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The asymptotic normality for a large family of eigenvalue statistics of a
general sample covariance matrix is derived under the ultrahigh-dimensional
setting, that is, when the dimension to sample size ratio p/n → ∞. Based on
this CLT result, we extend the covariance matrix test problem to the new ultra-
high-dimensional context, and apply it to test a matrix-valued white noise.
Simulation experiments are conducted for the investigation of finite-sample
properties of the general asymptotic normality of eigenvalue statistics, as well
as the two developed tests.

1. Introduction. Let y ∈ R
p be a population of the form y = �

1/2
p x where �p is a

p × p positive definite matrix, x ∈ R
p a p-dimensional random vector with independent

and identically distributed (i.i.d.) components with zero mean and unit variance. Given a
sample {yj = �

1/2
p xj }1≤j≤n, of y, the sample covariance matrix is Sn = 1

n

∑n
j=1 yj y′

j =
1
n
�

1/2
p XX′�1/2

p , where X = (x1,x2, . . . ,xn). We consider the ultrahigh-dimensional setting
where n → ∞, p = p(n) → ∞ such that p/n → ∞. The p × p matrix Sn has only a small
number of nonzero eigenvalues, which are the same as those of its n × n companion matrix
Sn = 1

n
X′�pX. The limiting distribution of these nonzero eigenvalues is known (see Bai and

Yin (1988), Wang and Paul (2014)). Precisely, consider the renormalized sample covariance
matrix

(1) An = 1√
npbp

(
X′�pX − papIn

)
,

where In is the identity matrix of order n, ap = p−1 tr(�p), bp = p−1 tr(�2
p). Denote the

eigenvalues of An as λ1, . . . , λn. According to Wang and Paul (2014), under the condition
that supp ‖�p‖ < ∞, the eigenvalue distribution of An, F An = 1

n

∑n
i=1 δλi

, converges to the
celebrated semi-circle law. In this paper, we focus on the so-called linear spectral statistics
(LSS) of An, that is, 1

n

∑n
i=1 f (λi) where f (·) is a smooth function we are interested in. The

main contribution of this paper is to establish the central limit theorem (CLT) for such LSS
of An under the ultrahigh-dimensional setting. The study of asymptotic normality of LSS for
different types of random matrix models has received extensive attention in the past decades;
see the monographs Bai and Silverstein (2010), Couillet and Debbah (2011), Yao, Zheng and
Bai (2015). It plays a very important role in high-dimensional data analysis because many
well-established statistics can be represented as LSS of sample covariance or correlation
matrix. In facing the curse of dimensionality, most asymptotic results are discussed under the
Marchenko–Pastur asymptotic regime, where p/n → c ∈ (0,∞). However, this does not fit
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the case of ultrahigh dimension when p � n. Hence, in this paper, we study the asymptotic
behavior of LSS of An when n → ∞, p = p(n) → ∞ such that p/n → ∞.

A special version of An for the case where �p = Ip has already been studied in the litera-
ture. The matrix becomes

Aiden
n = 1√

np

(
X′X − pIn

)
.

Bai and Yin (1988) is the first to study this matrix. They proved that the ultrahigh- dimen-
sional limiting eigenvalue distribution of Aiden

n is the semicircle law. Chen and Pan (2012)
studied the behavior of the largest eigenvalue of Aiden

n . Chen and Pan (2015) and Bao (2015)
independently established the CLT for LSS of Aiden

n , the limiting variance function of which
coincides with that of a Wigner matrix given in Bai and Yao (2005). However, the asymptotic
distribution of LSS of An is quite different and worth further investigation.

In this paper, we establish the CLT for LSS of An. The general strategy of the proof follows
that of Bai and Yao (2005) for the CLT for LSS of a large Wigner matrix. However, the cal-
culations are more involved here as the matrix An is a quadratic function of the independent
entries (Xij ) while a Wigner matrix in Bai and Yao (2005) is a linear function of its entries.
Similar to Chen and Pan (2015), a key step is to establish the CLT for some smooth integral
of the Stieltjes transform Mn(z) of An; see Proposition 6.1. To derive the limiting mean and
covariance functions, we divide Mn(z) into two parts: a nonrandom part and a random part.
Our approaches to handling these two parts are technically different from the existing litera-
ture. For the random part, the method in Chen and Pan (2015) depends heavily on an explicit
expression for tr(M(1)

k )/(npbp) (see Section S2.16 for more details). This explicit expression
does not exist in our matrix model, so we need to provide a first-order approximation for it,
which is given in Lemma S1.21. For the nonrandom part, we utilize the generalized Stein’s
equation to find the asymptotic expansion of the expectation of Stieltjes transform, which
provides some new enlightenment for conventional procedures.

To demonstrate the potential of our newly established CLT, we further studied two hy-
pothesis testing problems about population covariance matrices. First, we examine the iden-
tity hypothesis H0 : �p = Ip under the ultrahigh-dimensional setting and compare it with
cases of less high dimensions. Then we use this result to test whether a matrix-valued
noise has a prespecified separable covariance matrix. Matrix-valued data are now becom-
ing increasingly important in several fields, for example, in time-series analysis. For a se-
quence of i.i.d. p1 × p2 matrices {Et }1≤t≤T , we adopt a Frobenius-norm-type statistic to test
whether the covariance matrix of vec(Et ) equals a prespecified separable covariance, that is,
Cov(vec(Et )) = �1 ⊗ �2, where �1 and �2 are two given p1 × p1 and p2 × p2 nonneg-
ative definite matrices. Here, p1, p2 and T are of comparable magnitude. Our test statistic
can be represented as an eigenvalue statistic of the sample covariance matrix with dimension
p1p2 much larger than the sample size T . Therefore, our CLT can be employed to derive
the asymptotic null distribution and perform power analysis of the test. Second, we discuss
applying our CLT to the well-known sphericity test under an ultrahigh-dimensional setting.
Good numerical performance lends full support to the correctness of our CLT results.

The paper is organized as follows. Section 2 provides preliminary knowledge of some
technical tools. Section 3 establishes our main CLT for LSS of An. Section 4 contains two
hypothesis testing applications. Section 5 reports numerical studies. Technical proofs and
lemmas are relegated to Section 6 and the Supplementary Material (Qiu, Li and Yao (2023)).

Throughout the paper, we reserve boldfaced symbols for vectors and matrices. For any
matrix A, we let Aij , λA

j , A′, tr(A), and ‖A‖ represent, respectively, its (i, j)th element, its
j th largest eigenvalue, its transpose, its trace and its spectral norm (i.e., the largest singular
value of A). The notation 1{·} stands for the indicator function. For the random variable X,
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we denote its ath moment by νa and its ath cumulant by κa . We use K to denote constants
that may vary from line to line. For simplicity, we sometimes omit the variable z when rep-
resenting some matrices and functions (e.g., Stieltjes transforms) of z, provided that it does
not lead to confusion.

2. Preliminaries. In this section, we introduce some useful preliminary results. For any
n × n Hermitian matrix Bn, its empirical spectral distribution (ESD) is defined by

F Bn(x) = 1

n

n∑
i=1

1{λBn
i ≤x}.

If F Bn(x) converges to a nonrandom limit F(x) as n → ∞, we call F(x) the limiting spectral
distribution (LSD) of Bn.

As for the LSD of An defined in (1), Wang and Paul (2014) derived the LSD of re-
normalized sample covariance matrices with the more general form

(2) Cn =
√

p

n

(
1

p
T1/2

n X∗
n�pXnT1/2

n − 1

p
tr(�p)Tn

)
,

where Xn and �p are the same as those in (1). Here, Tn is a n × n nonnegative definite Her-
mitian matrix, whose ESD, F Tn , converges weakly to H , a nonrandom distribution function
on R

+, which does not degenerate to zero. The LSD of Cn is described in terms of its Stieltjes
transform. The Stieltjes transform of any cumulative distribution function G is defined by

mG(z) =
∫ 1

λ − z
dG(λ), z ∈ C

+ := {u + iv, u ∈ R, v > 0}.

Wang and Paul (2014) proved that, when p∧n → ∞ and p/n → ∞, F Cn almost surely con-
verges to a nonrandom distribution, whose Stieltjes transform mC(z) satisfies the following
system of equations:

(3)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
mC(z) = −

∫ dH(x)

z + xθg(z)
,

g(z) = −
∫

x dH(x)

z + xθg(z)
,

for any z ∈C
+, where θ = limp→∞(1/p) tr(�2

p).
Note that An is a special case of Cn with Tn = In. By (3), we can easily show that the

Stieltjes transform m(z) of LSD of An satisfies

(4) m(z) = − 1

z + m(z)
,

which is exactly the Stieltjes transform of the semicircle law with density function given by

F ′(x) = 1

2π

√
4 − x2 1{|x|≤2}.

