2)
np—1) ZHZ p 1 p 1 Pip
2

~ 1

Eu[D7'(2)Q, (2)D;(2)] + O(n~"2),

which is the equation (s1). Below are some interpretations of the above equalities:

1. The fifth equality follows from

E(B1(z)v1(2)7}D7 ' (2)Q, (2D} (z)r1) < Kn~ 172,

which can proved by using Lemma 4.4.
2. The last equality follows from

! o? 2 Y —1 / —1
n(p_])szbP(Z)Etr[Dl (2)Q, (2)D; (z)1p1p} —om).

This can be proved by using Lemma 4.3 and Lemma A 4.

B.ix  Proof of Lemma 4.13
Step 1: Consider J;. By (13), we get

1 1 1 _ 1 _
TLEY] (Z) =N (Esztr{<—F1p1; + FIP + Ip>D1 1(Z):| — EVZE tI'D1 1(2))

1 1
= _p — v, E tr(1I’)D1_] (z)1p) + 1\/2E trD?1 (z). (149)

By Lemma A.4, we have

1
np-1)

—bf,(z)[ vgﬁ,(trD;‘(z) u(D7'(2)Q, (z))>
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1 ' y— _ ~_
B mvﬁEOpD] "1, u(D;'(2)Q, m))]
iy —cz’m?(z)o?/ut m(z)
T T Zmiz) {m (2)+— }

By Lemma 2.3 in Bai and Silverstein [2004], we have

1 2

= tr [D]-’1 (z)] 5 m(z), asp — oco.

By Lemma 4.3, equations (149), (150), (151), and (41), we have

. _ 2 2
B () (Smiz) + S 4 ).

14 ﬁ—in_l(z) p?
Step 2: Consider ],. By Lemma 4.5, we have

Jo =TJa1 4+ J22 + J23 + J2a + 0(1),

where
~ P
ot = —nb2(2) [ S (va — 3vi2) _E[(D}'(2)),,(D}' (2)Q, @)dl],
i=1
]22 = —leé (Z) FV]zE tl‘(]:)]i1 ( )Qp ] (Z)D?] (Z))])
Jas = —nb2(2) [ viaEe(Dy ' (2)Q, ()(Dy (2)))],
J24 = —nb3(z) -%(Vu —v3)E[u D7 (2) ur(Dy! (Z)Q; (Z))H '

Since L Y0, E(D; (2))u(D7 ' (2)Q,, ()it 5 2

i=1 1+ m(z)’
ip. —czm?(z)m?(z) (Elwy — pul*  _ [Elwq — pl??
Ja1 = 7 7 -3 T .
1+ %m(z) p o8
Note that
1 i
I—)EtrDTz(z) R m'(z),
thus we get
I, —cz*m/(z)m?(z) [Ejw; — pf?|?
14 ﬁ—im(z) ut
Similarly, we have
. —cz*m’(z)m?(z) [Ew; — p/?|?
1+ 2 m(z) ut

(150)

(151)

(152)

(153)

(154)

(155)

(157)



By Lemma 4.3, we get

o\ z’m?(z)m?(z)

i.p.
]z4 — —C(hz—ZF}h) ]—|—U—§m( ) . (158)
From (153), (154), (156), (157), and (158), we have
ip.  czZPm’(z)m?(z) (Ewy — [t [Ewy — )
= — -3
J2 1+ S m(z) < p pt )
_ 2cZm/(z)m Ew; — w?[? o2, \z’m?(z)m?(z
le) B P _ (T ) EEmE
1+ Sm(z) W K 1+ 55m(z)

Step 3: Consider J3. To calculate the limit of 3, we can expand D; ' (2) like (32) and find the limit of
J 3 using the method similarly to Bai and Silverstein [2004]. The limit of ]3 is

2 —1

o i o’ m(z))2] . (160)

Js 1 e qm? (@) (14 m(z) - ¢ am ()1 +

q

=
T:N| Q

From (152), (159), and (160), the proof is completed.

B.12 Proof of Lemma A.4

By Lemma 4.4, we obtain, for any 2 < r € N,

Elrj’Dj_] (z)xpx;,Dj_] (z)r;I"

1 T
<K, (E rj’D]-’1 (z)xpx{,Dj’] (z)r5 — Vot [D]-’] (z)xpx{,Dj’] (2)]
1 _ _ T
+ EVZE‘tr[Dj ](z)xpx;Dj 1(z)]\ )
<Ke(n282 407, (161)

where % tr[D]

i 2%, Dy (2)] = 1%, Dy 2 (2)x, = 751,D572(2)1, = O(n ).
Write

E;(D"'(z) = D; ' (2))xp —x,Ej_1 (D '(z) — Dj_1 (z))xp>

= — > (B —Ej_1)B;(2)r|D; ' (z)xpx, D; ' (2)7;.

By Burkholder’s inequality, (161), and |B;(z)] < lz‘ ~, we have

Elx, D~ (z)x, —x ED "' (z)x,|*
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n
<KD EI(E; —Ej_1)B;(2)r]D; ' (2)xpx, D; ' (z)m?

j=1
<K ) EIB;j(2)r{D; ' (2)x,x, D (2)m/?
j=1
<Kn . (162)

Thus, we have
Elx, D~ (z)x, —x ,ED "' (z)x,|* — 0. (163)

2

Note that D(z) + zQ, (z) = Y]y 77/ + 2% Em,, (2),,, where Q,,(z) = S Em,, (2)I,, + I,,.

Recallingm,, (z) = —% Z;L:l B;(z) and using the identity T'j’D*1 (z) = Bj(z)r (z), we obtain

(—2Q,(2)) " =D '(z)
= —(2Q,(2)) ' (D(2) +2Q,(z)) D' (2)

n

2
= —-z'Q, (2) (Z T+ Z%Emp (z)1p> D '(z)
j=1

0.2

s ~ 1 ~ 1
= 2 Y Bi&)Q, (21D () ~2'Q, ()~ 5B (z))D ' (2)
=1
Taking expectation of the above identity yields that
(—2Q,(2)) ' —ED'(2)
-1 Sl -1 102 <o —1
— — 2 "nER:(2) [Qp (@rrDy'(z) ~ 5 Q, (2ED (2],
Multiplying by —x]’D on the left and x,, on the right, we have

x]’:,]ED’1 (2)xp — %, (—zép (z))qxp
2

=2 mE{p1(2)[x,Q, (2)ri7{D; (z)x, %%X{,Qp (2ED ™ (2)x | }
=: 07 + &, + 03,
where
81 = —E(B1(z)a1 (2)),
/ ry—1 1 0-2 w1 —1
x(z) =x,Q, (z)rimiDy (z)x, Fprp (z)D7 (2)xp,
1 2
5 = 5 2B (E%,Q, (2)(Dy () - D))y,
102 .
5y — Z%Eﬁ.] (2)x,Q, (2)(D"' (z) —ED " (2))x,
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Recalling the notations defined above and the following equalities:

51 = ZEB (2)ou () — ZE [B1 (2)B (2)er (e (2)]
B1(2) = by (2) — b, (2)B: (2)tr(Dy ' (2) - EDy ' (2),
) 1V

Ex;(z) = (vz]Em [Ex D, (z )xp+o(1)].

From Lemma 4.3 and (106), it is easy to see that

nER;(z)o(z) = [] —i—cv;]Em B +o(1) [ nEowx;(z).
P

Therefore, 57 = _vazEmy (2] x.E(D;"(2))x, + o(1). Similarly to Bai et al. [2007], one may have §, =
v2zEm, (z )+Z P P y y

o(1) and 83 = o(1). Hence, we obtain

v2zEm, (z) _ 1
1— i 'E(D" 0
( vazEm, (z) + z>xp ( (2))xp + oZ/u?zEm,(z) +z -5
which implies that
1
x}’,IED’1 (z)xp — —
This, together with (163), completes the proof of Lemma A.4.
B.13 Proof of Corollary 2.6
For ease of presentation, we denote A = 02 /pt? in this section. Note that
1 cA
dz = [n_fz —cA (1 +Am)2]dm
=[1—cAm?(1+Am )| m *dm, (165)
1 1—c
m_z<m+ - ), (166)
1 1—c
r_ b o
™= <_ z? ) (167)

For1 < ry,m; € NT,

COV(Xx” ) XXTZ )

Ti—1 712 1—¢ ki1+ka
}\ T1+T2
o ¥ 3 () (8) ()
k1=0 k=0
2r1 —1—(k1+0\ [(2r; — 1 —k, + ¢
. Z ( - )( o ) (168)

1
+ }7 (B +h, — 2Ah,4) (AC)T‘_HZ
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T T2 k] +k2
Ty (T2 lT—c 2ry — k1) (21‘2 — kz)
* . 16
quOkZZO <k]><k2> ( ¢ ) ( 1 —1 T, — 1 (169)
The proof of (168) is exactly analogous with Bai and Silverstein [2004], it is then omitted. Next, we prove

(169). The contours €, €y, €, are closed and taken in the positive direction in the complex plane, each
enclosing the support of FoH. Note that