3. Main results. Let U denote any open region on the complex plane that includes
[−η,η], where η = 2 lim supp ‖�p‖/√θ with θ = limp tr(�2

p)/p, and M be the set of an-
alytic functions defined on U. For any f ∈ M, we consider a LSS of An of the form:∫

f (x)dF An(x) = 1

n

n∑
i=1

f
(
λ

An

i

)
.
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Since F An converges to F almost surely, we have∫
f (x)dF An(x) →

∫
f (x)dF(x).

A question naturally arises: how fast does
∫

f (x)d{F An(x) − F(x)} converge to zero?
To answer this question, we consider a renormalized functional:

(5)

Gn(f ) = n

∫ +∞
−∞

f (x)d
{
F An(x) − F(x)

}
− n

2πi

∮
|m|=ρ

f
(−m − m−1)Xn(m)

1 − m2

m2 dm,

where ρ < 1,

(6)

Xn(m) = −Bn(m) +√Bn(m)2 − 4An(m)Cn(m)

2An(m)
,

An(m) = m −
√

n

p

cp

bp

√
bp

(
1 + m2), Bn(m) = m2 − 1 −

√
n

p

cp

bp

√
bp

m
(
1 + 2m2),

Cn(m) = m3

n

{
1

1 − m2 + (ν4 − 3)b̃p

bp

}
−
√

n

p

cp

bp

√
bp

m4 + n

p

(
− c2

p

b3
p

+ dp

b2
p

)
m5,

bp = 1

p
tr
(
�2

p

)
, b̃p = 1

p

p∑
i=1

(�p)2
ii , cp = 1

p
tr
(
�3

p

)
, dp = 1

p
tr
(
�4

p

)
,

where (�p)ii is the ith diagonal element of �p , and
√
Bn(m)2 − 4An(m)Cn(m) is a complex

number whose imaginary part has the same sign as that of Bn(m). The contour integral in
(5) is a technical correction to the mean of the statistic that is necessary for describing its
asymptotic normality. The main result is formulated in the theorem below.

THEOREM 3.1. Suppose that

(A) X = (Xij )p×n where {Xij , 1 ≤ i ≤ p, 1 ≤ j ≤ n} are i.i.d. real random variables
with EXij = 0, EX2

ij = 1, EX4
ij = ν4 and E|Xij |6+ε0 < ∞ for some positive ε0;

(B) {�p, p ≥ 1} is a sequence of nonnegative definite matrices, bounded in spectral
norm, such that the following limits exist:

• γ = limp→∞ 1
p

tr(�p),

• θ = limp→∞ 1
p

tr(�2
p),

• ω = limp→∞ 1
p

∑p
i=1(�p)2

ii ;

(C1) p ∧ n → ∞ and n2/p = O(1).

Then, for any k ≥ 1 and f1, . . . , fk ∈ M, the k-dimensional vector (Gn(f1), . . . ,Gn(fk))

converges weakly to a Gaussian vector (Y (f1), . . . , Y (fk)) with mean function EY(f ) = 0
and covariance function

Cov
(
Y(f1), Y (f2)

)= ω

θ
(ν4 − 3)
1(f1)
1(f2) + 2

∞∑
k=1

k
k(f1)
k(f2)(7)

= 1

4π2

∫ 2

−2

∫ 2

−2
f ′

1(x)f ′
2(y)H(x, y)dx dy,(8)
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where


k(f ) = 1

2π

∫ π

−π
f (2 cosx)eikx dx = 1

2π

∫ π

−π
f (2 cosx) cos(kx)dx,(9)

H(x, y) = ω

θ
(ν4 − 3)

√
4 − x2

√
4 − y2 + 2 log

(4 − xy +
√

(4 − x2)(4 − y2)

4 − xy −
√

(4 − x2)(4 − y2)

)
.(10)

The proof of Theorem 3.1 is postponed to Section 6.

REMARK 3.1. The appearance of the parameter ω in the limiting covariance function of
Theorem 3.1 may surprise. The reason is that for the Gaussian population, one would expect
the distribution of linear spectral statistics to depend on �p only through its eigenvalues.
This is indeed true since in this case ν4 = 3 the asymptotic covariances do not depend on
ω. However, it does depend on it for non-Gaussian populations. Precisely, this dependence
originates from the following identity about covariance of quadratic forms of a p-dimensional
isotropic population x1 = (X11, . . . ,X1p) with i.i.d. coordinates (Bai and Silverstein (2004),
equation (1.15)):

E
(
x′

1Ax1 − tr A
)(

x′
1Bx1 − tr B

)
= {

E|X11|4 − ∣∣EX2
11
∣∣2 − 2

}∑
i

AiiBii + ∣∣EX2
11
∣∣2 tr AB′ + tr AB

for p × p symmetric matrices A = (Aij ) and B = (Bij ). This identity is used to obtain the
explicit expression of the covariance function in Theorem 3.1: precisely, we used this identity
with A = B = �p to calculate (npbp)−1

E(x′
k�pxk − pap)2; see equation (S2.60). Hence,

the first term in the above identity is deterministic and contributes to the parameter ω. More
specifically, we have

1

npbp

E
(
x′
k�pxk − pap

)2 = 1

npbp

{
(ν4 − 3)

∑
i

(�p)2
ii + 2 tr

(
�2

p

)}= 1

n

{
b̃p

bp

(ν4 − 3) + 2
}
,

where b̃p = p−1∑
i (�p)2

ii → ω and bp = p−1 tr(�2
p) → θ as p → ∞. In particular, for a

Gaussian population x1, E|X11|4 − |EX2
11|2 − 2 = 0 and the parameter ω disappears in the

limiting covariance function.

REMARK 3.2. Note that we require p ≥ Kn2 asymptotically in Assumption (C1). In
fact, we can relax this assumption to cover the whole range of n � p � n2 for the dimen-
sion p. However, we cannot obtain a closed-form formula for Xn(m) when n � p � n2 and
this presents a problem in practical applications. More details on this problem are provided
in Remark 6.1.

REMARK 3.3. If �p = Ip , we have ap = bp = b̃p = cp = dp = 1 and γ = θ = ω = 1,
then our Theorem 3.1 reduces to the CLT derived in Chen and Pan (2015).

Applying Theorem 3.1 to three polynomial functions, we obtain the following corollary.

COROLLARY 3.1. With the same notation and assumptions given in Theorem 3.1, con-
sider three analytic functions f1(x) = x, f2(x) = x2, f3(x) = x3. We have

Gn(f1) = tr(An)
d−→ N

(
0,

ω

θ
(ν4 − 3) + 2

)
;
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Gn(f2) = tr
(
A2

n

)− n −
{
b̃p

bp

(ν4 − 3) + 1
}

d−→ N (0,4);

Gn(f3) = tr
(
A3

n

)− cp

bp

√
bp

√
n

p

{
n + 1 + b̃p

bp

(ν4 − 3)

}
d−→ N

(
0,

9ω

θ
(ν4 − 3) + 24

)
.

The calculations in these applications are elementary, and thus omitted. Note that the mean

correction terms for Gn(f1), Gn(f2) and Gn(f3) are 0, b̃p

bp
(ν4 − 3) + 1, and cp

bp

√
bp

√
n
p
{n +

1 + b̃p

bp
(ν4 − 3)}, respectively.

3.1. Case of p ≥ Kn3. When p ≥ Kn3, the mean correction term in (5) can be further
simplified as

(11)

− n

2πi

∮
|m|=ρ

f
(−m − m−1)Xn(m)

1 − m2

m2 dm

= −
[

1

4

{
f (2) + f (−2)

}− 1

2

0(f ) + b̃p

bp

(ν4 − 3)
2(f )

]
−
√

n3

p

cp
3(f )

bp

√
bp

+ o(1).

For any function f ∈M, we define a new normalization of the LSS:

(12) Qn(f ) = n

∫ +∞
−∞

f (x)d
{
F An(x) − F(x)

}−
√

n3

p

cp

bp

√
bp


3(f ).

Note that the last term in (12) makes no contribution if the function f is even (
3(f ) = 0) or
n3/p = o(1). Combining (11) and Theorem 3.1, we obtain the following CLT for Qn(f ).

COROLLARY 3.2. Suppose the assumptions (A) and (B) in Theorem 3.1 hold and

(C2) p ∧ n → ∞ and n3/p = O(1).

Then, for any k ≥ 1 and f1, . . . , fk ∈ M, the k-dimensional vector (Qn(f1), . . . ,Qn(fk))

converges weakly to a Gaussian vector (Y (f1), . . . , Y (fk)) with mean function

EY(fk) = 1

4

{
fk(2) + fk(−2)

}− 1

2

0(fk) + ω

θ
(ν4 − 3)
2(fk)

and covariance function given in (7).

4. Applications to hypothesis testing about large covariance matrices.

4.1. The identity hypothesis “�p = Ip .” Let Y = (y1, . . . ,yn) be a p × n data matrix

with n i.i.d. p-dimensional random vectors {yi = �
1/2
p xi}1≤i≤n with covariance matrix �p =

Var(yi ) and xi has p i.i.d. components {Xij }1≤j≤p satisfying EXij = 0, EX2
ij = 1, EX4

ij =
ν4. We consider the identity testing problem:

(13) H0 : �p = Ip vs. H1 : �p �= Ip,

under two different asymptotic regimes: high-dimensional regime, “p ∧ n → ∞, p/n → c ∈
(0,∞)” and ultrahigh-dimensional regime, “p ∧ n → ∞, p/n → ∞.” We will consider two
well-known test statistics and discuss their limiting distributions under both regimes.