2]z j£ z}' 3€ zy?
dm,dm, = ——d —=—dm,.
El'ﬁ& iz (14+2Am,;)2(1 4+ Am,)? Tt Gk e, (T+2Am,)? mh e, (1+2Am,)? ms. (170)
By (164),
1 cA B
Z;] jg (_m_1 1+7\m1>
dm, = d
?f;& O+am)2 ™ " T, - (T +Am)z O
T ] ]_C m —T -2
=0 (e ) 1 (0 Am) T Ay dm
T
= (Ac)" 14 Am,)k
(Ac) ﬂ;elhzzo(k])( —%)"(0+my)
x ) (T‘ +j’ 1) (14 Am ) (14 Am,) 2 dm,
j=0
™
T 1—c\k
= (Ac)™ < >
- k1 < Cc )
o0 ._1 .
<d 3 (" ) (1+Amy )12 dm,, (171)
¢ = )

by substitution m; = Am,, we get

%@1 <1Z+]2d"_11 = %(Ac)rl Z ( E] ) (1 :c>k1

+ Am1) k1 =0

> - ki—T1+j—2
X Z T]._H ] (1 +m1> s dm,. (172)
i )

For integral (172), the pole is —1, we have by residual theorem

zy' 27 "L\ 1 — ek /21 — kg
R = }\ T .
i] (14 2Am,)? dm, X (Ac) kZO <k1>( c ) r—1 (173)
—
Similarly, we get
—ZEZ — @ ™ = T2\ /T—c\k (212 —k;
iz (T4 Am,)? dm, = 5=(c) kZ_O (kz)( c ) 1) (174)



By (173) and (174), (169) is derived.
For f] =X,

EXy = Lﬂg Azm?(z) [1 — eA’m?(2)(1 + Am(z)) 2]
(64

2mi

x (14Am(2) > [1 — Mm% (2)(1 + Am(z)) 2] ' dz
- % 3&3 zm(z) [1 — eA?m?(2)(1 + Am(z)) 2]

x zm(z) (1+Am(z)) ' x (hym(z) + Am(z) +A/z) dz
- g ) [1- NmA @)1+ Am() )

x (14+Am(z))"" [Bm?(z) + (hy — 2Ahy )m?(z) + 2A*m/(z)] dz
=11 (f1) + La(f1) + I3(fq).

For I; (fq), we get

(1) = 39 Azm(z) [1 - APm?(a)(1+ Am(z)) 2]

x (1+Am(z) "~ [1 - eAm?(2)(1 + Am(2)) 2]

dz
-1

= L 4§ orzmi(z) [1 - cAPm2(2)(1 + Am(2) 7]
2mi Je

x (14+2m(z)) " [1 = eA’m?(z)(1 +Am(z)) ]
x [m™? —cA*(1+Am) ] dm

1 cA?(—cAm +Am +1)
:z_mf]g@(wxm)z[ (Am)2 — (1+Am)2]

—1

For the first integral I; (f;), the poles are A1 —#m, we have by the residue theorem

L (f1) =A(1+¢) (14 vc)? ——1—\/_)220.

For the second integral I, (fy ), the poles are —A1, we have, by the residue theorem,

I(fy) = _sz “e zm(z) [1 — eA?m2(2)(1 +7m_1(z))72}

x zm(z) (1 +Am(z)) " x (hym(z) + Am(z) + A/z)dz

—1

—1

— L4 () [1 - cAPmP(2)(1 + Mm(2)) 7]
2mi Je

x zm(z) (1 +Am(z)) " x (mmm +Am(z) +%+ (s “)];C)

x [m™2 — cA?(1 +Am) 2] dm

1 (A’m —hy)(—cAm +Am + 1)
__z_mi m(1 +Am)3
= h,.

dm
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For I3(f1), we get

L(f) = —5 ) ez [~ Nm*(a)(1 +Am(z) 2]

x [14+2am(2)] " [pm?(z) + (hy — 2Ahy )m?(2) + 2A%m/(2)] dz

— 5§ (@) [1 - N a1+ Am(z) 7]
(6]

2mi
1 2(1— 1—c)?
x [1+Am(z)] ™" {(B +h, — 2Ah,) (C—Zn_12z2 + (C—Zc)n_mz + ( CZC) )
+2>\2(1z2m’— 1 _C)] X [n_l‘z—ckzﬂ +7\m)‘2} dm
C C

1

S i cOm+ 1)* (cA?m? — (Am +1)2) | )

x [2A%(Am+ 1)*((c = DleA*m? — (Am +1)2] = (—cAm + Am +1)?)
+ (eA*m? — (Am+1)%) (—2Ah; + B + h,)
X (—c)\m+?\m+(c—])()m_1+1)+1)2}
X (—cAm+Am+ 1)dm

For the third integral I3(f;), the poles are A, —m, we have by the residue theorem

I3(f1) = (1 +c) + A1 +ve)2 +A(1 —ec)? =0. (178)
Thus, by (175), (176)~(178), we get

EXy = h;.
For f, = x?, we have

X — sz i A Zm(z) [1 — eAm?(2)(1 + Am(2)) 2]

x (1+Am(z)) > [1 — A2m?(2)(1 + Am(z)) 2] ' dz
-
2mi e
x zm(z) (1 +Am(z)) "' x (hym(z) + Am(z) + A/z)dz
10
 2mi e
x (14 Am(z)) " [Bm?(z) + (hy — 2Ahy )m?(z) + 23°m/(z)] dz
= I (f2) + La(f2) + I3(f2). (180)

Zm(z) [1 - cAm?(z)(1 +Am(z) 2]

cz'm?(z) [1 — A2m?(2)(1 + Am(z)) 2]

For the first integral I; (f,), the poles are A1 —(HE]W, we have by the residue theorem

(f2) = 5§ N2l [1- Nm*(E)(1 +Am() 2]

x (1T4+Am(z) 3 [1 —eAMm?(2) (1 +Am(z)) 2] ' dz
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-1

cAz2m?(z) [1 — cA’m?(z) (1 + Am(z)) 2]

— eA’m?(2)(1 +Am(z)) %]

“ldm
—cA?(—cAm + Am + 1)?
+Am)3 [c(Am)? — (1 +Am)?]

A2 A?
7(1 + V)t — 7(1 —Ve)?

J v
x (14+Am(z)) " [1
[m 2 —cA*(1 +Am)~

B Z_mﬁe m(1

=A% (1+5¢c+c?) —

= —cA\’.

1
_27'[1@
X
1

(181)
For the second integral I, (f; ), the poles are —A~1, we have by the residue theorem,

T [ 5 2.2
_27'[1“(32“_1(2)[1_67\“_1

x zm(z) (1T +Am(z))

—1

I5(f2) = (2)(1 +Am(z))~?]

T Thim(z) + Am(z) + A/zl dz

(2)(1+Am(z)) 2]

T [ 5 2.2
= Ruezm(z)ﬂ—d\m

(hm_l(z) +Am(z) + Mz + (hy +A) ] C_ZC>

x zm(z) (1 +Am(z)) " x

X [m~2 —cA?(1+Am) 2]dm

1 —(A’m —hy)[—cAm +Am + 12
_Tmfj;e m2(1 +Am)*
— AMA+ 2chy + 2hy).

dm

(182)

For the third integral I3(f,), the poles are A —m, we have by the residue theorem

1

I3(f2) = T3

x [1

2.2

cz’z’m’(z) [1 — cA*m
Je

2(2)(1 +Am(z))?]

(hy — 2Ahy)m?

—1

(z) + 2A*m

"(z)] dz

+Am(z)] " [pm?(z) +
L

], 2(2)(1+Am(z)) 2]

cz?z2’m3(z) [1 —cAm

(1—¢)?

1—¢)
mz + 5
c

x [1+Aam(z)] [([3 +hy — 2Ahy) (C]—zﬂ_lzzz + Z(C—Z

)| x [m?

2Ahy) + A% (1

)

] _
s v (12m - 2

=-2AM(1+5c+c*)+c(B+h,—
=2cA? +¢c(p + ha — 2Ahy).

—eA2(1 +Am)*2] dm
+ V)t + A (1

—Ve)!
Thus, by (180), (181)—(183), we get
EX,2 = —cA? + A(A + 2chy + 2hy) + 2cA? + ¢(B + hy — 2Ahy)

= (c+ DA%? +2(c + 1)Ahq +¢c(B + ha — 2Ahy).
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For f3 = x3, we have

—1

EX,s = sz ﬁ;e cA’Z’m’(z) [1 — eA°m?(z)(1 + Am(z)) 2]

x (1+Am(z)) > [1 = A2m?(2)(1 + Am(z)) 2] dz
=L d Pme) [1 - () (1 + Am(2) ]
27 Je
x zm(z) (1 +Am(z)) "' x [hym(z) + Am(z) + A/z] dz

L eomi(z) [1- cAm (2)(1 + Amz))

—1

—1

- 2mi ) e
x (1+Am(z)) "' [Bm?(z) + (ha — 2Ahy)m?(z) + 2\*m/(2)] dz
=: I (f3) + Lo (f3) + I3(f3). (184)

For the first integral I; (f3), the poles are A1, _(H:]W’ we have by the residue theorem

(1) = 52§ N2 [1- N (z) (1 + hmiz) ]

—1

—1

x (14+Am(z)) > [1 —cA?m?(2) (1 + Am(z)) 2] dz

—1

= — " cA’Z’m’(z) [1 — eA’m?(z)(1 4+ Am(z)) 2]
2mi Je

x (1+Am(2)) > [1 — eAm?(z) (1 + Am(z) 2]
x [m™% — cA*(1+Am) *]dm
_ L% cA?(—cAm +Am +1)3 o
21 Je m2(1 +Am)* [c(Am)2 — (1 +Am)?]