For the identity testing problem (13), Nagao (1973) proposed a statistic based on the Frobe-
nius norm:

V = 1

p
tr
{
(Sn − Ip)2},
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where Sn = 1
n

YY′ is the sample covariance matrix. Nagao’s test based on V performs well
when n tends to infinity while p remains fixed and small. However, Ledoit and Wolf (2002)
showed that Nagao’s test has poor properties when p is large. They proposed a modification
of the form

(14) W = 1

p
tr
{
(Sn − Ip)2}− 1

np

{
tr(Sn)

}2 + p

n
.

When p ∧ n → ∞, p/n = cn → c ∈ (0,∞), under normality assumption, Ledoit and Wolf
(2002) proved that the limiting distribution of W under H0 is

nW − p − 1
d−→ N (0,4).

By Lemma 2.2 in Wang and Yao (2013) and the delta method, we can further remove the
normality assumption and show that under H0, when p ∧ n → ∞, p/n = cn → c ∈ (0,∞),

(15) nW − p − (ν4 − 2)
d−→ N (0,4).

The proof of this result is provided in Section S4.1 of the Supplementary Material.
Now we derive the limiting distribution of W under both H0 and H1 when p/n → ∞. We

will show that the test based on W is consistent under the ultrahigh-dimensional setting. The
main results of the test based on W is as follows.

THEOREM 4.1. Assume that Y = (y1, . . . ,yn) is a p × n data matrix with n i.i.d.
p-dimensional random vectors {yi = �

1/2
p xi}1≤i≤n with covariance matrix �p = Var(yi )

and xi has p i.i.d. components {Xij }1≤j≤p satisfying EXij = 0, EX2
ij = 1, EX4

ij = ν4 and

E|Xij |6+ε0 < ∞ for some positive ε0. Then under H0, when p ∧ n → ∞ and n2/p = O(1),

(16) nW − p − (ν4 − 2)
d−→ N (0,4).

Note that the asymptotic distribution (16) coincides with (15), which means W has the
same limiting null distribution in both high-dimensional and ultrahigh-dimensional settings.
Therefore, W can be used to test (13) under the ultrahigh-dimensional setting. For nominal
level α, the corresponding rejection rule is

1

2

{
nW − p − (ν4 − 2)

}≥ zα,

where zα is the α upper quantile of standard normal distribution.
Under the alternative hypothesis H1 where �p �= Ip , we have the following.

THEOREM 4.2. Under the same assumptions as in Theorem 4.1, further assume that
{�p, p ≥ 1} is a sequence of nonnegative definite matrices, bounded in spectral norm such
that the following limits exist:

γ = lim
p→∞

1

p
tr(�p), θ = lim

p→∞
1

p
tr
(
�2

p

)
, ω = lim

p→∞
1

p

p∑
i=1

(�p)2
ii .

Then when p ∧ n → ∞ and n2/p = O(1),

nW − p − θ

{
ω

θ
(ν4 − 3) + 1

}
+ n(2γ − 1 − θ)

d−→ N
(
0,4θ2).

The proof of Theorem 4.2 is given in Section S4.2 of the Supplementary Material. Note
that Theorem 4.2 contains Theorem 4.1 as a particular case. Indeed, when �p = Ip , γ = θ =
ω = 1 and Theorem 4.2 reduces to Theorem 4.1, which states the limiting null distribution of
W . With Theorem 4.2, the asymptotic power of W can be derived.
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PROPOSITION 4.1. With the same assumptions as in Theorem 4.2, when p ∧ n → ∞
and n2/p = O(1), the testing power of W for (13) satisfies

β(H1) → 1 − �

(
1

2θ

{
2zα − ω(ν4 − 3) − θ + n(2γ − 1 − θ) + (ν4 − 2)

})
.

Thus, if γ = θ = 1, then β(H1) → 1 − �(zα − ω−1
2 (ν4 − 3)); otherwise, β(H1) → 1.

The second test statistic for (13) we consider is the likelihood ratio test (LRT) statistic
studied in Bai et al. (2009). They assumed that ν4 = 3. The LRT statistic is defined as

(17) L0 = tr(Sn) − log |Sn| − p.

Bai et al. (2009) derived the limiting null distribution of L0 when p ∧ n → ∞, p/n → c ∈
(0,1). However, this LRT statistic is degenerate and not applicable when p > n because
|Sn| = 0. Thus, for p > n, we introduce a quasi-LRT test statistic

L = tr(̂Sn) − log |̂Sn| − n,

where Ŝn = 1
p

Y′Y is now of full rank. When p ∧ n → ∞, p/n = cn → c ∈ (1,∞), the
limiting null distribution of L is

(18) L∗ := L− nF1(cn) − μ1

σ1

d−→ N (0,1),

where F1(cn) = 1 − (1 − cn) log(1 − 1/cn), μ1 = −1
2 log(1 − 1/cn) and σ 2

1 = −2 log(1 −
1/cn) − 2/cn.

Now we will show that this asymptotic distribution (18) still holds in the ultrahigh-
dimensional setting. Note that σ1 in the limit (18) satisfies

σ1 =
√

−2 log
(

1 − 1

cn

)
− 2

cn

=
√

1

c2
n

+ 2

3c3
n

+ o

(
1

c3
n

)
= 1

cn

+ 1

3c2
n

+ o

(
1

c2
n

)
,

which implies that

(19)
1

σ1
= cn − 1

3
+ o(1).

First, we consider the random part of L∗. Let λ̂1 ≥ · · · ≥ λ̂n be the eigenvalues of Ŝn and
λ̃1 ≥ · · · ≥ λ̃n be the eigenvalues of S̃n =

√
n
p
( 1
n

X′X − p
n

In). By using the basic identity

λ̂i = λ̃i√
cn

+ 1, we have

L=
n∑

i=1

λ̂i − n −
n∑

i=1

log(̂λi) =
n∑

i=1

λ̃i√
cn

−
n∑

i=1

log
(

1 + λ̃i√
cn

)

=
n∑

i=1

λ̃i√
cn

−
n∑

i=1

{
λ̃i√
cn

− 1

2

λ̃2
i

cn

+ 1

3

λ̃3
i

cn
√

cn

− 1

4

λ̃4
i

c2
n

+ oP

(
1

c2
n

)}

= 1

2cn

tr
(̃
S2

n

)− 1

3cn
√

cn

tr
(̃
S3

n

)+ 1

4c2
n

tr
(̃
S4

n

)+ oP

(
n

c2
n

)
,

(20)

where we use the fact that {̃λi}1≤i≤n are bounded in probability; see Lemma 6.1. Taking
ν4 = 3 (the assumption in Bai et al. (2009)) and �p = Ip in Corollary 3.1, we obtain that,
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under H0,

tr
(̃
S2

n

)− n − 1
d−→ N (0,4), tr

(̃
S3

n

)− n + 1√
cn

d−→ N (0,24),(21)

tr
(̃
S4

n

)− 2n −
(

n

cn

+ 1

cn

+ 5
)

d−→ N (0,72).(22)

Combining (19)–(22) gives us that

(23)
L
σ1

= 1

2
tr
(̃
S2

n

)+ oP

(
n2

p

)
.

Second, we consider the deterministic part of L∗. Note that

nF1(cn) + μ = n −
{
n(1 − cn) + 1

2

}
log
(

1 − 1

cn

)
= n −

{
n(1 − cn) + 1

2

}
·
{
− 1

cn

− 1

2c2
n

− 1

3c3
n

+ o

(
1

c3
n

)}

= n

2cn

+ 1

2cn

+ n

6c2
n

+ o

(
n

c2
n

)
.

Together with (19), we find

(24)
nF1(cn) + μ1

σ1
= n + 1

2
+ oP

(
n2

p

)
.

Therefore, from (21), (23) and (24), we conclude that, under H0, as p ∧ n → ∞, n2/p =
O(1),

L∗ = L
σ1

− nF1(cn) + μ1

σ1
= 1

2

{
tr
(̃
S2

n

)− n − 1
}+ oP (1)

d−→ N (0,1),

which is the same as the limiting distribution (18) derived under the scheme p ∧ n → ∞,
p/n = cn → c ∈ (1,∞). Finally, we summarize the discussion above in the following propo-
sition.

PROPOSITION 4.2. (1) (Bai et al. (2009)) Assume that Y = (y1, . . . ,yn) is a p × n data
matrix with n i.i.d. p-dimensional random vectors {yi = �

1/2
p xi}1≤i≤n with covariance ma-

trix �p = Var(yi ) and xi has p i.i.d. components {Xij }1≤j≤p satisfying EXij = 0, EX2
ij = 1,

EX4
ij = ν4 = 3. L0 is defined as (17). Then under H0, when p ∧ n → ∞, p/n → c ∈ (0,1),

we have

L0 − nF0(cn) − μ0

σ0

d−→ N (0,1),

where cn = p/n and

F0(cn) = 1 − cn − 1

cn

log(1 − cn), μ0 = − log(1 − cn)

2
, σ 2

0 = −2 log(1 − cn) − 2cn.

(2) Under the assumptions in (1), consider the normalized quasi-LRT statistic L∗ defined
in (18). Under H0, when p ∧ n → ∞, p/n → c ∈ (1,∞), we have

L∗ d−→ N (0,1).
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(3) Under the assumptions in (1), consider the normalized quasi-LRT statistic L∗ defined
in (18). Under H0, when p ∧ n → ∞ and n2/p = O(1), we have

L∗ d−→ N (0,1).

Note that the results (2) and (3) in this proposition are new.
By using our Theorems 4.1–4.2 and Proposition 4.1, we now consider an application to

testing whether the population covariance matrix of the matrix-valued white noise is equal to
a prespecified separable matrix, where the asymptotic regime n2/p = O(1) arises in a very
natural manner.

EXAMPLE 4.1. Chen, Xiao and Yang (2021) proposed a matrix autoregressive model
with the form

Xt = AXt−1B′ + Et , t = 1, . . . , T ,

where Xt is a p1 × p2 random matrix observed at time t , A and B are p1 × p1 and p2 ×
p2 deterministic autoregressive coefficient matrices, Et = (et,ij ) is a p1 × p2 matrix-valued
white noise. It is assumed that the error white noise matrix Et has a specific covariance
structure

(25) Cov
{
vec(Et )

}= �1 ⊗ �2,

where vec(·) denotes the vectorization, �1 and �2 are p1 × p1 and p2 × p2 nonnegative
definite matrices. In other words, the noise Et has a separable covariance matrix.

For any observed matrix-valued noise sequence {Et }1≤t≤T , we aim to test whether its co-
variance matrix is equal to a prespecified separable matrix as in (25). Specifically, suppose
that {Et }1≤t≤T is an observed i.i.d. sequence of p1 × p2 matrices and p1, p2, T are of com-
parable magnitude as follows:

(26) T → ∞,
p1

T
= p1(T )

T
→ d1 ∈ (0,∞),

p2

T
= p2(T )

T
→ d2 ∈ (0,∞),

we aim to test

(27) H0 : Cov
{
vec(Et )

}= �1 ⊗ �2 vs. H1 : Cov
{
vec(Et )

} �= �1 ⊗ �2,

where �1 and �2 are two prespecified p1 × p1 and p2 × p2 nonnegative definite matrices.
Testing H0 : Cov{vec(Et )} = �1 ⊗ �2 is equivalent to testing

H ′
0 : Cov

{
(�1 ⊗ �2)

−1/2vec(Et )
}= Ip1p2 .

To this end, we define a test statistic following (14):

W ∗ = 1

p1p2
tr
{
(ST − Ip1p2)

2}− 1

p1p2T

{
tr(ST )

}2 + p1p2

T
,

where

(28) ST = 1

T
YT Y′

T , YT = (�1 ⊗ �2)
−1/2

{
vec(E1), . . . , vec(ET )

} := (Yij )p1p2×T .

Note that W ∗ measures the distance between sample covariance matrix of vec(Et ) and
�1 ⊗ �2. Naturally, we reject H0 when W ∗ is too large and the critical value is determined
by the limiting null distribution of W ∗.

The asymptotic null distribution of the test statistic W ∗ can be derived by Theorem 4.1.
Assume that {Et = (et,ij )p1×p2}1≤t≤T is a sequence of i.i.d. sample matrices satisfying
vec(Et ) = (�1 ⊗ �2)

1/2vec(Zt ), where Zt = (Zt,ij )p1×p2 is a p1 × p2 matrix with i.i.d. real
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entries Zt,ij satisfying EZt,ij = 0, EZ2
t,ij = 1, EZ4

t,ij = ν4 and E|Zt,ij |6+ε0 < ∞ for some
positive ε0. Then under the null hypothesis, we have

(29) T W ∗ − p1p2 − (ν4 − 2)
d−→ N (0,4).

Accordingly, we reject H0 at nominal level α if

1

2

{
T W ∗ − p1p2 − (ν4 − 2)

}≥ zα.

Moreover, the asymptotic power of the proposed test for (27) can be derived by Theo-
rem 4.2. Suppose that H1 in (27) is true and the population covariance matrix of vec(Et ) is
(�̃1 ⊗ �̃2)

1/2vec(Zt ), where �̃1 and �̃2 are two p1 × p1 and p2 × p2 nonnegative definite
matrices with bounded spectral norm. Let �̃ := (�̃1 ⊗ �̃2)

1/2(�1 ⊗ �2)
−1(�̃1 ⊗ �̃2)

1/2 and
suppose that the following limits exist:

γ = lim
T →∞

1

p1p2
tr(�̃), θ = lim

T →∞
1

p1p2
tr
(
�̃

2)
, ω = lim

T →∞
1

p1p2

p1p2∑
i=1

(�̃)2
ii .

Then when p1, p2, T tend to infinity as in (26), the testing power of W ∗ for (27) satisfies

(30) β(H1) → 1 − �

(
1

2θ

[
2zα − ω(ν4 − 3) − θ + n(2γ − 1 − θ) + (ν4 − 2)

])
.

If γ = θ = 1, then β(H1) → 1 − �(zα − ω−1
2 (ν4 − 3)); otherwise, β(H1) → 1.

4.2. Discussion on sphericity test “�p = σ 2Ip .” Corollary 3.2 is used in Li and Yao
(2016) to derive the asymptotic power of two sphericity tests, John’s invariant test and Quasi-
likelihood ratio test (QLRT), under the setting p ∧ n → ∞ and n3/p = O(1). Specifically,
let Y = (y1,y2, . . . ,yn) be a p × n data matrix with n i.i.d. p-dimensional random vectors
{yi}1≤i≤n with covariance matrix �. The goal is to test

H0 : � = σ 2Ip vs. H1 : � �= σ 2Ip,

where σ 2 is an unknown positive constant. John’s test statistic is defined as

Un = 1

p
tr
[{

Sn

tr(Sn)/p
− Ip

}2]
= p−1∑p

i=1(li − l̄)2

l̄2
,

where {li}1≤i≤p are eigenvalues of p-dimensional sample covariance matrix Sn = 1
n

YY′ and
l̄ = 1

p

∑p
i=1 li . The QLRT statistic is defined as

Ln = p

n
log

(n−1∑n
i=1 l̃i )

n∏n
i=1 l̃i

,

where {l̃i}1≤i≤n are the eigenvalues of the n × n companion matrix S̄n = 1
p

Y′Y.

Assume that the data matrix Y has the structure Y = �
1/2
p X, where X satisfies assumption

(A) in Theorem 3.1. The eigenvalues li of Sn = �
1/2
p XX′�1/2

p /n, l̃i of S̄n = X′�pX/p and

λ
An

i of An = (X′�pX − papIn)/
√

npbp satisfy

(31) li =
√

pbp

n
λ

An

i + pap

n
, l̃i =

√
nbp

p
λ

An

i + ap,

for 1 ≤ i ≤ n. The remaining p − n eigenvalues of Sn are all zero. Therefore, both Un and
Ln can be expressed as eigenvalue statistics of An by (31). Then we can utilize our Corol-
lary 3.2 to derive the asymptotic distributions of Un and Ln under both the null and alter-
native hypotheses. Their power functions are proven to converge to 1 under the assumption
n3/p = O(1). More details can be found in Li and Yao (2016).
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5. Simulation results. In this section, we implement some simulation studies to exam-
ine:

(1) finite-sample properties of some LSS for An by comparing their empirical means and
variances with theoretical limiting values;

(2) finite-sample performance of the covariance test for matrix-valued noise in Exam-
ple 4.1.

5.1. LSS of An. First, we compare the empirical mean and variance of normalized
{Gn(fi) = tr(Ai

n), i = 1,2,3} with their theoretical limits in Corollary 3.1, where fi(x) = xi ,
i = 1,2,3. Define

Gn(f1) := Gn(f1)√
Var(Y (f1))

= tr(An)√
ω
θ
(ν4 − 3) + 2

,

Gn(f2) := Gn(f2)√
Var(Y (f2))

= 1

2

[
tr
(
A2

n

)− n −
{
b̃p

bp

(ν4 − 3) + 1
}]

,

Gn(f3) := Gn(f3)√
Var(Y (f3))

=
tr(A3

n) − cp

bp

√
bp

√
n
p
{n + 1 + b̃p

bp
(ν4 − 3)}√

9ω
θ

(ν4 − 3) + 24
.