3 3
=AN(14+12c+12c?+¢3) — %(1 ++/c)® — 7\7(1 —+/c)®

= —3c(c+ A% (185)

For the second integral I, (f3 ), the poles are —A~", we have by the residue theorem

L(fs) = ~5=§ #mie) [1 - Nm?(E) (1 +Am() 2]
x zm(z) (1 + Am(z)) "' x [hym(z) + Am(z) + A/z] dz
= Pme) 1 - Mm@ (1 + Am() 2]
27 Je

x zm(z) (1 + Am(z)) " x (hm_lm $2mz) +A/z+ (hy +A)- c_zc)

x [m 2 — cA*(1 +Am) *]dm
Lj@ A°m — hy][—cAm + Am + 1]°
2mi Je m3(1+ &m)s

= A%(3cA + 2A + 3c?hy + 9chy + 3hy). (186)

dm
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For the third integral I3(f3), the poles are A —m, we have by the residue theorem

L(fa) = —5 § e2'2m*(2) [1 - M)+ Am(z)) 2]

x [14+Am(z)] " [pm?(z) + (hy — 2Ahy )m?(z) + 2A%m/(2)] dz
= L cz322m3(z) [1 —cA?m?(z)(1 4—7\11_1(2))’2]71

27 Je
2(1—¢) (1—c)?
c? mz+ c? )

< 14 Mm(z)]" [(8 +hy — 22h) (gm?2? +

1 1—
+ 202 (—sz/ — C)] X [mfl — cA?(1 +?m_1)’2} dm
C C
=201+ 12c+12c? + )+ 3c(c + DA(B + hy — 2Ahy)
+A T+ + A (1 —Ve)®

=3c(c+ DA(B +ha —2Ahy) + 6¢(c + A3, (187)
Thus, by (184), (185)—(187), we get
EX,s = —3c(c + A3 + A% (3cA + 2A + 3¢?hy + 9ch; + 3hy)

+3c(c+ AR +hy —2Ahy) + 6¢(c + T)A3
= (3c2 4+ 6¢+2)A° +3(c? 4+ 3c+ 1)A%h; +3c(c + DA(B + hy — 2Ahy).

Thus,
wy = EX¢, = hy,

wy :=EX¢, = (14 c)A? 4+ 2(1 + c)Ahy +¢(B + hy — 2Ahy),
s = EXy, = (24 6¢ +3c?)A% 4+ 3(1 + 3¢ + c?)A%hy +3c(1 + c)A(B + hy — 2Ahy),

and
Vi) = 2cA* +¢(B +ha — 2Ahy),

Viz,2) = 4c(2 4 ¢)(1 + 2¢)A* +4c(1 + ¢)*A*(B + hy, — 2Ahy),
Vi3,3) = 6¢(1+6¢ +3c¢?)(3 4 6¢ + c?)A® + 9¢(1 + 3¢ + c?)*A?(B + ha — 2Ahy).

B.14 Tightness of MQJ(Z)

The tightness of M](:,] )(2) is similar to that provided in Bai and Silverstein [2004]. It is sufficient to prove
the moment condition (12.51) of Billingsley [1968], i.e.

EIMY (z1) — MU (2,) 2

(188)
z1 — z,/?

sup

n;z1,z22€Cn

is finite.

Before proceeding, we provide some results needed in the proof later. First, moments of HD*1 (2)|,
||D]71 (z)|| and ||D;)-] (z)|| are bounded in p and z € C,,. It is easy to see thatitis true for z € €, and for
z € Cgifxg < 0.Forz € €, or,if x¢ > 0,z € €, we have from Proposition 2.4 that

E[D7 @)™ < Ki+v"P(IBg) || = nr or Ain(Bj)) <o)
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< Ki+Knmemnt <K

for large €, where B(j) = B, — rjrj’. Here 1, is any number between ﬁ—iﬂ +4/c)? and x,; if x¢ > 0,1

. 2 . .
is any number between x, and % (1 —+/c)? and if x; < 0,7 can be any negative number. So for any
positive integer m,

max (D (2)]|™, E|ID; ' (2)|™, B|Dy (2)|™) < K. (189)

By the argument above, we can extend Lemma 4.4 and get
q
’E(a(v) [T (B — n*‘ter(v)))) < Kn~'g2a4, (190)
=1

where B¢(v) is independent of Ty and

max(la(v)l, [By()|]) < K(1+n°I(||Bp || = ny or Amin(B) <)),
with B being B ;) or By. By (190), we have
Elg;(z)|™ < Kpn'62m 4, (191)