According to Corollary 3.1, Gn(fi)
d−→ N (0,1), i = 1,2,3. Hence, we directly compare the

empirical distribution of Gn(fi) with N (0,1) under different scenarios. Specifically, we con-
sider two data distributions of {Xij }, that is,

(1) Gaussian data: {Xij , 1 ≤ i ≤ p, 1 ≤ j ≤ n} i.i.d. N (0,1), with EX4
ij = ν4 = 3.

(2) Non-Gaussian data: {Xij , 1 ≤ i ≤ p, 1 ≤ j ≤ n} i.i.d. Gamma(4,2)−2, with EXij =
0, EX2

ij = 1, EX4
ij = 4.5.

As for the covariance matrix �p , we consider four distinct types:

(A) �A = Ip;
(B) �B is diagonal, 1/4 of its diagonal elements are 0.5, and 3/4 are 1.
(C) �C is diagonal, one-half of its diagonal elements are 0.5, and one-half are 1.
(D) �D is tridiagonal, all of its main diagonal elements are 2, all of its subdiagonal and

superdiagonal elements are 1.

Empirical mean and variance of Gn(fi) are calculated for various combinations of (p,n)

under different model settings. For each pair of (p,n), 5000 independent replications are used
to obtain the empirical mean and variance. Table 1 reports the empirical values of Gn(fi)

under the setting p = n2. As shown in Table 1, the empirical mean and variance of Gn(fi)

closely match their theoretical limits 0 and 1 under all scenarios, including all four types of
�p , and for both Gaussian and non-Gaussian data. Histograms of Gn(fi) for the case (D)
are shown in Figure 1: we see that the empirical densities match well with standard normal
distribution. The histograms for the cases (A), (B) and (C) are similar, and thus omitted.

Additional simulation results for the case p = n2.5 are shown in the Supplementary Mate-
rial. The numerical performance is similar.

5.2. Covariance testing for matrix-valued noise. Empirical size and power of the co-
variance testing for matrix-valued noise in Example 4.1 are examined to testify the asymp-
totic testing power of W ∗ given in (30). We compare the empirical power of W ∗ with
its limits under various model settings. Specifically, the vectorization of data matrix Et is
vec(Et ) = (�1 ⊗ �2)

1/2vec(Zt ). We consider two data distributions of Zt = {Zt,ij }.
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TABLE 1
Empirical mean and variance of Gn(fi), i = 1,2,3 from 5000 replications. Theoretical mean and variance are

0 and 1, respectively. Dimension p = n2

�p = �A �p = �B �p = �C �p = �D

n mean var mean var mean var mean var

50 0.0134 1.0207 −0.0206 0.9929 0.0098 1.0035 −0.0097 0.9964
100 0.004 0.98 −0.0009 0.9985 −0.0144 1.0176 0.0298 1.0017
150 0.0106 0.9926 −0.003 1.0163 −0.0131 0.9862 0.0225 0.9948
200 0.013 0.9889 −0.0223 1.0221 −0.0061 0.9888 0.0073 0.9877
Gn(f1) Gaussian

50 0.0133 1.0239 0.0214 1.0158 −0.0299 0.9919 −0.0137 0.9532
100 0.006 1.0123 −0.0091 0.9856 0.023 0.985 −0.0198 1.0322
150 0.0042 1.0212 0.0248 1.0106 −0.0119 1.0033 0.0078 0.9946
200 0.0019 0.9731 0.0171 0.9987 −0.0195 0.9955 0.004 0.9645
Gn(f1) Non-Gaussian

50 −0.0029 1.0364 −0.0003 1.0575 0.0055 1.0979 0.0073 1.076
100 0.0016 1.0204 −0.0259 0.9847 −0.0033 1.0442 0.0276 1.0319
150 −0.0122 1.0082 −0.0097 1.0387 −0.0099 1.024 −0.0185 1.0485
200 −0.0084 1 −0.0051 1.027 −0.0116 1.0132 0.0033 1.0305
Gn(f2) Gaussian

50 −0.0151 1.2039 −0.0021 1.1874 −0.0142 1.2068 0.0044 1.2069
100 −0.0126 1.0698 0.0148 1.1401 0.0319 1.1135 0.035 1.1151
150 −0.0075 1.1044 −0.0278 1.0692 −0.0084 1.052 −0.008 1.0121
200 −0.0074 1.0332 0.0001 1.0518 −0.0149 1.0342 −0.0171 1.0253
Gn(f2) Non-Gaussian

50 0.0578 1.1324 0.0627 1.1385 0.0681 1.1414 0.0854 1.1823
100 0.0216 1.0325 0.0401 1.061 0.0382 1.0332 0.082 1.0587
150 0.0592 1.0869 0.0236 1.0127 0.0261 1.0543 0.0819 1.0423
200 0.0336 0.9989 0.0248 1.0211 0.0182 1.0633 0.0406 1.0342
Gn(f3) Gaussian

50 0.1529 1.2265 0.1359 1.2057 0.138 1.1964 0.1347 1.1474
100 0.0884 1.0941 0.0953 1.0988 0.1346 1.094 0.0791 1.1134
150 0.0818 1.1206 0.107 1.0683 0.0667 1.0739 0.069 1.0368
200 0.0677 1.0203 0.0807 1.051 0.0468 1.0381 0.0698 1.0095
Gn(f3) Non-Gaussian

(1) Gaussian matrix white noise: {Zt,ij , 1 ≤ i ≤ p, 1 ≤ j ≤ n} i.i.d. N (0,1), with ν4 =
EZ4

t,ij = 3.
(2) Non-Gaussian matrix white noise: {Zt,ij , 1 ≤ i ≤ p, 1 ≤ j ≤ n} i.i.d. Gamma(4,2)−

2, with EZt,ij = 0, EZ2
t,ij = 1, ν4 = EZ4

t,ij = 4.5.

As for covariance matrix �1 ⊗ �2, we set �1 as a p1 × p1 tridiagonal matrix, and �2 as a
p2 × p2 symmetric Toeplitz matrix. More specifically,

�1 =

⎛⎜⎜⎜⎜⎜⎜⎝
2 1
1 2 1

. . .
. . .

. . .

1 2 1
1 2

⎞⎟⎟⎟⎟⎟⎟⎠
p1×p1

,
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FIG. 1. Histograms of Gn(fi), i = 1,2,3 from 5000 replications under the case (D) with (p,n) = (2002,200).
The curves are density functions of standard normal distribution.

and �2 = (ρ|i−j |)p2×p2 with |ρ| < 1. We set ρ = 0.45, p1 = p2 = T = 40,60,80,100,120.
The nominal level of the test is α = 0.05. To obtain the empirical power, we keep �1
unchanged and replace ρ in �2 with ρ(1 + λ) satisfying |ρ(1 + λ)| < 1. We vary λ =
0,0.2,0.3,0.4,0.5 to obtain different levels of testing power. For each pair of (p1,p2, T ),
5000 independent replications are used to obtain the empirical size and power. Empirical val-
ues and theoretical limits are compared in Table 2. As shown in Table 2, the empirical power
tends to 1 when either p1, p2, T or λ increases. Most importantly, the empirical power value
is consistent with its theoretical limit under all scenarios.

TABLE 2
Empirical (Emp) and Theoretical (Theo) size (λ = 0) and power of the covariance testing for matrix-valued

noise in Example 4.1 with 5000 replications

λ = 0 λ = 0.2 λ = 0.3 λ = 0.4 λ = 0.5

p1 p2 T Emp Theo Emp Theo Emp Theo Emp Theo Emp Theo

40 40 40 0.0490 0.05 0.0950 0.0880 0.2856 0.3087 0.8230 0.8354 0.9992 0.9992
60 60 60 0.0554 0.05 0.1650 0.1625 0.6484 0.6606 0.9974 0.9969 1 1
80 80 80 0.0520 0.05 0.2600 0.2699 0.8994 0.9084 1 1 1 1

100 100 100 0.0526 0.05 0.3916 0.4049 0.9864 0.9878 1 1 1 1
120 120 120 0.0542 0.05 0.5356 0.5524 0.9986 0.9992 1 1 1 1
Gaussian

40 40 40 0.0568 0.05 0.0716 0.0662 0.2214 0.2353 0.7008 0.7568 0.9942 0.9977
60 60 60 0.0610 0.05 0.1298 0.1277 0.5462 0.5752 0.9878 0.9930 1 1
80 80 80 0.0580 0.05 0.2202 0.2216 0.8356 0.8655 1 1 1 1

100 100 100 0.0530 0.05 0.3312 0.3464 0.9694 0.9785 1 1 1 1
120 120 120 0.0562 0.05 0.4886 0.4910 0.9974 0.9984 1 1 1 1
Non-Gaussian
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6. Proof of Theorem 3.1. In Section 6.1, we first present the preliminary step of data
truncation. The general strategy of the main proof of Theorem 3.1 is explained in Section 6.2.
Three major steps of the general strategy are presented in Sections 6.3–6.5.