Letyj(z) = r{Dy ! (z)r; —n! VZIEtrDj_] (z). By Lemma A.2, (190) and Hélder’s inequality, with
similar derivation on page 580 of Bai and Silverstein [2004], we have

m Km

Bly;(z) — (2™ < - (192)
It follows from (191) and (192) that
Ehy;™ < Kpn '82™ 4 m > 2. (193)
Next, we prove that b, (z) is bounded. With (190), we have for any m > 1,
EIB1(2)™ < Kin. (194)
Since by (z) = Bi(z) + B1(z)bp(z)v1(z), it is derived from (193) and (194) that [b,(z)] < K; +

Kalb, (z)n=1/2.
Then

Ky
by (2)] < m < K. (195)

With (190)—(195) and the same approach on page 581-583 of Bai and Silverstein [2004], we can obtain
that (188) is finite.
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C Simulation of CLT for M, (z)

In this section, we compare the empirical mean and covariance of M, (z) = tr(Bg —zI,) 7 —pmeen (2)
with their theoretical limits as stated in Proposition 4.1. This proposition is a key step for the proof of
our main result, Theorem 2..5. Readers are referred to Section 4 for more details of M, (z). We consider
two types of data distribution of wy; as follows:

1. Wyj follows the exponential distribution with rate parameter 5;
2. Wyj follows the Chi-square distribution with degree of freedom 1.

Empirical values of EM,, (z) and Cov(M,, (21 ), M}, (22 )) are calculated for various combinations of
(p,n) withp/n = 3/4 or p/n = 1. For each pair of (p,n), 2000 independent replications are used to
obtain the empirical values. Table 3 reports the empirical mean of M, (z) with z = £3 + 2i for both
Exp(5) population and x?(1) population. The empirical results of Cov(M,,(z1), M, (z2)) are reported
in Tanle 4. As shown in Tables 3 — 4, the empirical values of EM,, (z) and Cov(M,,(z1), My, (z2)) closely

match their respective theoretical limits under all scenarios.

Table 3: Empirical mean of M, (z) withz = 73 + 2i.

Exp(s) x2(1)
p/n n -3+21 3+2i -3+21 3+2i

100  0.0586+0.08571 -0.0373-0.2491 0.1405+0.16281 -0.§5-0.27321

200 0.0582+0.08581 -0.0311-0.25261 0.1459+0.16971  -0.5761-0.30891
Emp 3/4 300 0.0567+0.08441  -0.0336-0.25661 0.1465+0.17121  -0.5705-0.32121

400 0.0596+0.08781  -0.0352-0.25281 0.1463+0.1721 -0.5631-0.34651
Theo 0.0587+0.0872i  -0.029-0.2529i 0.15+0.17681  -0.5792-0.3764i

100  0.05474+0.07661  -0.1069-0.26711 0.1366+0.14731  -0.5458-0.15451

200 0.0572+0.07931  -0.1109-0.27571 0.1395+0.15181  -0.5847-0.17871
Emp 5/4 300 0.0587+0.08081  -0.1074-0.27521 0.1382+0.15111  -0.5747-0.19341

400  0.0559+0.07781  -0.0949-0.27331 0.1434+0.15531 -0.5751-0.19331
Theo 0.0578+0.08041 -0.0919-0.27641 0.143240.15691 -0.6025-0.21491
References

Z. Bai and J. W. Silverstein.

No eigenvalues outside the support of the limiting spectral distribu-

tion of large-dimensional sample covariance matrices. The Annals of Probability, 26(1), 1998. doi:

10.1214/20p/1022855421. (cited on page 44)

Z. Bai and J. W. Silverstein. CLT for linear spectral statistics of large-dimensional sample covariance
matrices. The Annals of Probability, 32(1A):553-60s, 2004. doi: 10.1214/20p/1078415845. (cited on
pages 3, 4, 12, 13, 22, 23, 29, 35, 46, 53, 54, 57, 62, and 63)

64


http://dx.doi.org/10.1214/aop/1022855421
http://dx.doi.org/10.1214/aop/1022855421
http://dx.doi.org/10.1214/aop/1078415845

Table 4: Empirical covariance between My, (z1) and M, (z2).