6.1. Truncation, centralization and rescaling. We first truncate the elements of X with-
out changing the weak limit of Gn(f ). Let {δn} be a sequence of positive numbers such that

(32) δ−4
n E|X11|41{|X11|≥δn

4√np} → 0, δn ↓ 0, δn
4
√

np ↑ ∞,

as n → ∞. Define

X̂ij = Xij1{|X11|≤δn
4√np}, σ 2 = E|X̂ij −EX̂ij |2, X̂ = (X̂ij )p×n,

X̃ij = (X̂ij −EX̂ij )/σ, X̃ = (X̃ij )p×n,

Ân = (
X̂′�pX̂ − papIn

)
/
√

npbp, Ãn = (
X̃′�pX̃ − papIn

)
/
√

npbp.

Define Ĝn(f ) and G̃n(f ) similarly by means of (5) with the matrix An replaced by Ân and
Ãn, respectively. First, observe that

P
(
Gn(f ) �= Ĝn(f )

)≤ P(An �= Ân) ≤ npP
(|X11| > δn

4
√

np
)

≤ Kδ−4
n E|X11|41{|X11|≥δn

4√np} = o(1).

Now we consider the difference between Ĝn(f ) and G̃n(f ). For any analytic function f on
U, we have

E
∣∣Ĝn(f ) − G̃n(f )

∣∣
≤ E

n∑
j=1

∣∣f (λÂn

j

)− f
(
λ

Ãn

j

)∣∣≤ Kf√
npbp

E

n∑
j=1

∣∣λX̂′�pX̂
j − λ

X̃′�pX̃
j

∣∣
≤ Kf√

npbp

E
∣∣tr(X̂ − X̃)′�p(X̂ − X̃) · 2

{
tr
(
X̂′�pX̂

)+ tr
(
X̃′�pX̃

)}∣∣1/2

≤ 2Kf√
npbp

∣∣E tr(X̂ − X̃)′�p(X̂ − X̃)
∣∣1/2∣∣E tr

(
X̂′�pX̂

)+E tr
(
X̃′�pX̃

)∣∣1/2
,

where Kf is a bound for |f ′(x)| by Lemma S1.6.
It follows from (32) that∣∣σ 2 − 1

∣∣≤ 2EX2
111{|X11|≥δn

4√np} ≤ 2

δ2
n

√
np

E|X11|41{|X11|≥δn
4√np} = o

(
(np)−1/2

)
,

and

|EX̂11| = |EX111{|X11|≥δn
4√np}| ≤ E|X11|1{|X11|≥δn

4√np}

≤ 1

δ3
n(np)3/4E|X11|41{|X11|≥δn

4√np} = o
(
(np)−3/4).

These give us

1√
np

{
tr(X̂ − X̃)′�p(X̂ − X̃)

}1/2 ≤∑
i,j

(�p)iiE

∣∣∣∣σ − 1

σ
X̂ij + EX̂ij

σ

∣∣∣∣2

≤ Kpn

{
(1 − σ)2

σ 2 E|X̂11|2 + 1

σ 2E|X̂11|2
}

= o(1),
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and

E tr
(
X̂′�pX̂

)≤∑
i,j

(�p)iiE|X̂ij |2 ≤ Knp, E tr
(
X̃′�pX̃

)≤∑
i,j

(�p)iiE|X̃ij |2 ≤ Knp.

From the above estimates, we obtain

Gn(f ) = G̃n(f ) + oP (1).

Thus, we only need to find the limit distribution of {G̃n(fj ), j = 1, . . . , k}. Hence, in what
follows, we assume that the underlying variables are truncated at δn

4
√

np, centralized and
renormalized. For convenience, we shall suppress the superscript on the variables, and assume
that, for any 1 ≤ i ≤ p and 1 ≤ j ≤ n,

|Xij | ≤ δn
4
√

np, EXij = 0, EX2
ij = 1,

EXa
ij = νa + o(1), a = 4,5, E|Xij |6+ε0 < ∞,

where δn satisfies the condition (32).

6.2. Strategy of the proof. The general strategy of the proof follows the method estab-
lished in Bai and Silverstein (2004) and Bai and Yao (2005).

Let C be the closed contour formed by the boundary of the rectangle with (±u1,±iv1)

where u1 > η = 2 lim supp ‖�p‖/√θ with θ = limp→∞ tr(�2
p)/p, 0 < v1 ≤ 1. Assume that

u1 and v1 are fixed and sufficiently small such that C ⊂ U. Note that the contour C encloses
the support of F An(x) and F(x). Then, for any x ∈ (−u1, u1), by Cauchy’s integral theorem,
we have

f (x) = 1

2πi

∮
C

f (z)

z − x
dz.

By this formula, with probability one, we can rewrite Gn(f ) as

Gn(f ) = n

∫ +∞
−∞

f (x)
{
F An(x) − F(x)

}
dx︸ ︷︷ ︸

use Cauchy’s integral theorem

− n

2πi

∮
|m|=ρ

f

(
−m − 1

m

)
Xn(m)

1 − m2

m2 dm︸ ︷︷ ︸
change of variable, let z = −m − m−1

= n

2πi

∮
C
f (z)

{∫ +∞
−∞

F An(x) − F(x)

z − x
dx

}
dz + n

2πi

∮
C
f (z)Xn

(
m(z)

)
dz

= − 1

2πi

∮
C
f (z)n

{
mn(z) − m(z) −Xn

(
m(z)

)}
dz,

where mn(z) and m(z) are the Stieltjes transforms of F An and F , respectively.
Although this equality may not be correct when some eigenvalues of An run outside the

contour, the probability of this event decays rapidly to zero. A corrected version of Gn(f ) is

Gn(f )1Un = −1Un

2πi

∮
C
f (z)n

{
mn(z) − m(z) −Xn

(
m(z)

)}
dz,

where Un = {max1≤j≤n |λAn

j | < η + ε}. The quantity Gn(f )1Uc
n

will not matter in our proof
due to the bound for eigenvalues of An established in Lemma 6.1, and thus we need only
to consider Gn(f )1Un . Therefore, the problem of finding the limit distribution of Gn(f )

reduces to the study of

Mn(z) = n
{
mn(z) − m(z) −Xn

(
m(z)

)}
.
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FIG. 2. Open region U and decomposition of the closed contour C.

LEMMA 6.1. Suppose the assumptions (A)–(C1) in Theorem 3.1 hold, then for any ε > 0,
we have

P

(
max

1≤j≤n

∣∣λAn

j

∣∣≥ η + ε
)

= o
(
n−1),

where η = 2 lim supp ‖�p‖/√θ .

The proof of this lemma is given in Section S2 of the Supplementary Material.
Throughout the paper, we set C1 = {z : z = u + iv, u ∈ [−u1, u1], |v| ≥ v1}. The limiting

process of Mn(z) on C1 is stated in the following proposition. Most of the remaining work
will deal with proving this proposition.

PROPOSITION 6.1. Under the assumption p ∧ n → ∞, n2/p = O(1) and after trun-
cation of the data, the empirical process {Mn(z), z ∈ C1} converges weakly to a centered
Gaussian process {M(z), z ∈ C1} with the covariance function

(33) �(z1, z2) = m′(z1)m
′(z2)

[
ω

θ
(ν4 − 3) + 2

{
1 − m(z1)m(z2)

}−2
]
.

Now we explain how Proposition 6.1 implies Theorem 3.1. Write the contour C as C =
C� ∪ Cr ∪ Cu ∪ C0 (see Figure 2), where

C� = {
z = −u1 + iv, ξn/n < |v| < v1

}
,

Cr = {
z = u1 + iv, ξn/n < |v| < v1

}
,

C0 = {
z = ±u1 + iv, |v| ≤ ξn/n

}
,

Cu = {
z = u ± iv1, |u| ≤ u1

}
,

and {ξn} is a slowly varying sequence of positive constants; recall that v1 is a positive con-
stant, which is independent of n. By C� ∪ C0 ∪ Cr = C \C1, we can write

(34) Gn(f )1Un = − 1

2πi

∫
Cu

f (z)Mn(z)1Un dz − 1

2πi

∫
C\C1

f (z)Mn(z)1Un dz.

To prove Theorem 3.1, we need to show that, for j = �, r,0,

(35) lim
v1↓0

lim sup
n→∞

∫
Cj

E
∣∣Mn(z)1Un

∣∣2 dz = 0
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and

(36) lim
v1↓0

∫
Cj

E
∣∣M(z)

∣∣2 dz = 0.

The proofs of (35) and (36) are provided in Section S3 of the Supplementary Material. By
(35) and the fact that f is bounded over the bounded open region U, for sufficiently small v1,
we have

1

2πi

∫
C\C1

f (z)Mn(z)1Un dz = oP (1),

which, together with (34), (36) and Proposition 6.1, implies that

Gn(f )1Un

d−→ − 1

2πi

∮
C
f (z)M(z)dz =: Y(f ).

The calculation of the limiting covariance function of Y(f ) (see (7) and (8)) is quite similar
to that given in Section 5 of Bai and Yao (2005); it is then omitted. This completes the proof
of Theorem 3.1.

To prove Proposition 6.1, we decompose Mn(z) into a random part M
(1)
n (z) and a deter-

ministic part M
(2)
n (z) for z ∈ C, where

M(1)
n (z) = n

{
mn(z) −Emn(z)

}
, M(2)

n (z) = n
{
Emn(z) − m(z) −Xn

(
m(z)

)}
.

The random part contributes to the covariance function and the deterministic part contributes
to the mean function. By Theorem 8.1 in Billingsley (1968), the proof of Proposition 6.1 is
then complete if we can verify the following three steps:

Step 1. Finite-dimensional convergence of M
(1)
n (z) in distribution on C1 to a centered

multivariate Gaussian random vector with covariance function given by (33).
Step 2. Tightness of the M

(1)
n (z) for z ∈ C1.

Step 3. Convergence of the nonrandom part M
(2)
n (z) to zero on C1.

The proofs of these steps are presented in the coming sections.

6.3. Finite-dimensional convergence of M
(1)
n (z) in distribution. In this section, we con-

sider the finite-dimensional convergence of the random part M
(1)
n (z) under the assumption

p/n → ∞ (which is implied by n2/p = O(1)).

LEMMA 6.2. Suppose the assumptions (A) and (B) in Theorem 3.1 hold and p/n → ∞
as p ∧ n → ∞, then for any set of r points {z1, z2, . . . , zr} ⊆ C1, the random vector
(M

(1)
n (z1), . . . ,M

(1)
n (zr)) converges weakly to a r-dimensional centered Gaussian distribu-

tion with covariance matrix given by �(zi, zj ) defined in (33), where 1 ≤ i, j ≤ r .

We now explain the sketch of proof of Lemma 6.2, and the technical details are provided
in the Supplementary Material. By the fact that a random vector is multivariate normally
distributed if and only if every linear combination of its components is normally distributed,
we need only show that for any positive integer r and any complex sequence {aj }, the sum∑r

j=1 ajM
(1)
n (zj ) converges weakly to a Gaussian random variable. To this end, we first

decompose the random part M
(1)
n (z) as a sum of martingale difference. Then we apply the

martingale CLT (Lemma S1.4) to obtain the asymptotic distribution of M
(1)
n (z). Details of

these two steps are provided in the Supplementary Material.
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6.4. Proof of tightness of M
(1)
n (z). This subsection is to verify the tightness of M

(1)
n (z)

for z ∈ C1 by using Theorem 12.3 of Billingsley (1968) (see Lemma S1.5). From Lem-
ma S1.10 and Lemma S1.11, we can show that the condition (i) of Lemma S1.5 holds. Con-
dition (ii) of Lemma S1.5 will be verified by showing

(37)
E|M(1)

n (z1) − M
(1)
n (z2)|2

|z1 − z2|2 ≤ K, z1, z2 ∈C1.

The proof of (37) exactly follow Chen and Pan (2015); it is then omitted.

6.5. Convergence of M
(2)
n (z). In this section, we obtain the asymptotic expansion of

n(Emn(z) − m(z)) for z ∈ C1 (see definition of C1 in Section 6.2) and the result is stated in
Lemma 6.3. This lemma, together with the finite-dimensional convergence (see Section 6.3)
and the tightness of M

(1)
n (z) (see Section 6.4), implies Proposition 6.1. To prove Lemma 6.3,

we will follow the strategy in Khorunzhy, Khoruzhenko and Pastur (1996) and Bao (2015).
The main tool is the generalized Stein’s equation (see Lemma 6.4).

LEMMA 6.3. With the same notation as in the previous sections:

(1) if p ∧ n → ∞ and n2/p = O(1), we have

(38) M(2)
n = n

{
Emn(z) − m(z) −Xn

(
m(z)

)}= o(1),

uniformly for z ∈ C1, where Xn(m) is defined by (6);
(2) if p ∧ n → ∞ and n3/p = O(1), we have

(39)

n

{
Emn(z) − m(z) +

√
n

p

cp

bp

√
bp

m4

1 − m2

}

= m3

1 − m2

{
m2

1 − m2 + b̃p

bp

(ν4 − 3) + 1
}

+ o(1)

uniformly for z ∈ C1.

PROOF. Let Y = (npbp)−1/4X, then An = Y′�pY −
√

p
n

ap√
bp

In. To simplify notation,

we denote

D := (An − zIn)
−1, E := �pYDY′�p = (Eij )p×p, F := �pYD = (Fij )p×n.

By the basic identity,

D = −1

z
In + 1

z
DAn = −1

z
In + 1

z

(
DY′�pY −

√
p

n

ap√
bp

D
)
,

we have

Emn(z) = −1

z
+ 1

z
· 1

n
E tr(DAn)

= −1

z
− 1

z

√
p

n

ap√
bp

E

(
1

n
tr D
)

+ 1

zn
E tr

(
Y′�pYD

)
= −1

z
− 1

z

√
p

n

ap√
bp

Emn(z) + 1

zn

∑
j,k

E(YjkFjk).

(40)

The basic idea of the following derivation is regarding Fjk := (�pYD)jk as an analytic func-
tion of Yjk , and then use the generalized Stein’s equation (Lemma 6.4 below) to expand
E(YjkFjk) in (40).
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LEMMA 6.4 (Generalized Stein’s equation, Khorunzhy, Khoruzhenko and Pastur (1996)).
For any real-valued random variable ξ with E|ξ |k+2 < ∞ and complex-valued function g(t)

with continuous and bounded k + 1 derivatives, we have

E
{
ξg(ξ)

}=
k∑

a=0

κa+1

a! E
{
g(a)(ξ)

}+ ε,

where κa is the ath cumulant of ξ , and

|ε| ≤ C sup
t

∣∣g(k+1)(t)
∣∣ E{|ξ |k+2},

where the positive constant C depends on k.

Applying Lemma 6.4 to the last term in (40), we obtain the following expansion:

(41)

Emn(z) = −1

z
− 1

z

√
p

n

ap√
bp

Emn(z)

+ 1

zn

4∑
a=0

1

(npbp)(a+1)/4

∑
j,k

κa+1

a! E

(
∂aFjk

∂Y a
jk

)
+ εn,

where κa is the ath cumulant of Yjk , ∂aFjk

∂Y a
jk

denotes the ath order derivative of Fjk with respect
to Yjk , and

(42) |εn| ≤ K

n

1

(npbp)6/4

∑
j,k

sup
j,k

Ejk

∣∣∣∣∂5Fjk

∂Y 5
jk

∣∣∣∣.
The explicit formula of the derivatives of Fjk are provided in Lemma S1.15.

From Lemma S1.14 and the identity DX′�pX = papD +√npbp(In + zD), it is not diffi-
cult to obtain the following estimates:

D
a1
kkF

a2
jk E

a3
jj ≤ Kna3/2

[∑
α

{
(�Y)jα

}2
](a2+2a3)/2

(a1, a2, a3 ≥ 0),

E

∣∣∣∣(�−1/2
p E�−1/2

p

)
jj − Emn

ap

√
p/(nbp) + z +Emn

∣∣∣∣= O

((
n

p

)2)
+ O

(
1

p

)
,

∣∣∣∣∑
j,k

Fjk

∣∣∣∣= O
(
(np)3/4),

∣∣∣∣∑
j,k

F
a2
jk

∣∣∣∣= O
(
pa2/4n1−a2/4) (a2 ≥ 2).

(43)

By (42), (43) and Lemma S1.15, we obtain |εn| = o(1/n). By the fact

(44) E

∣∣∣∣Dkk + 1

z +Emn

∣∣∣∣2 = O

(
1

n

)
+ O

(
n

p

)
, k = 1, . . . , n,
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which is verified in Lemma S1.13, and the estimates above, we can extract the leading order
terms in (41) to obtain

(45)

Emn(z) = −1

z
− 1

z

√
p

n

ap√
bp

Emn(z)

+ 1

zn

1√
npbp

∑
j,k

E
{
(�p)jjDkk − EjjDkk − F 2

jk

}
− 1

zn

ν4 − 3

npbp

∑
j,k

E
{
(�p)2

jjD
2
kk

}+ o

(
1

n

)

= −1

z
− 1

zn

1√
npbp

E
{
tr(E) tr(D)

}− 1

zn

1√
npbp

E
{
tr
(
FF′)}

− (ν4 − 3)b̃p

zn2bp

E

(∑
k

D2
kk

)
+ o

(
1

n

)
.

Using the same argument as in the proof of Lemma S1.21, if n2/p = O(1), we can show that

E

∣∣∣∣ 1√
npbp

tr E − m(z)

∣∣∣∣2 = O

(
1

n

)
.

This, together with cr -inequality, implies that

(46) E

∣∣∣∣ 1√
npbp

tr E −E
1√

npbp

tr E
∣∣∣∣2 = o(1).

Together with the fact that Var(mn) = O(n−2) (see Lemma S1.12), we obtain

(47) Cov
(

1√
npbp

tr E,
1

n
tr D
)

≤√(46) ·√Var(mn) = o

(
1

n

)
.