Exp(s) x*(1)

p/mn n (z1,z2) = (3+21,1411) (3+21,5+11) (-3+21,-1+11) (3+21,5+11)

100 -0.0038+0.01471 -0.04+0.00351 0+0.03041 0.089+0.0141

200 -0.0041+0.01631 -0.0418+0.00221 0.0004+0.03261  0.117+0.02841

Emp 3/4 300 -0.0043+0.01711 -0.04464+0.00111 0+0.03351 0.1372+0.02941
400 -0.004340.01681 -0.0465-0.00031 0.0002+0.03561  0.1273+0.0361

Theo -0.0044+0.01721 -0.0448-0.00021 0.0006+0.03631 0.1491+0.05241
100 -0.0032+0.01971 -0.0483+0.07651 0.0025+0.03491  0.0931-0.03731

200 -0.0032+0.01961 -0.0545+0.07631 0.003240.0351  0.0991-0.04061

Emp  5/4 300 -0.0036+0.02121 -0.0566+0.07081 0.0026+0.03361  0.0955-0.02091
400 -0.0032+0.021 -0.0594+0.07421 0.0038+0.03741  0.1138-0.02971

Theo -0.0034+0.02061 -0.0624+0.07431 0.0035+0.03881  0.1099-0.03231

Z.Baiand]. W. Silverstein. Spectral analysis of large dimensional random matrices. Springer, 2nd edition,
2010. (cited on page 26)

Z.Baiand Y. Yin. Limit of the smallest eigenvalue of a large dimensional sample covariance matrix. 7he
Annals of Probability, 21(3):12:75-1294, 1993. doi: 10.1214/20p/1176989118. (cited on page 27)

Z. Bai, B. Miao, and G. Pan. On asymptotics of eigenvectors of large sample covariance matrix. The
Annals of Probability, 35(4), 2007. doi: 10.1214/009117906000001079. (cited on page 56)

Z.Bai, H.Li, and G. Pan. Central limit theorem for linear spectral statistics of large dimensional separable
sample covariance matrices. Bernoulli, 25(3), 2019. doi: 10.3150/18-bejr038. (cited on page 3)

Z. Bao. Tracy-widom limit for kendall’s tau. The Annals of Statistics, 47(6):3504-3532, 2019. doi:
10.1214/18-2051786. (cited on page 3)

F. Benaych-Georges and R. R. Nadakuditi. The singular values and vectors of low rank perturba-
tions of large rectangular random matrices. Journal of Multivariate Analysis, m:120-135, 2012. doi:
10.1016/}.jmva.2012.04.019. (cited on page 27)

P. Billingsley. Convergence of probability measures. New York: Wiley, 1968. (cited on pages 14, 23, and 62)
P. Billingsley. Probability and Measure. New York: Wiley, 1995. (cited on page 26)

D. L. Burkholder. Distribution function inequalities for martingales. The Annals of Probability, 1(x):
19—42, 1973. (cited on page 26)

T. Cai, W. Liu, and Y. Xia. Two-sample test of high dimensional means under dependence. Journal of
the Royal Statistical Society: Series B (Statistical Methodology), 76, 2014. doi: 10.1111/rssb.12034. (cited

on page 2)

6s


http://dx.doi.org/10.1214/aop/1176989118
http://dx.doi.org/10.1214/009117906000001079
http://dx.doi.org/10.3150/18-bej1038
http://dx.doi.org/10.1214/18-aos1786
http://dx.doi.org/10.1214/18-aos1786
http://dx.doi.org/10.1016/j.jmva.2012.04.019
http://dx.doi.org/10.1016/j.jmva.2012.04.019
http://dx.doi.org/10.1111/rssb.12034

Y. Cao, W. Lin, and H. Li. Two-sample tests of high-dimensional means for compositional data.
Biometrika, 105:115-132, 2018. doi: 10.1093/biomet/asx060. (cited on page 2)

B. Chen and G. Pan. Convergence of the largest eigenvalue of normalized sample covariance matrices
when p and n both tend to infinity with their ratio converging to zero. Bernoulli, 18(4):1405-1420,
2012. doi: 10.3150/11-bej381. (cited on page 29)

N. El Karoui. Tracy—widom limit for the largest eigenvalue of a large class of complex sample covariance
matrices. The Annals of Probability, 35(2), 2007. doi: 10.1214/009117906000000917. (cited on page 3)

K. Faust, ]. F. Sathirapongsasuti, J. Izard, N. Segata, D. Gevers, J. Raes, and C. Huttenhower. Microbial
co-occurrence relationships in the human microbiome. PLoS Computational Biology, 8(7):€1002606,
2012. doi: 10.1371/journal.pcbi.1002606. (cited on page 2)

J. Gao, X. Han, G. Pan, and Y. Yang. High dimensional correlation matrices: The central limit theorem
and its applications. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 79(3):
677-693, 2017. doi: 10.1111/r55b.12189. (cited on pages 3, 4, 8, 12, and 22)

R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge University Press, 2012. (cited on page 25)

T. Jiang. The limiting distributions of eigenvalues of sample correlation matrices. Sankbya: The Indian
Journal of Statistics, 66(1):35—48, 2004. (cited on pages 4, 12, and 27)