Note that

(48) tr
(
FF′)= tr

(
�pYD2Y′�p

)= ∂

∂z
tr
(
�pYDY′�p

)= ∂

∂z
tr E.

Applying (44), (47) and (48) to (45), we have

(49)

Emn(z) = −1

z
− 1

z
· 1√

npbp

E(tr E) · 1

n
E (tr D) − 1

zn

1√
npbp

E

(
∂

∂z
tr E
)

− ν4 − 3

zn

b̃p

bp

{
Emn(z)

}2 + o

(
1

n

)
.

The problem reduces to estimate (1/
√

npbp)E(tr E). To this end, we apply Lemma 6.4
again to the term (1/

√
npbp)E(tr E) to find its expansion. We denote

Ê := �pYDY′�2
p, F̂ := �2

pYD,

and write

(50)
1√

npbp

E (tr E) = 1√
npbp

∑
j,k

E(YjkF̂jk).
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The first four derivatives of F̂jk with respect to Yjk are presented in Lemma S1.16. Applying
generalized Stein’s equation with the derivatives of F̂jk to the last term in (50), and using the
similar estimates above, gives us

1√
npbp

E (tr E) = 1√
npbp

3∑
a=0

1

(npbp)(a+1)/4

∑
j,k

κa+1

a! E

(
∂aF̂jk

∂Y a
jk

)
+ ε̃n

= 1

npbp

∑
j,k

E
{(

�2
p

)
jjDkk − ÊjjDkk − FjkF̂jk

}
+ 1√

npbp

ν4 − 3

npbp

∑
j,k

E
{−(�2

p

)
jj (�p)jjD

2
kk

}+ o

(
1

n

)

= Emn − 1

npbp

E
{
tr(Ê) tr(D)

}− 1

npbp

E
{
tr
(
FF̂′)}

− 1√
npbp

ν4 − 3

npbp

E

{∑
j

(
�2

p

)
jj (�p)jj

}(∑
k

D2
kk

)
+ o

(
1

n

)

= Emn −
√

n

p

1√
npbp

E(tr Ê) · 1

n
E(tr D) + o

(
1

n

)
(51)

= Emn −
√

n

p

{
cp

bp

√
bp

Emn + O

(√
n

p

)}
·Emn + o

(
1

n

)
(52)

= Emn −
√

n

p

cp

bp

√
bp

(Emn)
2 + o

(√
n

p

)
+ o

(
1

n

)
,(53)

where (52) comes from similar arguments in the proof of Lemma S1.21. Plugging (53) into
(49), we have

Emn = −1

z
− 1

z

{
Emn −

√
n

p

cp

bp

√
bp

(Emn)
2
}
Emn

− 1

zn
· ∂

∂z

{
Emn −

√
n

p

cp

bp

√
bp

· (Emn)
2
}

− ν4 − 3

zn

b̃p

bp

(Emn)
2

+ o

(√
n

p

)
+ o

(
1

n

)

= −1

z
− (Emn)

2

z
+ 1

z

√
n

p

cpm3

bp

√
bp

− 1

zn

{
m2

1 − m2 + (ν4 − 3)b̃p

bp

m2
}

+ o

(√
n

p

)
+ o

(
1

n

)
.

Solving this equation yields that

(54)

n(Emn − m) = m3

1 − m2

{
m2

1 − m2 + b̃p

bp

(ν4 − 3) + 1
}

−
√

n3

p

cp

bp

√
bp

m4

1 − m2 + +o

(√
n3

p

)
+ o(1).

This implies (39) under the assumption n3/p = O(1).
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Moreover, to obtain (38) under the assumption n2/p = O(1), we need to figure out the
remainder term o(

√
n/p) in (53) more carefully. Indeed, this remainder term comes from the

estimate of E(tr Ê)/(bp
√

np) in (51). To get a more precise estimation, we use the similar
argument above for calculating the asymptotic expansion of E(tr Ê)/(bp

√
np):

(55)
1√

npbp

E(tr Ê) = cp

bp

√
bp

Emn −
√

n

p

dp

b2
p

(Emn)
2 + O

(
n

p

)
.

By substituting this expression into (51), we obtain a more precise estimation than (53):

(56)
1√

npbp

E(tr E) = Emn −
√

n

p

cp

bp

√
bp

(Emn)
2 + n

p

dp

b2
p

(Emn)
3 + o

(
1

n

)
+ o

(
n

p

)
.

Plugging (56) into (49), we have

Emn = −1

z
− 1

z

{
Emn −

√
n

p

cp

bp

√
bp

(Emn)
2 + n

p

dp

b2
p

(Emn)
3
}
Emn

− 1

zn
· ∂

∂z

{
Emn −

√
n

p

cp

bp

√
bp

(Emn)
2
}

− ν4 − 3

zn

b̃p

bp

(Emn)
2 + o

(
1

n

)
+ o

(
n

p

)

= −1

z
− 1

z
(Emn)

2 + 1

z

√
n

p

cp

bp

√
bp

(Emn)
3 − 1

z

n

p

dp

b2
p

m4

− 1

zn

{
m2

1 − m2 + (ν4 − 3)b̃p

bp

m2
}

+ o

(
1

n

)
+ o

(
n

p

)
.

Multiplying −z on both sides, we have

(57)

−zEmn = 1 + (Emn)
2 −

√
n

p

cp

bp

√
bp

(Emn)
2 ·Emn + n

p

dp

b2
p

m4

+ 1

n

{
m2

1 − m2 + (ν4 − 3)b̃p

bp

m2
}

+ o

(
1

n

)
+ o

(
n

p

)
.

This implies that

(58) (Emn)
2 = −1 − zEmn +

√
n

p

cp

bp

√
bp

(Emn)
3 + O

(
1

n

)
+ O

(
n

p

)
.

Plugging (58) into (57) yields that

−zEmn = 1 + (Emn)
2 +

√
n

p

cp

bp

√
bp

(1 + zEmn)Emn − n

p

c2
p

b3
p

m4

+ n

p

dp

b2
p

m4 + 1

n

{
m2

1 − m2 + (ν4 − 3)b̃p

bp

m2
}

+ o

(
1

n

)
+ o

(
n

p

)
.

This equation can be written as a quadratic equation of Emn − m:

0 =An(m)(Emn − m)2 +Bn(m)(Emn − m) + Cn(m) + o

(
1

n

)
+ o

(
n

p

)
,

where An(m), Bn(m) and Cn(m) are defined in (6). The equation has two solutions:

x1 = −Bn(m) +√Bn(m)2 − 4An(m)Cn(m)

2An(m)
+ o

(
1

n

)
+ o

(
n

p

)
,
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x2 = −Bn(m) −√Bn(m)2 − 4An(m)Cn(m)

2An(m)
+ o

(
1

n

)
+ o

(
n

p

)
.

When n2/p = O(1), from the definition of An(m), Bn(m) and Cn(m), we can verify that
x1 = o(1) while x2 = (1 − m2)/m2 + o(1). Since Emn − m = o(1), we choose x1 to be the
expression of Emn − m, and

(59) n(Emn − m) = n · −Bn(m) +√Bn(m)2 − 4An(m)Cn(m)

2An(m)
+ o(1) + o

(
n2

p

)
.

This implies (38) under the assumption n2/p = O(1). Though the constants that appear in
successive estimations used in this proof are implicitly given, they are all independent of
z ∈ C1. Thus, the convergence of M

(1)
n (z) is uniform over z ∈ C1. �

REMARK 6.1 (Weakening of the assumption n2/p = O(1)). It is indeed possible to relax
the assumption n2/p = O(1), that is, p ≥ Kn2 for some constant K and large n, to cover also
the range n � p � n2 for the dimension p by using an approximation for E(tr Ê)/(bp

√
np)

of a higher order than in (55). By iterating the expansion process with Lemma 6.4, we can
expand further the O(n/p) term in (55) and obtain

(60)
1√

npbp

E(tr Ê) = cp

bp

√
bp

Emn −
√

n

p

dp

b2
p

(Emn)
2 + n

p

ep

b
5/2
p

(Emn)
3 + O

((
n

p

)3/2)
,

where ep = tr(�5
p)/p. Substituting this expression into (51) leads to a cubic equation for

n(Emn −m) with reminder term n ·√n/p ·O((n/p)3/2) = o(n5/2/p3/2), which comes from
(51) and (60). This reminder term is o(1) under the assumption p ≥ Kn5/3, which enlarges
the previous range of p ≥ Kn2. The other derivations for our CLT (Theorem 3.1) remain
valid under the scenario p ≥ Kn5/3; so, the theorem still holds.

In fact, we can iterate this expansion process to cover the whole range of n � p � n2.
However, this leads higher and higher degree equations for n(Emn −m) and we cannot obtain
a closed-form formula for Xn(m), which is the approximation of n(Emn − m) that appears
in the spectral statistic Gn(f ) as a correction term. This presents a problem in practical
applications and we do not pursue this direction in the paper.
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