I. M. Johnstone. On the distribution of the largest eigenvalue in principal components analysis. The
Annals of Statistics, 29(2), 2001. doi: 10.1214/205/1009210544. (cited on page 3)

D. Jonsson. Some limit theorems for the eigenvalues of a sample covariance matrix. Journal of Multi-
variate Analysis, 12(1):1-38, Mar. 1982. doi: 10.1016/0047-259x(82)90080-x. (cited on page 3)

V. A. Maréenko and L. A. Pastur. Distribution of eigenvalues in certain sets of random matrices. Math-
ematics of the USSR-Sbornik, 1(4):457-483, 1967. doi: 10.1070/sm1967vooino4abehoo19g4. (cited on
page 3)

J. Silverstein. Strong convergence of the empirical distribution of eigenvalues of large dimensional ran-
dom matrices. Journal of Multivariate Analysis, 55(2):331-339, 1995. doi: 10.1006/jmva.1995.1083. (cited
on pages 23 and 47)

J. Silverstein and Z. Bai. On the empirical distribution of eigenvalues of a class of large dimensional
random matrices. Journal of Multivariate Analysis, s4(2):175-192, 1995. doi: 10.1006/jmva.1995.1051.
(cited on page 3)

G. D. Wu, ]J. Chen, C. Hoffmann, K. Bittinger, Y.-Y. Chen, S. A. Keilbaugh, M. Bewtra, D. Knights,
W. A. Walters, R. Knight, R. Sinha, E. Gilroy, K. Gupta, R. N. Baldassano, L. C. Nessel, H. Li, F. D.
Bushman, and J. D. Lewis. Linking long-term dietary patterns with gut microbial enterotypes. Sczence,
334:105 — 108, 2011. doi: 10.1126/science.1208344. (cited on page 3)

H. Xiao and W. Zhou. Almost sure limit of the smallest eigenvalue of some sample correlation matrices.
Journal of Theoretical Probability, 23(1):1-20, 2010. doi: 10.1007/510959-009-0270-2. (cited on page 27)

66


http://dx.doi.org/10.1093/biomet/asx060
http://dx.doi.org/10.3150/11-bej381
http://dx.doi.org/10.1214/009117906000000917
http://dx.doi.org/10.1371/journal.pcbi.1002606
http://dx.doi.org/10.1111/rssb.12189
http://dx.doi.org/10.1214/aos/1009210544
http://dx.doi.org/10.1016/0047-259x(82)90080-x
http://dx.doi.org/10.1070/sm1967v001n04abeh001994
http://dx.doi.org/10.1006/jmva.1995.1083
http://dx.doi.org/10.1006/jmva.1995.1051
http://dx.doi.org/10.1126/science.1208344
http://dx.doi.org/10.1007/s10959-009-0270-2

Y. Yin and P. Krishnaiah. A limit theorem for the eigenvalues of product of two random matrices. Journal
of Multivariate Analysis, 13(4):489—507, 1983. doi: 10.1016/0047-259x(83)90035-0. (cited on page 3)

L. Zhang. Spectral analysis of large dimentional random matrices. 2007. (cited on page 3)

S. Zheng, Z. Bai, and J. Yao. Substitution principle for CLT of linear spectral statistics of high-
dimensional sample covariance matrices with applications to hypothesis testing. The Annals of Statis-
tics, 43(2):546—591, 2015. doi: 10.1214/14-AOS1292. (cited on pages 12, 29, and 30)

67


http://dx.doi.org/10.1016/0047-259x(83)90035-0
http://dx.doi.org/10.1214/14-AOS1292

	Introduction
	Main Results
	Preliminaries and Notations
	Limiting spectral distribution and Extreme eigenvalues
	CLT for LSS

	Numerical experiments
	Limiting spectral distribution
	CLT for LSS

	Proof of Theorem 2.5
	Substitution principle
	Some important lemmas
	CLT for LSS of the centralized sample covariance Bp0
	Step 1: Truncation
	Step 2: Finite dimensional convergence of M(1)p(z) in distribution
	Step 3: Tightness of Mp(1)(z)
	Step 4: Convergence of Mp(2)(z)


	Some technical lemmas
	Proofs
	Proof of Theorem 2.3
	Proof of Proposition 2.4
	Proof of Lemma 4.2
	Proof of Lemma 4.3
	Proof of Lemma 4.4
	Proof of Lemma 4.5
	Proof of Lemma 4.9
	Proof of Lemma 4.10
	Proof of Lemma 4.11
	Proof of Lemma 4.12
	Proof of Lemma 4.13
	Proof of Lemma A.4
	Proof of Corollary 2.6
	Tightness of Mp(1)(z)

	Simulation of CLT for Mp(z)

